Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614003349/ov3045sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229614003349/ov3045GaCl3_Terpysup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229614003349/ov3045GaBr3_Terpysup3.hkl |
CCDC references: 972180; 972181
The Ga—L distances in molecular complexes of the form [GaX3(L)] are expected to lengthen with a decrease of the Lewis acidity of the gallium trihalide. However, recently, on the example of molecular complexes of group 13 metal trihalides with monodentate donor ligands, it has been shown that the solid state masks the Lewis acidity trends (Timoshkin et al., 2012). It is of interest to explore if the same situation is observed for molecular complexes of group 13 metals with polydentate ligands. Therefore, the molecular structures of gallium trichloride and tribromide complexes with the tridentate ligand 2,2':6',2''-terpyridine (terpy) have been established by X-ray structure analysis. [GaCl3(terpy)], (I), has already been reported by Beran et al. (1970) [atomic coordinates not readily available; Cambridge Structural Database (CSD; Allen, 2002; Groom & Allen, 2014) refcode TPYGAC], followed by its Al, In, and Tl analogs by Beran et al. (1972), but no structural information is available for [GaBr3(terpy)], (II). Ionic [GaI2(Phterpy)]I (Phterpy is 4'-phenyl-2,2':6',2''-terpyridine) was produced by Baker et al. (2004) by reaction of gallium moniiodide (GaI) with Phterpy in toluene.
GaCl3 and GaBr3 were obtained by direct reaction between the elements. Purification of the metal halides and terpy (Alfa Aesar, 97%) was carried out by multiple resublimations in sealed whole-glass systems under vacuum. The synthesss of complexes (I) and (II) were performed in acetonitrile (MeCN) solutions in a dry box under nitrogen. MeCN was dried over CaH2 and distilled before use. For the preparation of (I), GaCl3 (0.0120 g, 0.068 mmol) was dissolved in MeCN (1 ml) and a terpy solution (0.72 ml) in MeCN (0.022 g ml-1) was added. For the preparation of (II), GaBr3 (0.0252 g, 0.081 mmol) was dissolved in MeCN (1 ml) and a terpy solution (0.86 ml) in MeCN (0.022 g ml-1) was added. In both cases, a white crystalline powder was observed after a few minutes. Solutions in sealed vessels were heated to 303–313 K and stored for three weeks for crystal growth.
Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were constrained to ride on the pivot atom, with C—H distances set at 0.95 Å and with Uiso(H) = 1.2Ueq(C).
The molecular structures of [GaCl3(terpy)], (I), and [GaBr3(terpy)], (II), are shown in Figs. 1 and 2, respectively. The complexes are isostructural and the GaIII atom has an octahedral geometry (mer isomer). The structural data for (I) are in good agreement with the previous structural study by Beran et al. (1970). Complex (II) is only the second example of an octahedral gallium tribromide compex; the first example is fac-[GaBr3(Me3[9]aneN3)] (Willey et al., 2011).
Determined at 123 K in the present work, the Ga—N bond lengths of (II) are slightly shorter or equal within experimental error to those of (I) (Table 2). This small Ga—N bond shortening on going from GaCl3 to GaBr3 is in contrast to the trend expected based on the gas-phase Lewis acidity of galluim halides (GaCl3 > GaBr3) (Timoshkin et al., 2012). It is of interest if a similar situation is observed for complexes of gallium halides with other ligands. A search of the CSD revealed ten other [GaX3(L)] pairs of isostructural molecular complexes, for which data for X = Cl and X = Br are available. Table 2 lists the Ga—L and Ga—X distances in such complexes, and the difference (Δ) in Ga—L distances in bromide and chloride complexes. For complexes with a coordination number (CN) of 4 (tetrahedral geometry at the Ga atom), the values of Δ are positive, but for four out of seven [GaX3(L)] pairs, Δ is less than 3σ, suggesting that GaBr3 and GaCl3 have essentially equal acceptor ability. In contrast, for all three structurally characterized [GaX3(L)] pairs with CN = 5 (trigonal bipyramidal geometry at Ga), the values of Δ are positive and significantly larger than 3σ, indicating weaker acceptor strength of GaBr3 compared to GaCl3. Interestingly, for [GaX3(terpy)] (CN = 6, octahedral geometry), the value of Δ is negative, but small (for two out of three Ga—N bonds it is less than 3σ). Thus, despite the lower Lewis acidity of gaseous GaBr3 compared to GaCl3, the Ga—N bond lengths in the solid [GaX3(terpy)] complexes are equal within experimental error.
Note, that for complexes with CN = 4, the Ga—X distances in [GaX3(L)] agree within 0.065 Å [minimal and maximal values are 2.125 (1)–2.190 (3) Å for X = Cl and 2.280 (1)–2.342 (3) Å for X = Br]. An increase of the CN of gallium to 6 leads to significant Ga—X bond lengthening [up to 2.4118 (6) and 2.6053 (3) Å for X = Cl, Br, respectively]. Ga—N distances also increase (Table 2). This may be related to larger structural reorganization of GaX3 upon formation of octahedral complexes.
We conclude, that observed earlier masking of Lewis acidity trends of group 13 metal halide complexes with monodentate ligands in the solid state (Timoshkin et al., 2012) also holds for complexes with the polydentate donor terpy as well. Thus, the Ga—N bond length in the solid state can not serve as reliable indicator of the Lewis acidity.
For related literature, see: Allen (2002); Baker et al. (2004); Beran et al. (1970, 1972); Groom & Allen (2014); Timoshkin et al. (2012); Willey et al. (2011).
For both compounds, data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013). Program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007) for GaCl3_Terpy; SHELXS97 (Sheldrick, 2008) for GaBr3_Terpy. For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).
