Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Methyl 2-(3,4-dichloro­benzoyl)-1-methyl­hydrazine­carbo­di­thio­­ate, C10H10Cl2N2OS2, (F1), butyl 2-(3,4-dichloro­ben­zoyl)-1-methyl­hydrazine­carbodithio­ate, C13H16Cl2N2OS2, (F2), and 3,4-dichloro-N-(2-sulfanylidene-1,3-thia­zinan-3-yl)benz­amide, C11H10Cl2N2OS2, (F3), were studied by X-ray diffraction to test our hypothesis that planarity of aryl­­oylhydrazinedithio­carbazic acid esters is a prerequisite for tuberculostatic activity. All compounds examined in this study are inactive and nonplanar due to twists along two specific bonds in the central frame of the mol­ecules. The significant twist at the N-N bond, with an C-N-N-C(S) torsion angle of about 85°, results from repulsion caused by a methyl substituent at the N' atom of the hydrazide group. The other twist is that within the benzoyl group at the C(O)-Ph bond, i.e. the N-C(=O)-C(phenyl)-C torsion angle: the values found in the studied structures (25-30°) are in agreement with those observed in other compounds containing a similar fragment. As some nonplanar benzoyl derivatives are active, it seems that planarity of the hydrazine­dithio­ate fragment is more important for tuberculostatic activity than planarity of the aryloyl group.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112036001/ov3016sup1.cif
Contains datablocks F1, F2, F3, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112036001/ov3016F1sup2.hkl
Contains datablock F1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112036001/ov3016F2sup3.hkl
Contains datablock F2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112036001/ov3016F3sup4.hkl
Contains datablock F3

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112036001/ov3016F1sup5.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112036001/ov3016F2sup6.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112036001/ov3016F3sup7.cml
Supplementary material

CCDC references: 906566; 906567; 906568

Comment top

Our earlier studies of compounds containing a pyrazine ring with an N atom in the ortho position suggested that the N—H···N(ortho) intramolecular contact [see (A), (B) and (C) in Scheme 1] is at least partially responsible for the planarity of the studied heteroaryloylhydrazinedithiocarbazic acid derivatives and their tuberculostastic activity (Olczak et al., 2007, 2011; Szczesio et al., 2011). Recently, we have shown that phenyl analogues of pyrazine derivatives [(D) in Scheme 1] may also reveal activity, even though they are unable to maintain planarity of the benzoyl fragment (Szczesio et al., 2011). The only condition was that the remaining part of the molecule [(D1 but not D2)], apart from the terminal thioester groups, be planar.

Now, to verify further the hypothesis of planarity being the prerequisite for tuberculostatic activity, we have forced the molecules to twist at the N—N bond as well, by substitution of one N atom with a methyl group [(F) in Scheme 1]. As expected, all type (F) compounds studied were inactive. We present here the crystal structures of three of them, (F1), (F2) and (F3) (Scheme 2).

The C1—N2—N3—C4 torsion angle is between -83 and -90° in the title compounds (Table 1). In similar structures not substituted at the N atoms [(E) in Scheme 1], the values of the C1—N2—N3—C4 torsion angle are distributed over a significantly wider range. We found four examples with the angle within 85–110°, two within 145–160° and six over 170° (Fig. 4a). This observation suggests that the antiperiplanar conformation along the N—N bond dominates and this is probably on active form [Meaning not clear]. At the same time, a moderate twist of 23–30° along the C4—C41(phenyl) bond (the N3—C4—C41—C42 torsion angle) is observed, in agreement with common values between 0 and 40° (average 20°) (Table 1 and Fig. 4b). In this respect it is of interest that some benzoyl derivatives of unsubstituted hydrazinedithioates (E) show significant tuberculostatic activity (Foks, 2011), suggesting that planarity of the hydrazinedithioate group is more important than that of the aryloyl one.

The molecular packing in (F1), (F2) and (F3) is determined mainly by intermolecular N3—H···O4 hydrogen bonds, which form infinite C(4) (Etter, 1990; Etter et al., 1990; Bernstein et al., 1995) chains parallel to the [100] direction for (F1) and (F2), and to the [001] direction for (F3). The numerical values of the hydrogen bonds are listed in Tables 2–4.

Related literature top

For related literature, see: Bernstein et al. (1995); Bruker (2009); Etter (1990); Etter, MacDonald & Bernstein (1990); Foks (2011); Olczak et al. (2007, 2011); Sheldrick (2004, 2008b); Szczesio et al. (2011).

Experimental top

To N'-methylcarbohydrazide suspended in methanol, triethylamine and CS2 were added and stirred at room temperature to dissolve. Next, the respective iodide was added and the mixtures were stirred for 1 h. After adding ice and acetic acid, the mixtures were cooled in an ice-bath and the oily precipitates were crystallized, filtered off, washed with water, dried and recrystallized from methanol [for (F1)] or a methanol–water mixture [Solvent ratio? for (F2)]. In the case of (F3), to an ethanol suspension of 3,4-dichlorobenzohydrazide, water, triethylamine and CS2 were added and stirred at room temperature to dissolve. 1,3-Dibromopropane was then added and the mixture was stirred for 45 min. The precipitate was processed as described above and recrystallized from acetonitrile. [Please provide all quantities, or at least molar ratios, for all stages]

For (F3), the crystal used was found to exhibit nonmerohedral twinning, which was handled by a combination of CELL_NOW (Sheldrick, 2004) and TWINABS (Sheldrick, 2008b), with successive refinement of the unit-cell parameters by SAINT (Bruker, 2009). The refined twin scale factor was 0.416 (1) and the two components were related by 180° rotation around the c* axis.

Refinement top

H atoms were located in difference Fourier maps, and subsequently geometrically optimized and allowed for as riding atoms, with C—H = 0.95 Å for aromatic C—H groups, 0.97 Å for secondary CH2 groups and 0.96 Å for methyl groups, and N—H = 0.86 Å, with Uiso(H) = 1.2Ueq(C,N). The only exception was atom H3 in (F2), which was refined without any constraints.

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2002); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (F1), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular structure of (F2), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. The molecular structure of (F3), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4] Fig. 4. The planarity of (a) hydrazinedithioate and (b) benzoyl fragments in crystal structures deposited in the Cambridge Structural Database (CSD, Version 5.33; Allen, 2002).
[Figure 5] Fig. 5. The intermolecular hydrogen bonds in (F1) (dotted lines) determining the packing of molecules in the crystal structure. [Symmetry code: (i) x - 1, y, z.]
[Figure 6] Fig. 6. The intermolecular hydrogen bonds in (F2) (dotted lines) determining the packing of molecules in the crystal structure. [Symmetry code: (i) x - 1, y, z.]
[Figure 7] Fig. 7. The intermolecular hydrogen bonds in (F3) (dotted lines) determining the packing of molecules in the crystal structure. [Symmetry code: (i) x, -y + 3/2, z + 1/2.]
(F1) Methyl 2-(3,4-dichlorobenzoyl)-1-methylhydrazinecarbodithioate top
Crystal data top
C10H10Cl2N2OS2F(000) = 632
Mr = 309.22Dx = 1.556 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7396 reflections
a = 4.5696 (3) Åθ = 2.4–30.5°
b = 24.7384 (17) ŵ = 0.79 mm1
c = 11.7638 (8) ÅT = 292 K
β = 96.940 (1)°Needle, colourless
V = 1320.09 (15) Å30.6 × 0.06 × 0.06 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1947 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 55
Tmin = 0.852, Tmax = 1k = 2929
14761 measured reflectionsl = 1313
2337 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0399P)2 + 0.4951P]
where P = (Fo2 + 2Fc2)/3
2337 reflections(Δ/σ)max = 0.001
156 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C10H10Cl2N2OS2V = 1320.09 (15) Å3
Mr = 309.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.5696 (3) ŵ = 0.79 mm1
b = 24.7384 (17) ÅT = 292 K
c = 11.7638 (8) Å0.6 × 0.06 × 0.06 mm
β = 96.940 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2337 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1947 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 1Rint = 0.048
14761 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.06Δρmax = 0.25 e Å3
2337 reflectionsΔρmin = 0.26 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9525 (5)0.68563 (9)0.77226 (19)0.0417 (5)
C20.7006 (7)0.69895 (11)0.5760 (2)0.0668 (8)
H2A0.83550.68780.52390.100*
H2B0.72370.73700.59100.100*
H2C0.50220.69180.54260.100*
C40.7933 (4)0.57437 (9)0.65656 (17)0.0363 (5)
C111.2264 (7)0.67130 (13)0.9941 (2)0.0738 (8)
H11A1.14100.70481.01510.111*
H11B1.41070.67840.96560.111*
H11C1.25920.64831.06010.111*
C410.6652 (4)0.52118 (8)0.68073 (17)0.0350 (5)
C420.7192 (5)0.47715 (9)0.61316 (19)0.0423 (5)
H420.83350.48150.55350.051*
C430.6057 (5)0.42733 (9)0.6335 (2)0.0465 (5)
H430.64180.39820.58720.056*
C440.4382 (5)0.42015 (9)0.72222 (19)0.0428 (5)
C450.3909 (5)0.46361 (9)0.79256 (18)0.0400 (5)
C460.5022 (4)0.51392 (9)0.77104 (18)0.0380 (5)
H460.46740.54300.81750.046*
Cl40.28831 (16)0.35746 (2)0.74307 (6)0.0628 (2)
Cl50.19399 (15)0.45590 (3)0.90798 (6)0.0623 (2)
N20.7621 (4)0.66912 (7)0.68263 (16)0.0438 (4)
N30.6401 (4)0.61809 (7)0.68698 (17)0.0434 (4)
H30.46840.61400.70880.052*
O41.0253 (3)0.57952 (6)0.61597 (14)0.0464 (4)
S10.98179 (16)0.63880 (3)0.88581 (5)0.0550 (2)
S21.13835 (16)0.74260 (3)0.77344 (7)0.0649 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0384 (12)0.0365 (11)0.0524 (13)0.0059 (9)0.0142 (10)0.0012 (10)
C20.0759 (19)0.0600 (17)0.0615 (17)0.0011 (14)0.0033 (14)0.0181 (13)
C40.0286 (11)0.0435 (12)0.0362 (11)0.0004 (9)0.0016 (9)0.0005 (9)
C110.076 (2)0.088 (2)0.0540 (16)0.0019 (17)0.0036 (14)0.0139 (15)
C410.0266 (10)0.0412 (12)0.0363 (11)0.0011 (8)0.0005 (8)0.0018 (9)
C420.0367 (12)0.0508 (13)0.0406 (12)0.0022 (10)0.0088 (10)0.0013 (10)
C430.0473 (13)0.0417 (13)0.0498 (13)0.0021 (10)0.0034 (11)0.0065 (10)
C440.0398 (12)0.0392 (12)0.0466 (13)0.0024 (9)0.0061 (10)0.0063 (10)
C450.0334 (11)0.0488 (12)0.0370 (11)0.0018 (9)0.0010 (9)0.0081 (9)
C460.0337 (11)0.0424 (12)0.0372 (11)0.0027 (9)0.0018 (9)0.0006 (9)
Cl40.0719 (4)0.0433 (3)0.0705 (4)0.0125 (3)0.0016 (3)0.0097 (3)
Cl50.0676 (4)0.0712 (4)0.0520 (4)0.0093 (3)0.0228 (3)0.0115 (3)
N20.0423 (11)0.0370 (10)0.0517 (11)0.0003 (8)0.0049 (9)0.0047 (8)
N30.0298 (9)0.0407 (10)0.0612 (12)0.0023 (8)0.0116 (8)0.0007 (8)
O40.0327 (8)0.0515 (9)0.0571 (10)0.0023 (7)0.0138 (7)0.0005 (7)
S10.0667 (4)0.0510 (4)0.0468 (4)0.0054 (3)0.0043 (3)0.0041 (3)
S20.0691 (5)0.0424 (4)0.0837 (5)0.0152 (3)0.0118 (4)0.0016 (3)
Geometric parameters (Å, º) top
C1—N21.347 (3)C41—C461.381 (3)
C1—S21.645 (2)C41—C421.388 (3)
C1—S11.761 (2)C42—C431.369 (3)
C2—N21.453 (3)C42—H420.9300
C2—H2A0.9600C43—C441.378 (3)
C2—H2B0.9600C43—H430.9300
C2—H2C0.9600C44—C451.389 (3)
C4—O41.221 (2)C44—Cl41.725 (2)
C4—N31.360 (3)C45—C461.379 (3)
C4—C411.482 (3)C45—Cl51.728 (2)
C11—S11.782 (3)C46—H460.9300
C11—H11A0.9600N2—N31.384 (2)
C11—H11B0.9600N3—H30.8600
C11—H11C0.9600
N2—C1—S2123.40 (17)C43—C42—H42119.7
N2—C1—S1112.16 (16)C41—C42—H42119.7
S2—C1—S1124.43 (14)C42—C43—C44120.3 (2)
N2—C2—H2A109.5C42—C43—H43119.8
N2—C2—H2B109.5C44—C43—H43119.8
H2A—C2—H2B109.5C43—C44—C45119.5 (2)
N2—C2—H2C109.5C43—C44—Cl4119.34 (18)
H2A—C2—H2C109.5C45—C44—Cl4121.20 (18)
H2B—C2—H2C109.5C46—C45—C44120.1 (2)
O4—C4—N3121.27 (19)C46—C45—Cl5118.84 (17)
O4—C4—C41123.34 (19)C44—C45—Cl5121.06 (17)
N3—C4—C41115.33 (18)C45—C46—C41120.2 (2)
S1—C11—H11A109.5C45—C46—H46119.9
S1—C11—H11B109.5C41—C46—H46119.9
H11A—C11—H11B109.5C1—N2—N3118.21 (18)
S1—C11—H11C109.5C1—N2—C2124.1 (2)
H11A—C11—H11C109.5N3—N2—C2117.30 (19)
H11B—C11—H11C109.5C4—N3—N2119.57 (17)
C46—C41—C42119.2 (2)C4—N3—H3120.2
C46—C41—C4121.70 (19)N2—N3—H3120.2
C42—C41—C4119.03 (19)C1—S1—C11103.25 (14)
C43—C42—C41120.6 (2)
O4—C4—C41—C46147.6 (2)Cl5—C45—C46—C41178.80 (16)
N3—C4—C41—C4629.9 (3)C42—C41—C46—C451.0 (3)
O4—C4—C41—C4230.1 (3)C4—C41—C46—C45178.72 (19)
N3—C4—C41—C42152.4 (2)S2—C1—N2—N3173.80 (15)
C46—C41—C42—C431.8 (3)S1—C1—N2—N35.3 (2)
C4—C41—C42—C43179.62 (19)S2—C1—N2—C20.9 (3)
C41—C42—C43—C440.6 (3)S1—C1—N2—C2178.19 (19)
C42—C43—C44—C451.4 (3)O4—C4—N3—N26.4 (3)
C42—C43—C44—Cl4177.96 (17)C41—C4—N3—N2171.10 (17)
C43—C44—C45—C462.3 (3)C1—N2—N3—C483.2 (3)
Cl4—C44—C45—C46177.12 (16)C2—N2—N3—C490.2 (3)
C43—C44—C45—Cl5177.58 (17)N2—C1—S1—C11177.00 (18)
Cl4—C44—C45—Cl53.0 (3)S2—C1—S1—C113.89 (19)
C44—C45—C46—C411.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O4i0.862.342.989 (2)132
Symmetry code: (i) x1, y, z.
(F2) Butyl 2-(3,4-dichlorobenzoyl)-1-methylhydrazinecarbodithioate top
Crystal data top
C13H16Cl2N2OS2F(000) = 728
Mr = 351.30Dx = 1.451 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9381 reflections
a = 4.5467 (1) Åθ = 2.2–35.1°
b = 13.7623 (4) ŵ = 0.66 mm1
c = 25.7328 (7) ÅT = 100 K
β = 93.117 (1)°Prism, colourless
V = 1607.80 (7) Å30.4 × 0.2 × 0.2 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6412 independent reflections
Radiation source: fine-focus sealed tube5098 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 33.7°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 77
Tmin = 0.659, Tmax = 0.747k = 2121
32865 measured reflectionsl = 4040
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.038P)2 + 0.3873P]
where P = (Fo2 + 2Fc2)/3
6412 reflections(Δ/σ)max = 0.002
187 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C13H16Cl2N2OS2V = 1607.80 (7) Å3
Mr = 351.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.5467 (1) ŵ = 0.66 mm1
b = 13.7623 (4) ÅT = 100 K
c = 25.7328 (7) Å0.4 × 0.2 × 0.2 mm
β = 93.117 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6412 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
5098 reflections with I > 2σ(I)
Tmin = 0.659, Tmax = 0.747Rint = 0.038
32865 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.50 e Å3
6412 reflectionsΔρmin = 0.25 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5980 (2)0.33828 (8)0.25795 (4)0.0176 (2)
C20.3197 (3)0.25068 (9)0.32407 (5)0.0241 (2)
H2A0.29960.19930.29890.036*
H2B0.13170.26380.33780.036*
H2C0.45690.23140.35180.036*
C40.5938 (2)0.45312 (8)0.36332 (4)0.01535 (18)
C110.9228 (3)0.43499 (11)0.18530 (5)0.0260 (3)
H11A1.08280.48140.18420.031*
H11B1.00840.37040.18730.031*
C120.7289 (3)0.44336 (9)0.13524 (5)0.0223 (2)
H12A0.83620.41830.10660.027*
H12B0.55520.40330.13830.027*
C130.6327 (3)0.54707 (9)0.12279 (5)0.0250 (2)
H13A0.52740.57250.15160.030*
H13B0.80630.58700.11930.030*
C140.4364 (3)0.55489 (11)0.07324 (5)0.0313 (3)
H14A0.54020.53080.04440.047*
H14B0.38400.62170.06720.047*
H14C0.26110.51720.07680.047*
C410.5219 (2)0.54325 (8)0.39186 (4)0.01590 (18)
C420.6610 (2)0.55652 (8)0.44100 (4)0.01747 (19)
H420.79010.50960.45480.021*
C430.6069 (3)0.63963 (8)0.46931 (4)0.0184 (2)
C440.4163 (3)0.71054 (8)0.44832 (5)0.0208 (2)
C450.2802 (3)0.69772 (9)0.39920 (5)0.0241 (2)
H450.15380.74530.38530.029*
C460.3318 (3)0.61422 (9)0.37080 (5)0.0203 (2)
H460.24020.60570.33790.024*
Cl30.78138 (7)0.65278 (2)0.530349 (11)0.02526 (7)
Cl40.34931 (8)0.81517 (2)0.482620 (13)0.03074 (8)
N20.4277 (2)0.33803 (7)0.29928 (4)0.01746 (17)
N30.3865 (2)0.42482 (7)0.32589 (4)0.01681 (17)
H30.213 (4)0.4388 (13)0.3291 (7)0.038 (5)*
O40.82683 (17)0.40938 (6)0.37106 (3)0.01932 (16)
S20.68028 (7)0.23787 (2)0.226379 (13)0.02539 (7)
S10.72360 (6)0.45670 (2)0.243154 (11)0.01984 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0137 (4)0.0209 (5)0.0179 (5)0.0016 (4)0.0029 (3)0.0040 (4)
C20.0244 (5)0.0189 (5)0.0288 (6)0.0001 (4)0.0010 (4)0.0024 (4)
C40.0143 (4)0.0181 (5)0.0139 (4)0.0005 (4)0.0027 (3)0.0005 (4)
C110.0188 (5)0.0370 (7)0.0227 (6)0.0012 (5)0.0049 (4)0.0020 (5)
C120.0255 (5)0.0237 (6)0.0181 (5)0.0035 (4)0.0057 (4)0.0043 (4)
C130.0330 (6)0.0211 (6)0.0214 (5)0.0061 (5)0.0048 (5)0.0030 (4)
C140.0407 (7)0.0298 (7)0.0235 (6)0.0066 (6)0.0019 (5)0.0050 (5)
C410.0161 (4)0.0166 (5)0.0152 (4)0.0001 (4)0.0029 (3)0.0003 (4)
C420.0182 (5)0.0173 (5)0.0169 (5)0.0015 (4)0.0012 (4)0.0009 (4)
C430.0219 (5)0.0189 (5)0.0147 (5)0.0021 (4)0.0034 (4)0.0008 (4)
C440.0278 (6)0.0146 (5)0.0204 (5)0.0002 (4)0.0065 (4)0.0006 (4)
C450.0303 (6)0.0167 (5)0.0254 (6)0.0053 (4)0.0014 (5)0.0024 (4)
C460.0236 (5)0.0185 (5)0.0188 (5)0.0024 (4)0.0004 (4)0.0012 (4)
Cl30.03500 (16)0.02383 (14)0.01667 (12)0.00193 (11)0.00111 (10)0.00418 (10)
Cl40.04676 (19)0.01676 (13)0.02938 (16)0.00452 (12)0.00828 (13)0.00475 (11)
N20.0165 (4)0.0157 (4)0.0201 (4)0.0000 (3)0.0003 (3)0.0038 (3)
N30.0122 (4)0.0180 (4)0.0201 (4)0.0023 (3)0.0000 (3)0.0043 (3)
O40.0151 (3)0.0242 (4)0.0185 (4)0.0045 (3)0.0009 (3)0.0028 (3)
S20.02626 (14)0.02478 (15)0.02489 (15)0.00528 (11)0.00095 (11)0.01001 (12)
S10.01900 (12)0.02366 (14)0.01677 (12)0.00289 (10)0.00023 (9)0.00236 (10)
Geometric parameters (Å, º) top
C1—N21.3493 (15)C13—H13A0.9700
C1—S21.6560 (11)C13—H13B0.9700
C1—S11.7749 (12)C14—H14A0.9600
C2—N21.4584 (16)C14—H14B0.9600
C2—H2A0.9600C14—H14C0.9600
C2—H2B0.9600C41—C461.3940 (16)
C2—H2C0.9600C41—C421.3948 (15)
C4—O41.2255 (13)C42—C431.3853 (15)
C4—N31.3670 (14)C42—H420.9300
C4—C411.4869 (15)C43—C441.3944 (17)
C11—C121.5250 (18)C43—Cl31.7302 (11)
C11—S11.8090 (12)C44—C451.3879 (18)
C11—H11A0.9700C44—Cl41.7247 (12)
C11—H11B0.9700C45—C461.3888 (17)
C12—C131.5218 (18)C45—H450.9300
C12—H12A0.9700C46—H460.9300
C12—H12B0.9700N2—N31.3946 (13)
C13—C141.5200 (18)N3—H30.821 (18)
N2—C1—S2122.62 (9)C13—C14—H14B109.5
N2—C1—S1112.12 (8)H14A—C14—H14B109.5
S2—C1—S1125.25 (7)C13—C14—H14C109.5
N2—C2—H2A109.5H14A—C14—H14C109.5
N2—C2—H2B109.5H14B—C14—H14C109.5
H2A—C2—H2B109.5C46—C41—C42120.11 (10)
N2—C2—H2C109.5C46—C41—C4122.74 (10)
H2A—C2—H2C109.5C42—C41—C4117.12 (10)
H2B—C2—H2C109.5C43—C42—C41120.01 (10)
O4—C4—N3122.09 (10)C43—C42—H42120.0
O4—C4—C41122.75 (10)C41—C42—H42120.0
N3—C4—C41115.08 (9)C42—C43—C44119.90 (10)
C12—C11—S1112.99 (8)C42—C43—Cl3118.56 (9)
C12—C11—H11A109.0C44—C43—Cl3121.54 (9)
S1—C11—H11A109.0C45—C44—C43120.05 (11)
C12—C11—H11B109.0C45—C44—Cl4119.32 (9)
S1—C11—H11B109.0C43—C44—Cl4120.62 (9)
H11A—C11—H11B107.8C44—C45—C46120.31 (11)
C13—C12—C11113.27 (10)C44—C45—H45119.8
C13—C12—H12A108.9C46—C45—H45119.8
C11—C12—H12A108.9C45—C46—C41119.61 (11)
C13—C12—H12B108.9C45—C46—H46120.2
C11—C12—H12B108.9C41—C46—H46120.2
H12A—C12—H12B107.7C1—N2—N3118.88 (9)
C14—C13—C12113.08 (11)C1—N2—C2124.63 (10)
C14—C13—H13A109.0N3—N2—C2115.71 (9)
C12—C13—H13A109.0C4—N3—N2118.96 (9)
C14—C13—H13B109.0C4—N3—H3119.5 (13)
C12—C13—H13B109.0N2—N3—H3113.9 (13)
H13A—C13—H13B107.8C1—S1—C11101.90 (6)
C13—C14—H14A109.5
S1—C11—C12—C1370.16 (13)Cl4—C44—C45—C46179.74 (10)
C11—C12—C13—C14179.28 (10)C44—C45—C46—C410.12 (18)
O4—C4—C41—C46152.41 (11)C42—C41—C46—C450.52 (17)
N3—C4—C41—C4624.62 (15)C4—C41—C46—C45178.47 (11)
O4—C4—C41—C4225.60 (16)S2—C1—N2—N3175.47 (8)
N3—C4—C41—C42157.38 (10)S1—C1—N2—N33.49 (12)
C46—C41—C42—C431.01 (17)S2—C1—N2—C26.06 (15)
C4—C41—C42—C43179.07 (10)S1—C1—N2—C2172.90 (9)
C41—C42—C43—C440.86 (17)O4—C4—N3—N26.65 (16)
C41—C42—C43—Cl3179.43 (8)C41—C4—N3—N2176.31 (9)
C42—C43—C44—C450.23 (18)C1—N2—N3—C483.82 (13)
Cl3—C43—C44—C45179.93 (9)C2—N2—N3—C486.52 (12)
C42—C43—C44—Cl4179.24 (9)N2—C1—S1—C11176.88 (8)
Cl3—C43—C44—Cl40.46 (14)S2—C1—S1—C114.19 (9)
C43—C44—C45—C460.26 (19)C12—C11—S1—C189.50 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O4i0.821 (18)2.149 (19)2.8624 (12)145.3 (17)
Symmetry code: (i) x1, y, z.
(F3) 3,4-dichloro-N-(2-sulfanylidene-1,3-thiazinan-3-yl)benzamide top
Crystal data top
C11H10Cl2N2OS2F(000) = 656
Mr = 321.23Dx = 1.545 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 12303 reflections
a = 13.3534 (10) Åθ = 3.4–69.3°
b = 11.6813 (8) ŵ = 6.97 mm1
c = 8.9908 (7) ÅT = 290 K
β = 99.995 (3)°Needle, colourless
V = 1381.15 (18) Å30.6 × 0.02 × 0.02 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3801 independent reflections
Radiation source: fine-focus sealed tube3652 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 69.7°, θmin = 3.4°
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2008b)
h = 1615
Tmin = 0.447, Tmax = 0.753k = 014
3801 measured reflectionsl = 010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.3664P]
where P = (Fo2 + 2Fc2)/3
3801 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C11H10Cl2N2OS2V = 1381.15 (18) Å3
Mr = 321.23Z = 4
Monoclinic, P21/cCu Kα radiation
a = 13.3534 (10) ŵ = 6.97 mm1
b = 11.6813 (8) ÅT = 290 K
c = 8.9908 (7) Å0.6 × 0.02 × 0.02 mm
β = 99.995 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3801 independent reflections
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2008b)
3652 reflections with I > 2σ(I)
Tmin = 0.447, Tmax = 0.753Rint = 0.041
3801 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.05Δρmax = 0.32 e Å3
3801 reflectionsΔρmin = 0.36 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.44936 (11)0.10160 (12)0.27872 (17)0.0325 (3)
C40.27875 (13)0.23257 (13)0.4140 (2)0.0314 (3)
C110.64722 (13)0.10597 (15)0.4559 (2)0.0509 (4)
H11A0.63960.07820.55500.061*
H11B0.71710.09320.44370.061*
C120.62462 (15)0.23183 (16)0.4458 (3)0.0488 (5)
H12A0.63620.26040.34890.059*
H12B0.67080.27160.52410.059*
C130.51648 (16)0.25741 (13)0.4632 (3)0.0441 (5)
H13A0.50630.23210.56220.053*
H13B0.50600.33960.45790.053*
C410.18032 (11)0.29693 (13)0.37860 (17)0.0348 (3)
C420.09696 (16)0.24998 (13)0.4273 (3)0.0438 (5)
H420.10310.18070.47890.053*
C430.00396 (13)0.30597 (18)0.3993 (2)0.0531 (5)
C440.00520 (13)0.40949 (18)0.3244 (2)0.0550 (5)
C450.07894 (16)0.45765 (17)0.2777 (3)0.0580 (5)
H450.07300.52760.22750.070*
C460.17166 (13)0.40200 (15)0.3055 (2)0.0464 (4)
H460.22830.43500.27530.056*
Cl30.09901 (5)0.24448 (6)0.46258 (15)0.0938 (3)
Cl40.12079 (4)0.47972 (6)0.28823 (9)0.0856 (2)
N20.44045 (9)0.20211 (11)0.34791 (14)0.0334 (3)
N30.34589 (12)0.25613 (10)0.3215 (2)0.0346 (3)
H30.33060.30350.24790.042*
O40.29657 (8)0.16518 (9)0.51921 (12)0.0380 (2)
S10.56318 (3)0.02626 (3)0.31259 (6)0.04931 (14)
S20.35775 (3)0.04147 (3)0.15478 (5)0.04419 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0291 (7)0.0333 (7)0.0366 (7)0.0011 (5)0.0098 (6)0.0059 (6)
C40.0269 (8)0.0339 (7)0.0331 (8)0.0023 (6)0.0044 (7)0.0033 (6)
C110.0305 (8)0.0501 (10)0.0687 (12)0.0041 (7)0.0010 (8)0.0027 (9)
C120.0335 (10)0.0505 (9)0.0615 (13)0.0016 (7)0.0058 (9)0.0005 (9)
C130.0338 (10)0.0467 (10)0.0505 (12)0.0016 (6)0.0038 (10)0.0101 (7)
C410.0280 (7)0.0403 (8)0.0357 (7)0.0054 (6)0.0041 (6)0.0027 (6)
C420.0330 (10)0.0474 (11)0.0513 (12)0.0037 (6)0.0084 (10)0.0031 (6)
C430.0285 (8)0.0663 (12)0.0654 (12)0.0026 (8)0.0106 (8)0.0050 (10)
C440.0351 (9)0.0661 (11)0.0621 (11)0.0195 (8)0.0036 (8)0.0032 (9)
C450.0510 (11)0.0531 (11)0.0697 (13)0.0190 (9)0.0101 (10)0.0120 (9)
C460.0396 (9)0.0462 (9)0.0558 (10)0.0104 (7)0.0148 (7)0.0083 (8)
Cl30.0369 (3)0.1055 (6)0.1458 (9)0.0012 (2)0.0350 (5)0.0146 (4)
Cl40.0453 (3)0.1012 (5)0.1079 (5)0.0392 (3)0.0065 (3)0.0062 (4)
N20.0250 (6)0.0375 (7)0.0382 (7)0.0060 (5)0.0066 (5)0.0012 (5)
N30.0297 (8)0.0386 (7)0.0364 (8)0.0108 (4)0.0081 (7)0.0058 (4)
O40.0367 (5)0.0413 (6)0.0362 (6)0.0068 (4)0.0068 (4)0.0048 (5)
S10.0348 (2)0.0404 (2)0.0711 (3)0.01133 (16)0.0045 (2)0.00761 (19)
S20.0397 (2)0.0396 (2)0.0507 (2)0.00385 (15)0.00070 (17)0.00315 (16)
Geometric parameters (Å, º) top
C1—N21.3437 (19)C13—H13B0.9700
C1—S21.6608 (15)C41—C421.378 (3)
C1—S11.7369 (14)C41—C461.387 (2)
C4—O41.222 (2)C42—C431.387 (3)
C4—N31.353 (2)C42—H420.9300
C4—C411.500 (2)C43—C441.379 (3)
C11—C121.500 (3)C43—Cl31.7326 (19)
C11—S11.8121 (19)C44—C451.385 (3)
C11—H11A0.9700C44—Cl41.7283 (17)
C11—H11B0.9700C45—C461.382 (3)
C12—C131.509 (3)C45—H450.9300
C12—H12A0.9700C46—H460.9300
C12—H12B0.9700N2—N31.3946 (18)
C13—N21.469 (2)N3—H30.8600
C13—H13A0.9700
N2—C1—S2124.48 (11)C42—C41—C4117.35 (15)
N2—C1—S1120.44 (11)C46—C41—C4122.82 (14)
S2—C1—S1115.06 (9)C41—C42—C43120.11 (17)
O4—C4—N3123.10 (15)C41—C42—H42119.9
O4—C4—C41122.23 (15)C43—C42—H42119.9
N3—C4—C41114.67 (14)C44—C43—C42120.18 (17)
C12—C11—S1111.56 (14)C44—C43—Cl3121.04 (14)
C12—C11—H11A109.3C42—C43—Cl3118.78 (16)
S1—C11—H11A109.3C43—C44—C45119.75 (16)
C12—C11—H11B109.3C43—C44—Cl4120.59 (15)
S1—C11—H11B109.3C45—C44—Cl4119.66 (16)
H11A—C11—H11B108.0C46—C45—C44120.15 (18)
C11—C12—C13111.95 (15)C46—C45—H45119.9
C11—C12—H12A109.2C44—C45—H45119.9
C13—C12—H12A109.2C45—C46—C41120.01 (17)
C11—C12—H12B109.2C45—C46—H46120.0
C13—C12—H12B109.2C41—C46—H46120.0
H12A—C12—H12B107.9C1—N2—N3117.84 (13)
N2—C13—C12113.37 (17)C1—N2—C13127.24 (13)
N2—C13—H13A108.9N3—N2—C13114.56 (13)
C12—C13—H13A108.9C4—N3—N2118.72 (14)
N2—C13—H13B108.9C4—N3—H3120.6
C12—C13—H13B108.9N2—N3—H3120.6
H13A—C13—H13B107.7C1—S1—C11106.23 (8)
C42—C41—C46119.78 (15)
S1—C11—C12—C1358.7 (2)C44—C45—C46—C410.9 (3)
C11—C12—C13—N259.7 (3)C42—C41—C46—C451.9 (3)
O4—C4—C41—C4223.8 (2)C4—C41—C46—C45179.24 (18)
N3—C4—C41—C42156.85 (16)S2—C1—N2—N34.38 (19)
O4—C4—C41—C46153.55 (17)S1—C1—N2—N3177.16 (11)
N3—C4—C41—C4625.8 (2)S2—C1—N2—C13177.03 (14)
C46—C41—C42—C431.9 (3)S1—C1—N2—C134.5 (2)
C4—C41—C42—C43179.37 (18)C12—C13—N2—C131.3 (3)
C41—C42—C43—C440.8 (3)C12—C13—N2—N3155.80 (16)
C41—C42—C43—Cl3179.85 (16)O4—C4—N3—N20.7 (2)
C42—C43—C44—C450.2 (3)C41—C4—N3—N2178.64 (13)
Cl3—C43—C44—C45178.75 (18)C1—N2—N3—C490.28 (19)
C42—C43—C44—Cl4179.72 (17)C13—N2—N3—C483.29 (18)
Cl3—C43—C44—Cl41.3 (3)N2—C1—S1—C113.77 (15)
C43—C44—C45—C460.2 (3)S2—C1—S1—C11177.62 (9)
Cl4—C44—C45—C46179.74 (17)C12—C11—S1—C130.38 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O4i0.862.062.837 (2)150
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

