Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of the high-temperature monoclinic variety α-SrHfF6 (strontium hafnium hexa­fluoride) [and of isostructural α-SrZrF6 (strontium zirconium hexa­fluoride)] associates Hf2F12 bipolyhedra and SrF8 snub disphenoids, forming zigzag twisted [SrF6]n layers. The distribution of the Hf and Sr polyhedra forms a three-dimensional framework which can be related to the family of anion-excess ReO3-related superstructures. α-SrHfF6 corresponds to a new ABX6 type and is compared to the other main families already described. A partial amorphization of this structure is observed in samples quenched from the melt.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618001110/ov3104sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618001110/ov3104Isup2.hkl
Contains datablock I

CCDC reference: 1817729

Computing details top

Data collection: COLLECT (Nonius, 2004); cell refinement: DIRAX/LSQ (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS96 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) and WinGX (Farrugia, 2012); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Strontium hafnium hexafluoride top
Crystal data top
SrHfF6F(000) = 656
Mr = 760.22Dx = 4.951 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 12266 reflections
a = 5.9762 (10) Åθ = 4.8–25.2°
b = 5.9949 (10) ŵ = 30.83 mm1
c = 14.426 (3) ÅT = 293 K
β = 99.36 (5)°Spheroidal, colourless
V = 509.96 (18) Å30.04 × 0.03 × 0.02 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
1160 independent reflections
Radiation source: fine-focus sealed tube1052 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 9 pixels mm-1θmax = 27.4°, θmin = 4.8°
CCD scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 77
Tmin = 0.48, Tmax = 0.60l = 1818
12266 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015 w = 1/[σ2(Fo2) + (0.0145P)2 + 1.1913P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.036(Δ/σ)max = 0.001
S = 1.13Δρmax = 1.07 e Å3
1160 reflectionsΔρmin = 0.81 e Å3
74 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015)
0 restraintsExtinction coefficient: 0.00155 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hf10.82383 (3)0.13602 (3)0.90159 (2)0.01007 (8)
Sr10.65438 (7)0.09965 (6)0.63819 (3)0.01187 (10)
F10.6331 (5)0.3593 (4)0.96093 (18)0.0186 (6)
F21.0873 (4)0.1061 (4)0.94722 (17)0.0147 (5)
F30.9048 (5)0.0017 (5)0.78444 (17)0.0250 (6)
F40.6095 (5)0.2897 (4)0.79331 (17)0.0194 (6)
F51.0689 (5)0.3554 (4)0.9072 (2)0.0245 (6)
F60.6027 (5)0.1036 (4)0.9089 (2)0.0255 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hf10.01083 (11)0.01112 (11)0.00809 (10)0.00137 (6)0.00102 (6)0.00015 (6)
Sr10.0135 (2)0.0138 (2)0.00786 (19)0.00530 (15)0.00055 (15)0.00065 (14)
F10.0235 (14)0.0215 (13)0.0110 (12)0.0091 (11)0.0032 (11)0.0002 (10)
F20.0160 (13)0.0198 (13)0.0080 (12)0.0052 (10)0.0008 (10)0.0008 (10)
F30.0292 (16)0.0372 (16)0.0071 (12)0.0162 (13)0.0009 (11)0.0032 (11)
F40.0242 (14)0.0230 (13)0.0099 (12)0.0099 (11)0.0007 (11)0.0007 (10)
F50.0236 (15)0.0265 (15)0.0239 (15)0.0166 (12)0.0053 (12)0.0028 (12)
F60.0260 (16)0.0231 (15)0.0264 (16)0.0169 (12)0.0013 (12)0.0002 (12)
Geometric parameters (Å, º) top
Hf1—F51.960 (3)Sr1—F1vi2.551 (3)
Hf1—F61.966 (3)Sr1—F42.564 (3)
Hf1—F32.010 (3)Sr1—F4v2.724 (3)
Hf1—F12.035 (3)Sr1—F2vii2.763 (2)
Hf1—F42.069 (3)Sr1—Hf1v3.9609 (7)