[GaCl3(C15H11N3)] | F(000) = 816 |
Mr = 409.34 | Dx = 1.749 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.7107 Å |
a = 8.2492 (2) Å | Cell parameters from 5153 reflections |
b = 14.1770 (3) Å | θ = 3.4–32.0° |
c = 13.7119 (3) Å | µ = 2.28 mm−1 |
β = 104.217 (3)° | T = 123 K |
V = 1554.47 (7) Å3 | Block, colourless |
Z = 4 | 0.08 × 0.05 × 0.02 mm |
Agilent SuperNova (single source at offset, Eos) diffractometer | 5130 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 3289 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.051 |
Detector resolution: 15.9702 pixels mm-1 | θmax = 32.3°, θmin = 2.9° |
ω scans | h = −12→12 |
Absorption correction: gaussian [CrysAlis PRO (Agilent, 2013), based on expression derived by Clark & Reid (1995)] | k = −20→20 |
Tmin = 0.887, Tmax = 0.971 | l = −19→20 |
16866 measured reflections |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.052 | w = 1/[σ2(Fo2) + (0.014P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.82 | (Δ/σ)max = 0.001 |
5130 reflections | Δρmax = 0.49 e Å−3 |
199 parameters | Δρmin = −0.38 e Å−3 |
0 restraints |
[GaCl3(C15H11N3)] | V = 1554.47 (7) Å3 |
Mr = 409.34 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.2492 (2) Å | µ = 2.28 mm−1 |
b = 14.1770 (3) Å | T = 123 K |
c = 13.7119 (3) Å | 0.08 × 0.05 × 0.02 mm |
β = 104.217 (3)° |
Agilent SuperNova (single source at offset, Eos) diffractometer | 5130 independent reflections |
Absorption correction: gaussian [CrysAlis PRO (Agilent, 2013), based on expression derived by Clark & Reid (1995)] | 3289 reflections with I > 2σ(I) |
Tmin = 0.887, Tmax = 0.971 | Rint = 0.051 |
16866 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.052 | H-atom parameters constrained |
S = 0.82 | Δρmax = 0.49 e Å−3 |
5130 reflections | Δρmin = −0.38 e Å−3 |
199 parameters |
Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.37.12a (release 12-09-2013 CrysAlis171 .NET) (compiled Sep 12 2013,13:51:24) Numerical absorption correction based on gaussian integration over a multifaceted crystal model |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ga4 | 0.46977 (3) | 0.37280 (2) | 0.27962 (2) | 0.01282 (6) | |
Cl6 | 0.21670 (6) | 0.39451 (3) | 0.14921 (3) | 0.01560 (11) | |
Cl7 | 0.31811 (7) | 0.34913 (4) | 0.39335 (4) | 0.02083 (12) | |
Cl10 | 0.72624 (7) | 0.35088 (4) | 0.39657 (4) | 0.02105 (12) | |
N2 | 0.5867 (2) | 0.39907 (11) | 0.16742 (11) | 0.0116 (4) | |
N7 | 0.5009 (2) | 0.51969 (11) | 0.28737 (12) | 0.0134 (4) | |
C2 | 0.7053 (3) | 0.34255 (14) | 0.03839 (14) | 0.0173 (5) | |
H2 | 0.7329 | 0.2917 | 0.0003 | 0.021* | |
N6 | 0.4937 (2) | 0.23730 (11) | 0.22244 (12) | 0.0133 (4) | |
C11 | 0.7053 (3) | 0.50916 (14) | 0.07511 (15) | 0.0167 (5) | |
H11 | 0.7320 | 0.5723 | 0.0619 | 0.020* | |
C13 | 0.7480 (3) | 0.43441 (15) | 0.02065 (15) | 0.0196 (5) | |
H13 | 0.8073 | 0.4465 | −0.0293 | 0.024* | |
C16 | 0.6224 (2) | 0.48881 (13) | 0.14929 (14) | 0.0125 (4) | |
C24 | 0.4591 (3) | 0.67375 (14) | 0.34695 (15) | 0.0188 (5) | |
H24 | 0.4250 | 0.7126 | 0.3947 | 0.023* | |
C31 | 0.6212 (3) | 0.32659 (14) | 0.11308 (14) | 0.0141 (4) | |
C33 | 0.5343 (3) | 0.06642 (14) | 0.13379 (16) | 0.0188 (5) | |
H33 | 0.5465 | 0.0078 | 0.1028 | 0.023* | |
C37 | 0.4527 (3) | 0.57620 (14) | 0.35363 (15) | 0.0165 (5) | |
H37 | 0.4132 | 0.5486 | 0.4066 | 0.020* | |
C39 | 0.5844 (3) | 0.14945 (14) | 0.09638 (14) | 0.0165 (4) | |
H39 | 0.6314 | 0.1484 | 0.0397 | 0.020* | |
C41 | 0.5722 (3) | 0.65554 (14) | 0.20319 (15) | 0.0169 (5) | |
H41 | 0.6146 | 0.6820 | 0.1508 | 0.020* | |
C43 | 0.5654 (2) | 0.55866 (13) | 0.21480 (14) | 0.0135 (4) | |
C51 | 0.5158 (3) | 0.71315 (14) | 0.26983 (16) | 0.0195 (5) | |
H51 | 0.5164 | 0.7797 | 0.2622 | 0.023* | |
C53 | 0.5648 (3) | 0.23415 (14) | 0.14312 (14) | 0.0133 (4) | |
C56 | 0.4471 (3) | 0.15650 (14) | 0.25857 (14) | 0.0163 (5) | |
H56 | 0.3992 | 0.1589 | 0.3148 | 0.020* | |
C63 | 0.4665 (3) | 0.06947 (14) | 0.21647 (16) | 0.0193 (5) | |
H63 | 0.4339 | 0.0131 | 0.2439 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ga4 | 0.01588 (13) | 0.01138 (11) | 0.01229 (10) | −0.00043 (10) | 0.00554 (9) | 0.00044 (9) |
Cl6 | 0.0156 (3) | 0.0155 (3) | 0.0159 (2) | −0.0005 (2) | 0.0042 (2) | 0.00170 (19) |
Cl7 | 0.0263 (3) | 0.0232 (3) | 0.0164 (2) | −0.0028 (2) | 0.0116 (2) | 0.0015 (2) |
Cl10 | 0.0203 (3) | 0.0203 (3) | 0.0194 (3) | 0.0012 (2) | −0.0012 (2) | 0.0006 (2) |
N2 | 0.0106 (9) | 0.0138 (9) | 0.0104 (8) | 0.0014 (7) | 0.0025 (7) | 0.0024 (6) |
N7 | 0.0139 (10) | 0.0115 (9) | 0.0149 (8) | −0.0003 (7) | 0.0040 (7) | −0.0014 (7) |
C2 | 0.0204 (12) | 0.0183 (11) | 0.0142 (10) | 0.0039 (9) | 0.0064 (9) | −0.0003 (8) |
N6 | 0.0143 (10) | 0.0120 (9) | 0.0132 (8) | 0.0015 (7) | 0.0027 (7) | 0.0012 (7) |
C11 | 0.0175 (12) | 0.0130 (11) | 0.0196 (11) | −0.0049 (9) | 0.0047 (9) | 0.0036 (8) |
C13 | 0.0187 (13) | 0.0257 (12) | 0.0171 (11) | 0.0004 (10) | 0.0096 (9) | 0.0053 (9) |
C16 | 0.0128 (11) | 0.0116 (10) | 0.0125 (10) | 0.0004 (8) | 0.0020 (8) | 0.0015 (7) |
C24 | 0.0173 (12) | 0.0179 (11) | 0.0189 (11) | 0.0032 (9) | 0.0000 (9) | −0.0053 (8) |
C31 | 0.0147 (11) | 0.0135 (10) | 0.0128 (10) | 0.0001 (9) | 0.0010 (8) | 0.0004 (7) |
C33 | 0.0176 (12) | 0.0126 (11) | 0.0244 (12) | 0.0032 (9) | 0.0018 (9) | −0.0044 (8) |
C37 | 0.0169 (12) | 0.0165 (11) | 0.0160 (10) | 0.0009 (9) | 0.0038 (9) | −0.0009 (8) |
C39 | 0.0159 (11) | 0.0172 (11) | 0.0165 (10) | 0.0009 (9) | 0.0042 (8) | −0.0018 (8) |
C41 | 0.0161 (12) | 0.0149 (11) | 0.0175 (10) | −0.0041 (9) | 0.0001 (9) | 0.0023 (8) |
C43 | 0.0123 (12) | 0.0132 (10) | 0.0141 (10) | 0.0000 (8) | 0.0013 (9) | −0.0004 (8) |
C51 | 0.0172 (12) | 0.0104 (11) | 0.0260 (12) | −0.0006 (9) | −0.0040 (10) | 0.0003 (8) |
C53 | 0.0128 (11) | 0.0144 (10) | 0.0120 (10) | 0.0007 (9) | 0.0016 (8) | 0.0008 (8) |
C56 | 0.0145 (12) | 0.0173 (11) | 0.0183 (11) | 0.0006 (9) | 0.0061 (9) | 0.0043 (8) |
C63 | 0.0184 (12) | 0.0126 (11) | 0.0256 (12) | −0.0029 (9) | 0.0030 (10) | 0.0037 (8) |
Ga4—Cl6 | 2.4118 (6) | C16—C43 | 1.489 (3) |
Ga4—Cl7 | 2.2511 (5) | C24—H24 | 0.9500 |
Ga4—Cl10 | 2.3405 (6) | C24—C37 | 1.388 (3) |
Ga4—N2 | 2.0412 (15) | C24—C51 | 1.375 (3) |
Ga4—N7 | 2.0976 (15) | C31—C53 | 1.482 (3) |
Ga4—N6 | 2.1024 (15) | C33—H33 | 0.9500 |
N2—C16 | 1.343 (2) | C33—C39 | 1.387 (3) |
N2—C31 | 1.340 (2) | C33—C63 | 1.383 (3) |
N7—C37 | 1.342 (2) | C37—H37 | 0.9500 |
N7—C43 | 1.356 (2) | C39—H39 | 0.9500 |
C2—H2 | 0.9500 | C39—C53 | 1.389 (3) |
C2—C13 | 1.386 (3) | C41—H41 | 0.9500 |
C2—C31 | 1.389 (3) | C41—C43 | 1.385 (3) |
N6—C53 | 1.357 (2) | C41—C51 | 1.388 (3) |
N6—C56 | 1.341 (2) | C51—H51 | 0.9500 |
C11—H11 | 0.9500 | C56—H56 | 0.9500 |
C11—C13 | 1.391 (3) | C56—C63 | 1.388 (3) |
C11—C16 | 1.388 (3) | C63—H63 | 0.9500 |
C13—H13 | 0.9500 | ||
Cl7—Ga4—Cl6 | 90.32 (2) | C11—C16—C43 | 126.11 (17) |
Cl7—Ga4—Cl10 | 93.91 (2) | C37—C24—H24 | 120.6 |
Cl10—Ga4—Cl6 | 175.66 (2) | C51—C24—H24 | 120.6 |
N2—Ga4—Cl6 | 84.33 (5) | C51—C24—C37 | 118.8 (2) |
N2—Ga4—Cl7 | 174.49 (5) | N2—C31—C2 | 119.83 (18) |
N2—Ga4—Cl10 | 91.46 (5) | N2—C31—C53 | 113.55 (17) |
N2—Ga4—N7 | 77.44 (6) | C2—C31—C53 | 126.60 (18) |
N2—Ga4—N6 | 77.32 (6) | C39—C33—H33 | 120.2 |
N7—Ga4—Cl6 | 89.06 (5) | C63—C33—H33 | 120.2 |
N7—Ga4—Cl7 | 101.23 (5) | C63—C33—C39 | 119.60 (19) |
N7—Ga4—Cl10 | 91.06 (5) | N7—C37—C24 | 121.8 (2) |
N7—Ga4—N6 | 154.75 (6) | N7—C37—H37 | 119.1 |
N6—Ga4—Cl6 | 89.06 (5) | C24—C37—H37 | 119.1 |
N6—Ga4—Cl7 | 103.96 (5) | C33—C39—H39 | 120.5 |
N6—Ga4—Cl10 | 88.99 (5) | C33—C39—C53 | 118.95 (19) |
C16—N2—Ga4 | 118.55 (13) | C53—C39—H39 | 120.5 |
C31—N2—Ga4 | 118.90 (13) | C43—C41—H41 | 120.7 |
C31—N2—C16 | 122.52 (17) | C43—C41—C51 | 118.54 (19) |
C37—N7—Ga4 | 125.03 (14) | C51—C41—H41 | 120.7 |
C37—N7—C43 | 119.22 (17) | N7—C43—C16 | 114.26 (17) |
C43—N7—Ga4 | 115.62 (12) | N7—C43—C41 | 121.52 (18) |
C13—C2—H2 | 120.8 | C41—C43—C16 | 124.21 (18) |
C13—C2—C31 | 118.48 (18) | C24—C51—C41 | 119.96 (19) |
C31—C2—H2 | 120.8 | C24—C51—H51 | 120.0 |
C53—N6—Ga4 | 115.31 (12) | C41—C51—H51 | 120.0 |
C56—N6—Ga4 | 125.52 (13) | N6—C53—C31 | 114.86 (16) |
C56—N6—C53 | 119.16 (16) | N6—C53—C39 | 121.35 (18) |
C13—C11—H11 | 121.0 | C39—C53—C31 | 123.79 (18) |
C16—C11—H11 | 121.0 | N6—C56—H56 | 118.9 |
C16—C11—C13 | 118.07 (18) | N6—C56—C63 | 122.19 (18) |
C2—C13—C11 | 120.84 (19) | C63—C56—H56 | 118.9 |
C2—C13—H13 | 119.6 | C33—C63—C56 | 118.69 (19) |
C11—C13—H13 | 119.6 | C33—C63—H63 | 120.7 |
N2—C16—C11 | 120.15 (17) | C56—C63—H63 | 120.7 |
N2—C16—C43 | 113.74 (17) | ||
Ga4—N2—C16—C11 | 178.53 (15) | C13—C11—C16—C43 | −179.55 (19) |
Ga4—N2—C16—C43 | −1.4 (2) | C16—N2—C31—C2 | 3.7 (3) |
Ga4—N2—C31—C2 | −178.05 (15) | C16—N2—C31—C53 | −177.53 (17) |
Ga4—N2—C31—C53 | 0.7 (2) | C16—C11—C13—C2 | 1.6 (3) |
Ga4—N7—C37—C24 | −172.22 (16) | C31—N2—C16—C11 | −3.2 (3) |
Ga4—N7—C43—C16 | −7.1 (2) | C31—N2—C16—C43 | 176.86 (18) |
Ga4—N7—C43—C41 | 171.51 (15) | C31—C2—C13—C11 | −1.1 (3) |
Ga4—N6—C53—C31 | 2.8 (2) | C33—C39—C53—N6 | −1.9 (3) |
Ga4—N6—C53—C39 | −178.36 (15) | C33—C39—C53—C31 | 176.89 (19) |
Ga4—N6—C56—C63 | 179.81 (16) | C37—N7—C43—C16 | 176.94 (18) |
N2—C16—C43—N7 | 5.6 (3) | C37—N7—C43—C41 | −4.5 (3) |
N2—C16—C43—C41 | −172.96 (19) | C37—C24—C51—C41 | −2.8 (3) |
N2—C31—C53—N6 | −2.3 (3) | C39—C33—C63—C56 | 1.4 (3) |
N2—C31—C53—C39 | 178.85 (19) | C43—N7—C37—C24 | 3.3 (3) |
C2—C31—C53—N6 | 176.38 (19) | C43—C41—C51—C24 | 1.8 (3) |
C2—C31—C53—C39 | −2.5 (3) | C51—C24—C37—N7 | 0.3 (3) |
N6—C56—C63—C33 | −0.8 (3) | C51—C41—C43—N7 | 1.9 (3) |
C11—C16—C43—N7 | −174.34 (19) | C51—C41—C43—C16 | −179.63 (19) |
C11—C16—C43—C41 | 7.1 (3) | C53—N6—C56—C63 | −1.1 (3) |
C13—C2—C31—N2 | −1.5 (3) | C56—N6—C53—C31 | −176.39 (17) |
C13—C2—C31—C53 | 179.90 (19) | C56—N6—C53—C39 | 2.5 (3) |
C13—C11—C16—N2 | 0.5 (3) | C63—C33—C39—C53 | −0.1 (3) |
[GaBr3(C15H11N3)] | F(000) = 1032 |
Mr = 542.72 | Dx = 2.199 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.5418 Å |
a = 8.3602 (1) Å | Cell parameters from 16135 reflections |
b = 14.5133 (1) Å | θ = 3.0–73.5° |
c = 13.9874 (1) Å | µ = 10.85 mm−1 |
β = 104.967 (1)° | T = 123 K |
V = 1639.57 (3) Å3 | Block, colourless |
Z = 4 | 0.12 × 0.1 × 0.08 mm |
Oxford Diffraction (Gemini Ultra, Ruby CCD) diffractometer | 3288 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 3116 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.025 |
Detector resolution: 10.3546 pixels mm-1 | θmax = 73.7°, θmin = 4.5° |
ω scans | h = −10→10 |
Absorption correction: multi-scan [CrysAlis PRO (Agilent, 2013), based on expression derived by Clark & Reid (1995)] | k = −17→17 |
Tmin = 0.676, Tmax = 1.000 | l = −16→17 |
26629 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.020 | H-atom parameters constrained |
wR(F2) = 0.050 | w = 1/[σ2(Fo2) + (0.0251P)2 + 1.7521P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
3288 reflections | Δρmax = 0.40 e Å−3 |
200 parameters | Δρmin = −0.46 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00013 (2) |
[GaBr3(C15H11N3)] | V = 1639.57 (3) Å3 |
Mr = 542.72 | Z = 4 |
Monoclinic, P21/n | Cu Kα radiation |
a = 8.3602 (1) Å | µ = 10.85 mm−1 |
b = 14.5133 (1) Å | T = 123 K |
c = 13.9874 (1) Å | 0.12 × 0.1 × 0.08 mm |
β = 104.967 (1)° |
Oxford Diffraction (Gemini Ultra, Ruby CCD) diffractometer | 3288 independent reflections |
Absorption correction: multi-scan [CrysAlis PRO (Agilent, 2013), based on expression derived by Clark & Reid (1995)] | 3116 reflections with I > 2σ(I) |
Tmin = 0.676, Tmax = 1.000 | Rint = 0.025 |
26629 measured reflections |
R[F2 > 2σ(F2)] = 0.020 | 0 restraints |
wR(F2) = 0.050 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.40 e Å−3 |
3288 reflections | Δρmin = −0.46 e Å−3 |
200 parameters |
Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br2 | 0.80495 (3) | 0.354146 (17) | 0.395354 (17) | 0.02511 (7) | |
Br1 | 0.69999 (3) | 0.394094 (15) | 0.136959 (16) | 0.01881 (7) | |
Br3 | 1.23890 (3) | 0.353584 (17) | 0.404362 (18) | 0.02517 (7) | |
Ga1 | 0.96843 (3) | 0.374351 (18) | 0.279622 (19) | 0.01611 (7) | |
N2 | 1.0824 (2) | 0.39713 (12) | 0.17033 (13) | 0.0159 (3) | |
N1 | 0.9980 (2) | 0.51773 (13) | 0.28395 (13) | 0.0177 (4) | |
C1 | 0.9517 (3) | 0.57427 (16) | 0.34759 (17) | 0.0215 (5) | |
H1 | 0.9120 | 0.5492 | 0.3982 | 0.026* | |
C3 | 1.0198 (3) | 0.70639 (16) | 0.26437 (18) | 0.0245 (5) | |
H3 | 1.0233 | 0.7699 | 0.2565 | 0.029* | |
N3 | 0.9913 (2) | 0.24078 (12) | 0.22764 (13) | 0.0175 (4) | |
C8 | 1.2414 (3) | 0.42717 (18) | 0.02660 (18) | 0.0248 (5) | |
H8 | 1.2987 | 0.4372 | −0.0212 | 0.030* | |
C10 | 1.1167 (3) | 0.32507 (16) | 0.11965 (15) | 0.0178 (4) | |
C9 | 1.1985 (3) | 0.33815 (17) | 0.04597 (17) | 0.0227 (5) | |
H9 | 1.2239 | 0.2884 | 0.0105 | 0.027* | |
C15 | 0.9456 (3) | 0.16323 (16) | 0.26449 (18) | 0.0222 (5) | |
H15 | 0.8991 | 0.1670 | 0.3180 | 0.027* | |
C13 | 1.0322 (3) | 0.07185 (16) | 0.14554 (19) | 0.0251 (5) | |
H13 | 1.0438 | 0.0151 | 0.1173 | 0.030* | |
C11 | 1.0616 (3) | 0.23553 (15) | 0.15049 (15) | 0.0172 (4) | |
C2 | 0.9612 (3) | 0.66899 (17) | 0.34001 (18) | 0.0253 (5) | |
H2 | 0.9288 | 0.7071 | 0.3851 | 0.030* | |
C6 | 1.1185 (3) | 0.48393 (15) | 0.15066 (16) | 0.0181 (4) | |
C12 | 1.0820 (3) | 0.15206 (16) | 0.10751 (17) | 0.0217 (5) | |
H12 | 1.1284 | 0.1497 | 0.0539 | 0.026* | |
C5 | 1.0630 (3) | 0.55331 (15) | 0.21266 (16) | 0.0183 (4) | |
C7 | 1.1997 (3) | 0.50141 (17) | 0.07780 (17) | 0.0222 (5) | |
H7 | 1.2255 | 0.5613 | 0.0636 | 0.027* | |
C4 | 1.0735 (3) | 0.64761 (16) | 0.20040 (18) | 0.0218 (5) | |
H4 | 1.1158 | 0.6713 | 0.1502 | 0.026* | |
C14 | 0.9650 (3) | 0.07734 (16) | 0.22586 (19) | 0.0253 (5) | |
H14 | 0.9334 | 0.0243 | 0.2535 | 0.030* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br2 | 0.03170 (14) | 0.02706 (14) | 0.02054 (12) | −0.00303 (10) | 0.01394 (10) | 0.00185 (9) |
Br1 | 0.01962 (11) | 0.01690 (12) | 0.01982 (12) | −0.00044 (8) | 0.00495 (8) | 0.00211 (8) |
Br3 | 0.02458 (13) | 0.02321 (14) | 0.02376 (13) | 0.00013 (9) | −0.00088 (10) | 0.00125 (9) |
Ga1 | 0.02027 (14) | 0.01329 (13) | 0.01629 (13) | −0.00066 (10) | 0.00748 (11) | 0.00071 (10) |
N2 | 0.0148 (8) | 0.0160 (9) | 0.0159 (8) | −0.0010 (7) | 0.0024 (7) | 0.0009 (7) |
N1 | 0.0189 (8) | 0.0156 (9) | 0.0176 (9) | −0.0012 (7) | 0.0030 (7) | −0.0003 (7) |
C1 | 0.0210 (10) | 0.0194 (11) | 0.0229 (11) | 0.0019 (9) | 0.0036 (9) | −0.0030 (9) |
C3 | 0.0232 (11) | 0.0134 (11) | 0.0310 (12) | 0.0016 (9) | −0.0036 (9) | 0.0001 (9) |
N3 | 0.0184 (8) | 0.0150 (9) | 0.0186 (9) | 0.0002 (7) | 0.0037 (7) | 0.0001 (7) |
C8 | 0.0250 (11) | 0.0289 (13) | 0.0232 (11) | 0.0007 (9) | 0.0108 (9) | 0.0051 (10) |
C10 | 0.0170 (9) | 0.0197 (11) | 0.0156 (10) | 0.0008 (8) | 0.0026 (8) | −0.0001 (8) |
C9 | 0.0269 (11) | 0.0226 (12) | 0.0201 (11) | 0.0039 (9) | 0.0090 (9) | 0.0002 (9) |
C15 | 0.0206 (10) | 0.0195 (11) | 0.0267 (12) | −0.0004 (9) | 0.0063 (9) | 0.0038 (9) |
C13 | 0.0228 (11) | 0.0159 (11) | 0.0336 (13) | 0.0010 (9) | 0.0015 (10) | −0.0060 (9) |
C11 | 0.0161 (9) | 0.0173 (11) | 0.0165 (10) | 0.0007 (8) | 0.0010 (8) | −0.0010 (8) |
C2 | 0.0216 (11) | 0.0216 (12) | 0.0290 (12) | 0.0032 (9) | −0.0003 (9) | −0.0061 (10) |
C6 | 0.0182 (10) | 0.0167 (11) | 0.0170 (10) | −0.0009 (8) | 0.0005 (8) | 0.0033 (8) |
C12 | 0.0203 (10) | 0.0216 (12) | 0.0222 (11) | 0.0027 (9) | 0.0034 (9) | −0.0028 (9) |
C5 | 0.0172 (9) | 0.0174 (11) | 0.0178 (10) | −0.0022 (8) | 0.0000 (8) | 0.0008 (8) |
C7 | 0.0218 (10) | 0.0215 (12) | 0.0229 (11) | −0.0033 (9) | 0.0051 (9) | 0.0064 (9) |
C4 | 0.0189 (10) | 0.0183 (11) | 0.0246 (11) | −0.0024 (8) | −0.0006 (9) | 0.0027 (9) |
C14 | 0.0206 (11) | 0.0171 (11) | 0.0361 (13) | −0.0015 (9) | 0.0034 (10) | 0.0053 (10) |
Br2—Ga1 | 2.3911 (3) | C8—C7 | 1.387 (3) |
Br1—Ga1 | 2.6053 (3) | C10—C9 | 1.389 (3) |
Br3—Ga1 | 2.4920 (3) | C10—C11 | 1.480 (3) |
Ga1—N2 | 2.0265 (18) | C9—H9 | 0.9300 |
Ga1—N1 | 2.0946 (18) | C15—H15 | 0.9300 |
Ga1—N3 | 2.0965 (18) | C15—C14 | 1.385 (3) |
N2—C10 | 1.336 (3) | C13—H13 | 0.9300 |
N2—C6 | 1.340 (3) | C13—C12 | 1.388 (3) |
N1—C1 | 1.339 (3) | C13—C14 | 1.382 (4) |
N1—C5 | 1.355 (3) | C11—C12 | 1.382 (3) |
C1—H1 | 0.9300 | C2—H2 | 0.9300 |
C1—C2 | 1.383 (3) | C6—C5 | 1.480 (3) |
C3—H3 | 0.9300 | C6—C7 | 1.386 (3) |
C3—C2 | 1.386 (4) | C12—H12 | 0.9300 |
C3—C4 | 1.392 (3) | C5—C4 | 1.385 (3) |
N3—C15 | 1.334 (3) | C7—H7 | 0.9300 |
N3—C11 | 1.358 (3) | C4—H4 | 0.9300 |
C8—H8 | 0.9300 | C14—H14 | 0.9300 |
C8—C9 | 1.386 (3) | ||
Br2—Ga1—Br1 | 90.120 (11) | C9—C10—C11 | 125.9 (2) |
Br2—Ga1—Br3 | 94.881 (12) | C8—C9—C10 | 118.3 (2) |
Br3—Ga1—Br1 | 174.836 (13) | C8—C9—H9 | 120.9 |
N2—Ga1—Br2 | 173.25 (5) | C10—C9—H9 | 120.9 |
N2—Ga1—Br1 | 83.35 (5) | N3—C15—H15 | 118.8 |
N2—Ga1—Br3 | 91.69 (5) | N3—C15—C14 | 122.3 (2) |
N2—Ga1—N1 | 77.56 (7) | C14—C15—H15 | 118.8 |
N2—Ga1—N3 | 77.66 (7) | C12—C13—H13 | 120.4 |
N1—Ga1—Br2 | 100.73 (5) | C14—C13—H13 | 120.4 |
N1—Ga1—Br1 | 89.13 (5) | C14—C13—C12 | 119.2 (2) |
N1—Ga1—Br3 | 91.20 (5) | N3—C11—C10 | 114.44 (19) |
N1—Ga1—N3 | 155.22 (7) | N3—C11—C12 | 121.5 (2) |
N3—Ga1—Br2 | 103.93 (5) | C12—C11—C10 | 124.1 (2) |
N3—Ga1—Br1 | 88.50 (5) | C1—C2—C3 | 119.1 (2) |
N3—Ga1—Br3 | 89.05 (5) | C1—C2—H2 | 120.4 |
C10—N2—Ga1 | 118.69 (15) | C3—C2—H2 | 120.4 |
C10—N2—C6 | 122.44 (19) | N2—C6—C5 | 113.46 (19) |
C6—N2—Ga1 | 118.86 (15) | N2—C6—C7 | 120.1 (2) |
C1—N1—Ga1 | 125.13 (15) | C7—C6—C5 | 126.4 (2) |
C1—N1—C5 | 119.69 (19) | C13—C12—H12 | 120.5 |
C5—N1—Ga1 | 115.11 (14) | C11—C12—C13 | 119.0 (2) |
N1—C1—H1 | 119.1 | C11—C12—H12 | 120.5 |
N1—C1—C2 | 121.7 (2) | N1—C5—C6 | 114.70 (19) |
C2—C1—H1 | 119.1 | N1—C5—C4 | 121.2 (2) |
C2—C3—H3 | 120.4 | C4—C5—C6 | 124.1 (2) |
C2—C3—C4 | 119.1 (2) | C8—C7—H7 | 120.9 |
C4—C3—H3 | 120.4 | C6—C7—C8 | 118.3 (2) |
C15—N3—Ga1 | 125.81 (15) | C6—C7—H7 | 120.9 |
C15—N3—C11 | 119.06 (19) | C3—C4—H4 | 120.5 |
C11—N3—Ga1 | 115.13 (14) | C5—C4—C3 | 119.0 (2) |
C9—C8—H8 | 119.6 | C5—C4—H4 | 120.5 |
C9—C8—C7 | 120.7 (2) | C15—C14—H14 | 120.6 |
C7—C8—H8 | 119.6 | C13—C14—C15 | 118.8 (2) |
N2—C10—C9 | 120.1 (2) | C13—C14—H14 | 120.6 |
N2—C10—C11 | 114.02 (18) | ||
Br2—Ga1—N1—C1 | 7.81 (18) | N1—Ga1—N2—C10 | 179.70 (16) |
Br2—Ga1—N1—C5 | −169.17 (14) | N1—Ga1—N2—C6 | −1.22 (15) |
Br2—Ga1—N3—C15 | −9.34 (19) | N1—Ga1—N3—C15 | 176.25 (17) |
Br2—Ga1—N3—C11 | 171.66 (13) | N1—Ga1—N3—C11 | −2.8 (3) |
Br1—Ga1—N2—C10 | −89.72 (15) | N1—C1—C2—C3 | 0.2 (3) |
Br1—Ga1—N2—C6 | 89.36 (15) | N1—C5—C4—C3 | 1.6 (3) |
Br1—Ga1—N1—C1 | 97.77 (17) | C1—N1—C5—C6 | 176.59 (18) |
Br1—Ga1—N1—C5 | −79.21 (15) | C1—N1—C5—C4 | −3.9 (3) |
Br1—Ga1—N3—C15 | −99.09 (18) | N3—Ga1—N2—C10 | 0.19 (15) |
Br1—Ga1—N3—C11 | 81.90 (14) | N3—Ga1—N2—C6 | 179.27 (17) |
Br3—Ga1—N2—C10 | 88.85 (15) | N3—Ga1—N1—C1 | −177.71 (17) |
Br3—Ga1—N2—C6 | −92.07 (15) | N3—Ga1—N1—C5 | 5.3 (3) |
Br3—Ga1—N1—C1 | −87.39 (17) | N3—C15—C14—C13 | −0.8 (3) |
Br3—Ga1—N1—C5 | 95.63 (15) | N3—C11—C12—C13 | −1.2 (3) |
Br3—Ga1—N3—C15 | 85.45 (18) | C10—N2—C6—C5 | 177.39 (18) |
Br3—Ga1—N3—C11 | −93.55 (14) | C10—N2—C6—C7 | −2.4 (3) |
Ga1—N2—C10—C9 | −178.38 (16) | C10—C11—C12—C13 | 177.1 (2) |
Ga1—N2—C10—C11 | 1.1 (2) | C9—C8—C7—C6 | 1.9 (3) |
Ga1—N2—C6—C5 | −1.7 (2) | C9—C10—C11—N3 | 177.0 (2) |
Ga1—N2—C6—C7 | 178.59 (15) | C9—C10—C11—C12 | −1.4 (3) |
Ga1—N1—C1—C2 | −173.87 (16) | C15—N3—C11—C10 | −176.42 (19) |
Ga1—N1—C5—C6 | −6.3 (2) | C15—N3—C11—C12 | 2.0 (3) |
Ga1—N1—C5—C4 | 173.27 (16) | C11—N3—C15—C14 | −1.0 (3) |
Ga1—N3—C15—C14 | −179.96 (16) | C11—C10—C9—C8 | −180.0 (2) |
Ga1—N3—C11—C10 | 2.7 (2) | C2—C3—C4—C5 | 1.6 (3) |
Ga1—N3—C11—C12 | −178.88 (16) | C6—N2—C10—C9 | 2.6 (3) |
N2—Ga1—N1—C1 | −178.85 (19) | C6—N2—C10—C11 | −177.91 (19) |
N2—Ga1—N1—C5 | 4.17 (15) | C6—C5—C4—C3 | −178.9 (2) |
N2—Ga1—N3—C15 | 177.39 (19) | C12—C13—C14—C15 | 1.6 (3) |
N2—Ga1—N3—C11 | −1.61 (14) | C5—N1—C1—C2 | 3.0 (3) |
N2—C10—C9—C8 | −0.5 (3) | C5—C6—C7—C8 | −179.6 (2) |
N2—C10—C11—N3 | −2.5 (3) | C7—C8—C9—C10 | −1.7 (3) |
N2—C10—C11—C12 | 179.1 (2) | C7—C6—C5—N1 | −175.0 (2) |
N2—C6—C5—N1 | 5.2 (3) | C7—C6—C5—C4 | 5.4 (3) |
N2—C6—C5—C4 | −174.3 (2) | C4—C3—C2—C1 | −2.5 (3) |
N2—C6—C7—C8 | 0.1 (3) | C14—C13—C12—C11 | −0.6 (3) |
Experimental details
(GaCl3_Terpy) | (GaBr3_Terpy) | |
Crystal data | ||
Chemical formula | [GaCl3(C15H11N3)] | [GaBr3(C15H11N3)] |
Mr | 409.34 | 542.72 |
Crystal system, space group | Monoclinic, P21/n | Monoclinic, P21/n |
Temperature (K) | 123 | 123 |
a, b, c (Å) | 8.2492 (2), 14.1770 (3), 13.7119 (3) | 8.3602 (1), 14.5133 (1), 13.9874 (1) |
β (°) | 104.217 (3) | 104.967 (1) |
V (Å3) | 1554.47 (7) | 1639.57 (3) |
Z | 4 | 4 |
Radiation type | Mo Kα | Cu Kα |
µ (mm−1) | 2.28 | 10.85 |
Crystal size (mm) | 0.08 × 0.05 × 0.02 | 0.12 × 0.1 × 0.08 |
Data collection | ||
Diffractometer | Agilent SuperNova (single source at offset, Eos) diffractometer | Oxford Diffraction (Gemini Ultra, Ruby CCD) diffractometer |
Absorption correction | Gaussian [CrysAlis PRO (Agilent, 2013), based on expression derived by Clark & Reid (1995)] | Multi-scan [CrysAlis PRO (Agilent, 2013), based on expression derived by Clark & Reid (1995)] |
Tmin, Tmax | 0.887, 0.971 | 0.676, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16866, 5130, 3289 | 26629, 3288, 3116 |
Rint | 0.051 | 0.025 |
(sin θ/λ)max (Å−1) | 0.752 | 0.622 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.052, 0.82 | 0.020, 0.050, 1.07 |
No. of reflections | 5130 | 3288 |
No. of parameters | 199 | 200 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.49, −0.38 | 0.40, −0.46 |
Computer programs: CrysAlis PRO (Agilent, 2013), SUPERFLIP (Palatinus & Chapuis, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).
Complex | Coordination number (CN) | Ga—L (X = Cl), (I) (Å) | Ga—L (X = Br), (II) (Å) | Δ (Å) | Ga—Cl (Å) | Ga—Br (Å) | Reference |
[GaX3(terpy)] | 6 | 2.0412 (15) | 2.0265 (18) | -0.015 (2) | 2.2511 (5) | 2.3911 (3) | This work |
2.0976 (15) | 2.0946 (18) | -0.003 (2) | 2.3405 (6) | 2.4920 (3) | |||
2.1024 (15) | 2.0965 (18) | -0.006 (2) | 2.4118 (6) | 2.6053 (3) | |||
[GaX3(pyz)]∞ | 5 | 2.2112 (15) | 2.262 (6) | 0.051 (6) | 2.1758 (8) | 2.3205 (15) | Samanamu et al. (2007) |
2.1822 (6) | 2.3301 (9) | ||||||
[GaX3(btaH)2] | 5 | 2.169 (2) | 2.212 (3) | 0.043 (4) | 2.1774 (18) | 2.3204 (17) | Zanias et al. (1999, 2010) |
2.2039 (16) | 2.3436 (11) | ||||||
[GaX3(thf)2] | 5 | 2.1108 (13) | 2.141 (2) | 0.030 (3) | 2.1731 (5) | 2.3174 (4) | Nieger & Thomas (2002); |
2.1840 (8) | 2.3303 (6) | Nogai & Schmidbaur (2003) | |||||
[GaX3(py)] | 4 | 1.966 (2) | 1.979 (2) | 0.013 (3) | 2.1503 (7) | 2.2948 (5) | Timoshkin et al. (2012) |
2.1587 (7) | 2.3037 (5) | ||||||
2.1598 (7) | 2.3060 (5) | ||||||
[GaX3(N3SiMe3)] | 4 | 1.994 (7) | 2.022 (15) | 0.028 (16) | 2.140 (3) | 2.287 (6) | Kouvetakis et al. (1997); |
2.144 (2) | 2.300 (19) | McMurran et al. (1998) | |||||
2.273 (15) | |||||||
[GaX3{N(Me3Sn)3}] | 4 | 1.950 (7) | 1.954 (1) | 0.004 (7) | 2.179 (3) | 2.342 (3) | Cheng et al. (2002) |
2.183 (3) | |||||||
2.190 (3) | |||||||
[GaX3(fluoren-9-one)] | 4 | 1.915 (2) | 1.936 (4) | 0.021 (4) | 2.125 (1) | 2.280 (1) | Branch et al. (2003) |
2.134 (1) | 2.283 (1) | ||||||
2.143 (1) | 2.288 (1) | ||||||
[GaX3(PPh3)] | 4 | 2.3717 (16) | 2.3848 (13) | 0.013 (2) | 2.1677 (15) | 2.3048 (7) | Cheng et al. (2007b) |
2.1679 (16) | 2.3134 (7) | ||||||
2.1696 (15) | 2.3225 (7) | ||||||
[GaX3{P(SiMe3)3}] | 4 | 2.379 (5) | 2.362 (4) | 0.017 (6) | 2.168 (5) | 2.314 (3) | Janik et al. (1996) |
2.172 (5) | 2.315 (2) | ||||||
2.183 (4) | 2.317 (3) | ||||||
[GaX3(AsMe3)] | 4 | 2.4332 (13) | 2.437 (3) | 0.004 (3) | 2.1708 (17) | 2.315 (2) | Cheng et al. (2007a) |
2.1768 (11) | 2.3227 (14) |
Δ = d(Br3Ga—L) - d(Cl3Ga—L). Terpy is 2,2':6',2''-terpyridine, pyz is pyrazine, btaH is 1,2,3-benzotriazole, thf is tetrahydrofuran and py is pyridine. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register