(F1)(F2)(F3)
Crystal data
Chemical formulaC10H10Cl2N2OS2C13H16Cl2N2OS2C11H10Cl2N2OS2
Mr309.22351.30321.23
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/nMonoclinic, P21/c
Temperature (K)292100290
a, b, c (Å)4.5696 (3), 24.7384 (17), 11.7638 (8)4.5467 (1), 13.7623 (4), 25.7328 (7)13.3534 (10), 11.6813 (8), 8.9908 (7)
β (°) 96.940 (1) 93.117 (1) 99.995 (3)
V3)1320.09 (15)1607.80 (7)1381.15 (18)
Z444
Radiation typeMo KαMo KαCu Kα
µ (mm1)0.790.666.97
Crystal size (mm)0.6 × 0.06 × 0.060.4 × 0.2 × 0.20.6 × 0.02 × 0.02
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Bruker SMART APEXII CCD area-detector
diffractometer
Bruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(TWINABS; Sheldrick, 2008b)
Tmin, Tmax0.852, 10.659, 0.7470.447, 0.753
No. of measured, independent and
observed [I > 2σ(I)] reflections
14761, 2337, 1947 32865, 6412, 5098 3801, 3801, 3652
Rint0.0480.0380.041
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.089, 1.06 0.034, 0.083, 1.04 0.034, 0.095, 1.05
No. of reflections233764123801
No. of parameters156187164
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.260.50, 0.250.32, 0.36

Computer programs: APEX2 (Bruker, 2002), SAINT-Plus (Bruker, 2009), SHELXS97 (Sheldrick, 2008a), SHELXL97 (Sheldrick, 2008a), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (F1) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O4i0.862.342.989 (2)132.2
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) for (F2) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O4i0.821 (18)2.149 (19)2.8624 (12)145.3 (17)
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) for (F3) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O4i0.862.062.837 (2)149.8
Symmetry code: (i) x, y+1/2, z1/2.
Selected torsion angles (°) top
StructureS1—C1—N2—N3C1—N2—N3—C4N2—N3—C4—C41O4—C4—C41—C42
(F1)-5.3 (2)-83.2 (3)171.10 (17)-30.1 (3)
(F2)-3.49 (12)-83.82 (13)-176.31 (9)-25.60 (16)
(F3)-177.16 (11)90.28 (19)178.64 (13)-23.8 (2)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds