Buy article online - an online subscription or single-article purchase is required to access this article.
The structure of the ammonium salt of the dianion of 1,3,4,6-tetranitro-2,5-diazapentalene is reported, viz. 2NH4+·C6N6O82-. Only three atoms of the central 2,5-diazapentalene skeleton are unique, as the anion possesses 2/m symmetry. The ammonium cation forms strong hydrogen bonds to the aza N and nitro O atoms, forming a sheet in the ac plane.
Supporting information
CCDC reference: 221690
Key indicators
- Single-crystal X-ray study
- T = 294 K
- Mean (C-C) = 0.002 Å
- R factor = 0.031
- wR factor = 0.085
- Data-to-parameter ratio = 10.1
checkCIF results
No syntax errors found
ADDSYM reports no extra symmetry
Alert Level C:
PLAT_733 Alert C Torsion Calc -4.5(3), Rep -4.46(12) ...... 2.50 su-Rat
C2 -C1 -C2 -N2 2.556 1.555 1.555 1.555
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check
Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Ammonium 1,3,4,6-tetranitro-2,5-diazapentalene
top
Crystal data top
2H4N+·C6N6O82− | F(000) = 328 |
Mr = 320.20 | Dx = 1.830 Mg m−3 |
Monoclinic, C2/m | Cu Kα radiation, λ = 1.54178 Å |
a = 12.1938 (3) Å | Cell parameters from 1485 reflections |
b = 9.8825 (2) Å | θ = 11.9–133.9° |
c = 5.2130 (1) Å | µ = 1.50 mm−1 |
β = 112.294 (1)° | T = 294 K |
V = 581.24 (2) Å3 | Prism, red |
Z = 2 | 0.10 × 0.04 × 0.03 mm |
Data collection top
Bruker CCD area-detector diffractometer | 545 independent reflections |
Radiation source: fine-focus sealed tube | 474 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
φ and ω scans | θmax = 66.8°, θmin = 6.0° |
Absorption correction: integration (Wuensch & Prewett, 1965) | h = −14→14 |
Tmin = 0.874, Tmax = 0.959 | k = −11→11 |
2066 measured reflections | l = −6→5 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.085 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0494P)2 + 0.1754P] where P = (Fo2 + 2Fc2)/3 |
545 reflections | (Δ/σ)max < 0.001 |
54 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.16 e Å−3 |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
O1 | 0.05900 (11) | 0.33887 (11) | 0.3283 (3) | 0.0490 (4) | |
O2 | 0.18353 (10) | 0.24196 (11) | 0.1845 (2) | 0.0429 (4) | |
N1 | 0.12489 (14) | 0.0000 | 0.2920 (3) | 0.0284 (4) | |
N2 | 0.10873 (10) | 0.23672 (11) | 0.2915 (2) | 0.0300 (3) | |
N3 | 0.32158 (16) | 0.0000 | 0.1010 (4) | 0.0373 (5) | |
H3A | 0.3874 | 0.0000 | 0.2656 | 0.056* | |
H3B | 0.2534 | 0.0000 | 0.1397 | 0.056* | |
H3C | 0.3227 | 0.0768 | 0.0001 | 0.056* | |
C1 | 0.0000 | 0.07236 (18) | 0.5000 | 0.0248 (4) | |
C2 | 0.07853 (12) | 0.10816 (13) | 0.3675 (3) | 0.0265 (3) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
O1 | 0.0649 (8) | 0.0241 (6) | 0.0748 (8) | 0.0074 (5) | 0.0453 (7) | 0.0058 (5) |
O2 | 0.0518 (7) | 0.0324 (6) | 0.0619 (8) | −0.0005 (5) | 0.0412 (6) | 0.0087 (5) |
N1 | 0.0309 (8) | 0.0247 (9) | 0.0360 (9) | 0.000 | 0.0200 (7) | 0.000 |
N2 | 0.0346 (7) | 0.0230 (6) | 0.0374 (6) | −0.0002 (4) | 0.0193 (5) | 0.0018 (4) |
N3 | 0.0437 (10) | 0.0274 (9) | 0.0526 (11) | 0.000 | 0.0318 (9) | 0.000 |
C1 | 0.0286 (9) | 0.0184 (9) | 0.0309 (9) | 0.000 | 0.0151 (7) | 0.000 |
C2 | 0.0295 (7) | 0.0217 (7) | 0.0327 (7) | −0.0004 (5) | 0.0166 (6) | 0.0011 (5) |
Geometric parameters (Å, º) top
O1—N2 | 1.2295 (16) | N3—H3B | 0.9264 |
O2—N2 | 1.2379 (16) | N3—H3C | 0.9264 |
N1—C2 | 1.3364 (16) | C1—C2 | 1.4217 (14) |
N1—C2i | 1.3364 (16) | C1—C2ii | 1.4217 (14) |
N2—C2 | 1.4202 (17) | C1—C1iii | 1.430 (4) |
N3—H3A | 0.9265 | | |
| | | |
C2—N1—C2i | 106.23 (15) | C2—C1—C2ii | 151.18 (17) |
O1—N2—O2 | 121.81 (11) | C2—C1—C1iii | 104.41 (9) |
O1—N2—C2 | 119.72 (11) | C2ii—C1—C1iii | 104.41 (9) |
O2—N2—C2 | 118.45 (11) | N1—C2—N2 | 116.74 (12) |
H3A—N3—H3B | 109.4 | N1—C2—C1 | 112.47 (12) |
H3A—N3—H3C | 109.4 | N2—C2—C1 | 130.67 (13) |
H3B—N3—H3C | 109.4 | | |
| | | |
C2i—N1—C2—N2 | −175.89 (7) | O2—N2—C2—C1 | 177.68 (12) |
C2i—N1—C2—C1 | 0.7 (2) | C2ii—C1—C2—N1 | 179.58 (12) |
O1—N2—C2—N1 | 172.14 (13) | C1iii—C1—C2—N1 | −0.42 (12) |
O2—N2—C2—N1 | −6.5 (2) | C2ii—C1—C2—N2 | −4.46 (12) |
O1—N2—C2—C1 | −3.7 (2) | C1iii—C1—C2—N2 | 175.54 (12) |
Symmetry codes: (i) x, −y, z; (ii) −x, y, −z+1; (iii) −x, −y, −z+1. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···O1iv | 0.93 | 2.53 | 3.197 (2) | 129 |
N3—H3B···N1 | 0.93 | 2.01 | 2.925 (2) | 170 |
N3—H3C···O2v | 0.93 | 2.02 | 2.9412 (14) | 172 |
Symmetry codes: (iv) −x+1/2, −y+1/2, −z+1; (v) −x+1/2, −y+1/2, −z. |
Subscribe to Acta Crystallographica Section E: Crystallographic Communications
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.