Hf1—F22.164 (2)Sr1—Hf1vi4.0386 (11)
Hf1—F2i2.167 (2)Sr1—Sr1viii4.2821 (18)
Hf1—Hf1i3.6346 (15)F1—Sr1ii2.505 (3)
Hf1—Sr13.7763 (12)F1—Sr1iii2.552 (3)
Hf1—Sr1ii3.9609 (7)F2—Hf1i2.167 (2)
Hf1—Sr1iii4.0386 (11)F2—Sr1iv2.763 (2)
Sr1—F6ii2.376 (3)F4—Sr1ii2.724 (3)
Sr1—F5iv2.379 (3)F5—Sr1vii2.379 (3)
Sr1—F32.456 (3)F6—Sr1v2.376 (3)
Sr1—F1v2.505 (3)
F5—Hf1—F6172.78 (12)F3—Sr1—F4v80.07 (9)
F5—Hf1—F391.72 (13)F1v—Sr1—F4v55.32 (8)
F6—Hf1—F390.04 (13)F1vi—Sr1—F4v119.46 (8)
F5—Hf1—F190.41 (12)F4—Sr1—F4v80.65 (5)
F6—Hf1—F191.76 (12)F6ii—Sr1—F2vii77.11 (9)
F3—Hf1—F1148.43 (11)F5iv—Sr1—F2vii78.82 (10)
F5—Hf1—F495.69 (12)F3—Sr1—F2vii103.55 (9)
F6—Hf1—F491.53 (12)F1v—Sr1—F2vii119.60 (8)
F3—Hf1—F475.66 (10)F1vi—Sr1—F2vii55.38 (8)
F1—Hf1—F472.79 (10)F4—Sr1—F2vii104.54 (8)
F5—Hf1—F286.32 (11)F4v—Sr1—F2vii174.66 (7)
F6—Hf1—F287.46 (11)F6ii—Sr1—Hf1107.42 (8)
F3—Hf1—F273.58 (10)F5iv—Sr1—Hf1103.17 (8)
F1—Hf1—F2137.98 (9)F3—Sr1—Hf128.81 (6)
F4—Hf1—F2149.22 (9)F1v—Sr1—Hf1130.88 (6)
F5—Hf1—F2i87.40 (11)F1vi—Sr1—Hf1164.67 (6)
F6—Hf1—F2i86.72 (12)F4—Sr1—Hf131.25 (6)
F3—Hf1—F2i139.41 (10)F4v—Sr1—Hf175.56 (6)
F1—Hf1—F2i72.15 (10)F2vii—Sr1—Hf1109.52 (6)
F4—Hf1—F2i144.82 (10)F6ii—Sr1—Hf1v93.79 (8)
F2—Hf1—F2i65.87 (11)F5iv—Sr1—Hf1v92.62 (7)
F5—Hf1—Sr199.01 (9)F3—Sr1—Hf1v105.98 (8)
F6—Hf1—Sr186.50 (9)F1v—Sr1—Hf1v26.08 (6)
F3—Hf1—Sr136.09 (8)F1vi—Sr1—Hf1v90.30 (7)
F1—Hf1—Sr1112.60 (8)F4—Sr1—Hf1v105.24 (7)
F4—Hf1—Sr140.01 (7)F4v—Sr1—Hf1v29.24 (5)
F2—Hf1—Sr1109.28 (7)F2vii—Sr1—Hf1v145.67 (5)
F2i—Hf1—Sr1171.84 (6)Hf1—Sr1—Hf1v104.80 (4)
F5—Hf1—Sr1ii92.97 (9)F6ii—Sr1—Hf1vi72.79 (8)
F6—Hf1—Sr1ii92.58 (9)F5iv—Sr1—Hf1vi74.20 (8)
F3—Hf1—Sr1ii115.67 (8)F3—Sr1—Hf1vi128.42 (7)
F1—Hf1—Sr1ii32.76 (7)F1v—Sr1—Hf1vi89.21 (6)
F4—Hf1—Sr1ii40.04 (7)F1vi—Sr1—Hf1vi24.99 (6)
F2—Hf1—Sr1ii170.74 (6)F4—Sr1—Hf1vi129.75 (6)
F2i—Hf1—Sr1ii104.89 (7)F4v—Sr1—Hf1vi144.45 (6)
Sr1—Hf1—Sr1ii79.96 (4)F2vii—Sr1—Hf1vi30.39 (5)
F5—Hf1—Sr1iii89.43 (9)Hf1—Sr1—Hf1vi139.879 (15)
F6—Hf1—Sr1iii88.76 (9)Hf1v—Sr1—Hf1vi115.28 (3)
F3—Hf1—Sr1iii178.76 (9)F6ii—Sr1—Sr1viii77.42 (8)
F1—Hf1—Sr1iii31.99 (7)F5iv—Sr1—Sr1viii77.61 (8)
F4—Hf1—Sr1iii104.70 (7)F3—Sr1—Sr1viii147.23 (7)
F2—Hf1—Sr1iii106.03 (7)F1v—Sr1—Sr1viii32.46 (6)
F2i—Hf1—Sr1iii40.17 (6)F1vi—Sr1—Sr1viii31.79 (6)
Sr2—Hf1—Sr1iii144.095 (14)F4—Sr1—Sr1viii147.81 (6)
Sr2ii—Hf1—Sr1iii64.72 (3)F4v—Sr1—Sr1viii87.72 (6)
F6ii—Sr1—F5iv145.91 (10)F2vii—Sr1—Sr1viii87.15 (5)
F6ii—Sr1—F3134.91 (10)Hf1—Sr1—Sr1viii163.228 (19)
F5iv—Sr1—F374.37 (9)Hf1v—Sr1—Sr1viii58.52 (3)
F6ii—Sr1—F1v85.18 (10)Hf1vi—Sr1—Sr1viii56.762 (15)
F5iv—Sr1—F1v86.08 (10)Hf1—F1—Sr1ii121.16 (11)
F3—Sr1—F1v127.85 (10)Hf1—F1—Sr1iii123.02 (12)
F6ii—Sr1—F1vi73.55 (10)Sr2ii—F1—Sr1iii115.75 (10)
F5iv—Sr1—F1vi72.96 (10)Hf1—F2—Hf1i114.14 (11)
F3—Sr1—F1vi143.98 (10)Hf1—F2—Sr1iv136.42 (10)
F1v—Sr1—F1vi64.25 (10)Hf1i—F2—Sr1iv109.44 (9)
F6ii—Sr1—F476.24 (9)Hf1—F3—Sr1115.10 (12)
F5iv—Sr1—F4133.63 (9)Hf1—F4—Sr1108.74 (11)
F3—Sr1—F459.73 (8)Hf1—F4—Sr1ii110.72 (10)
F1v—Sr1—F4126.48 (9)Sr2—F4—Sr1ii140.23 (10)
F1vi—Sr1—F4146.79 (8)Hf1—F5—Sr1vii161.74 (15)
F6ii—Sr1—F4v103.22 (10)Hf1—F6—Sr1v160.15 (15)
F5iv—Sr1—F4v98.59 (9)
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+1/2, z+1/2; (iv) x+2, y1/2, z+3/2; (v) x+1, y1/2, z+3/2; (vi) x, y+1/2, z1/2; (vii) x+2, y+1/2, z+3/2; (viii) x+1, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds