Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Hydrogen-bonding inter­actions play an important role in the rational design of crystal systems with desirable architectures. The crystal structures of benzene-1,2-diaminium sulfate sesquihydrate, C6H20N22+·SO42−·1.5H2O, (1), benzene-1,3-diaminium tetra­chlorido­zincate(II), (C6H20N2)[ZnCl4], (3), and 3-amino­anilinium perchlorate, C6H9N2+·ClO4, (4), are reported. Hydrated salt (1) is a polymorph (space group C2/c) of a previously reported [Anderson et al. (2011). Cryst. Growth Des. 11, 4904–4919] crystalline modification of salt (2) (space group P21/c). The contents of the asymmetric unit of (2) are twice that of (1). In each, the extended structures exhibit hydrogen bonds, resulting in chains of ions and hydrogen-bonded rings with an R44(8) motif involving water mol­ecules. Hirshfeld surface analysis shows that a significant difference between the two is the degree of C...C inter­action. Salt (3) exhibits an extended structure having hydrogen-bonded rings and parallel benzene rings, with a centroid-to-centroid separation of 3.860 (2) Å. Salt (4) displays a three-dimensional superstructure that results from linked planes of ions joined by an extensive hydrogen-bonding network involving N—H...O, N—H...N and C—H...π inter­actions. The cation–anion and N—H...N inter­action energies in (4), determined using density functional theory (DFT), show significantly stronger aminium–per­chlorate than amine–perchlorate inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618015553/ov3114sup1.cif
Contains datablocks 1, global, 4, 3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618015553/ov31141sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618015553/ov31143sup3.hkl
Contains datablock 3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618015553/ov31144sup4.hkl
Contains datablock 4

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229618015553/ov31144sup5.cml
Supplementary material

mol

MDL mol file https://doi.org/10.1107/S2053229618015553/ov31141sup6.mol
Supplementary material

mol

MDL mol file https://doi.org/10.1107/S2053229618015553/ov31144sup7.mol
Supplementary material

mol

MDL mol file https://doi.org/10.1107/S2053229618015553/ov31143sup8.mol
Supplementary material

CCDC references: 1876922; 1876921; 1876920

Computing details top

For all structures, data collection: APEX2 (Bruker, 2015); cell refinement: APEX2 (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Benzene-1,2-diaminium sulfate sesquihydrate (1) top
Crystal data top
2C6H10N22+·2SO42·3H2OF(000) = 984
Mr = 466.49Dx = 1.535 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 28.348 (3) ÅCell parameters from 6495 reflections
b = 9.6720 (9) Åθ = 3.4–27.0°
c = 7.5667 (8) ŵ = 0.33 mm1
β = 103.308 (4)°T = 300 K
V = 2018.9 (4) Å3Plate, clear colourless
Z = 40.50 × 0.30 × 0.05 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
2218 independent reflections
Radiation source: XOS X-beam microfocus source1881 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.044
Detector resolution: 8.3330 pixels mm-1θmax = 27.1°, θmin = 2.2°
ω scansh = 3536
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 1211
Tmin = 0.908, Tmax = 1.000l = 99
15241 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: mixed
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0539P)2 + 4.0638P]
where P = (Fo2 + 2Fc2)/3
2218 reflections(Δ/σ)max = 0.001
166 parametersΔρmax = 0.45 e Å3
2 restraintsΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.19815 (2)0.83419 (6)0.25370 (7)0.01861 (18)
O10.21519 (8)0.7412 (2)0.1272 (3)0.0371 (5)
O20.18628 (8)0.75257 (18)0.4004 (3)0.0359 (5)
O30.15528 (7)0.9103 (2)0.1546 (3)0.0432 (5)
O40.23676 (6)0.93470 (18)0.3279 (2)0.0276 (4)
O50.00001.0132 (5)0.25000.0638 (11)
H5A0.0168 (19)0.957 (5)0.290 (8)0.096*
O60.05449 (9)0.8495 (3)0.0646 (4)0.0635 (7)
H6A0.0836 (8)0.858 (5)0.111 (6)0.095*
H6B0.0429 (18)0.898 (5)0.021 (5)0.095*
N10.17746 (9)0.1850 (2)0.2465 (3)0.0284 (5)
H1A0.1952 (11)0.194 (3)0.156 (4)0.032 (8)*
H1B0.1670 (11)0.102 (4)0.226 (4)0.034 (8)*
H1C0.1959 (15)0.191 (4)0.348 (6)0.055 (11)*
N20.19378 (7)0.4664 (2)0.3650 (3)0.0219 (4)
H2A0.2019 (11)0.423 (3)0.472 (5)0.038 (9)*
H2B0.1947 (11)0.558 (4)0.396 (4)0.033 (8)*
H2C0.2147 (11)0.458 (3)0.291 (4)0.033 (8)*
C10.13737 (8)0.2826 (2)0.2197 (3)0.0210 (5)
C20.14542 (8)0.4196 (2)0.2727 (3)0.0208 (5)
C30.10709 (9)0.5115 (3)0.2437 (4)0.0331 (6)
H30.11230.60340.27910.040*
C40.06090 (10)0.4666 (3)0.1619 (5)0.0457 (8)
H40.03510.52850.14200.055*
C50.05289 (10)0.3299 (3)0.1094 (5)0.0463 (8)
H50.02170.29990.05520.056*
C60.09125 (10)0.2379 (3)0.1375 (4)0.0344 (6)
H60.08600.14620.10110.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0193 (3)0.0137 (3)0.0223 (3)0.0008 (2)0.0037 (2)0.0017 (2)
O10.0463 (11)0.0339 (11)0.0340 (10)0.0007 (9)0.0153 (9)0.0141 (8)
O20.0537 (13)0.0241 (10)0.0351 (10)0.0082 (9)0.0210 (9)0.0008 (8)
O30.0267 (10)0.0255 (10)0.0668 (14)0.0023 (8)0.0112 (9)0.0049 (9)
O40.0251 (9)0.0249 (9)0.0308 (9)0.0069 (7)0.0020 (7)0.0034 (7)
O50.054 (2)0.073 (3)0.069 (3)0.0000.0233 (18)0.000
O60.0384 (13)0.071 (2)0.0768 (19)0.0040 (13)0.0054 (13)0.0044 (15)
N10.0307 (12)0.0162 (11)0.0355 (13)0.0036 (9)0.0021 (10)0.0031 (9)
N20.0229 (10)0.0187 (11)0.0224 (10)0.0017 (8)0.0019 (8)0.0000 (8)
C10.0229 (11)0.0184 (11)0.0209 (10)0.0016 (9)0.0035 (8)0.0025 (9)
C20.0203 (11)0.0216 (12)0.0201 (10)0.0001 (9)0.0038 (8)0.0014 (9)
C30.0292 (13)0.0240 (13)0.0434 (16)0.0060 (11)0.0031 (11)0.0037 (11)
C40.0227 (13)0.0413 (18)0.068 (2)0.0096 (12)0.0003 (13)0.0018 (15)
C50.0226 (13)0.0439 (18)0.065 (2)0.0044 (12)0.0056 (13)0.0000 (15)
C60.0304 (13)0.0229 (14)0.0449 (16)0.0064 (11)0.0019 (11)0.0006 (11)
Geometric parameters (Å, º) top
S1—O21.4629 (18)N2—H2B0.92 (3)
S1—O31.4699 (19)N2—H2C0.91 (3)
S1—O11.4737 (18)C1—C61.382 (3)
S1—O41.4750 (17)C1—C21.388 (3)
O5—H5A0.83 (5)C2—C31.382 (3)
O6—H6A0.82 (2)C3—C41.383 (4)
O6—H6B0.805 (19)C3—H30.9300
N1—C11.455 (3)C4—C51.385 (5)
N1—H1A0.94 (3)C4—H40.9300
N1—H1B0.86 (3)C5—C61.383 (4)
N1—H1C0.83 (4)C5—H50.9300
N2—C21.460 (3)C6—H60.9300
N2—H2A0.89 (3)
O2—S1—O3110.46 (13)C6—C1—C2120.3 (2)
O2—S1—O1109.30 (12)C6—C1—N1119.2 (2)
O3—S1—O1109.29 (13)C2—C1—N1120.5 (2)
O2—S1—O4110.30 (11)C3—C2—C1119.8 (2)
O3—S1—O4108.56 (11)C3—C2—N2119.6 (2)
O1—S1—O4108.90 (11)C1—C2—N2120.5 (2)
H6A—O6—H6B118 (5)C2—C3—C4119.8 (3)
C1—N1—H1A111.8 (19)C2—C3—H3120.1
C1—N1—H1B111 (2)C4—C3—H3120.1
H1A—N1—H1B100 (3)C3—C4—C5120.3 (3)
C1—N1—H1C113 (3)C3—C4—H4119.9
H1A—N1—H1C110 (3)C5—C4—H4119.9
H1B—N1—H1C111 (3)C6—C5—C4119.9 (3)
C2—N2—H2A108 (2)C6—C5—H5120.0
C2—N2—H2B113.1 (19)C4—C5—H5120.0
H2A—N2—H2B104 (3)C1—C6—C5119.8 (3)
C2—N2—H2C110.5 (19)C1—C6—H6120.1
H2A—N2—H2C117 (3)C5—C6—H6120.1
H2B—N2—H2C105 (3)
C6—C1—C2—C30.3 (4)C2—C3—C4—C50.2 (5)
N1—C1—C2—C3179.0 (2)C3—C4—C5—C60.5 (5)
C6—C1—C2—N2178.0 (2)C2—C1—C6—C50.6 (4)
N1—C1—C2—N23.3 (3)N1—C1—C6—C5179.3 (3)
C1—C2—C3—C40.1 (4)C4—C5—C6—C10.7 (5)
N2—C2—C3—C4177.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O6i0.83 (5)1.99 (5)2.803 (4)167 (5)
O6—H6A···O30.82 (2)2.05 (2)2.842 (3)162 (5)
O6—H6B···O5ii0.81 (2)2.06 (2)2.851 (4)166 (5)
N1—H1A···O2iii0.94 (3)1.96 (3)2.755 (3)140 (3)
N1—H1B···O3iv0.86 (3)1.94 (4)2.782 (3)167 (3)
N1—H1C···O1v0.83 (4)2.53 (4)3.022 (3)119 (3)
N1—H1C···O1vi0.83 (4)2.16 (4)2.921 (3)154 (4)
N2—H2A···O1vi0.89 (3)1.96 (3)2.789 (3)154 (3)
N2—H2B···O20.92 (3)1.90 (3)2.794 (3)166 (3)
N2—H2C···O4v0.91 (3)1.82 (3)2.725 (3)172 (3)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+2, z; (iii) x, y+1, z1/2; (iv) x, y1, z; (v) x+1/2, y1/2, z+1/2; (vi) x, y+1, z+1/2.
3-Aminoanilinium perchlorate (4) top
Crystal data top
C6H9N2+·ClO4Dx = 1.571 Mg m3
Mr = 208.60Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 6504 reflections
a = 5.7979 (19) Åθ = 2.5–27.4°
b = 9.866 (4) ŵ = 0.42 mm1
c = 15.421 (6) ÅT = 200 K
V = 882.1 (6) Å3Plate, clear colourless
Z = 40.60 × 0.48 × 0.20 mm
F(000) = 432
Data collection top
Bruker SMART X2S benchtop
diffractometer
1898 independent reflections
Radiation source: XOS X-beam microfocus source1783 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.030
Detector resolution: 8.3330 pixels mm-1θmax = 27.1°, θmin = 2.5°
ω scansh = 75
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 1212
Tmin = 0.75, Tmax = 0.92l = 1919
5983 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.1509P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.23 e Å3
1898 reflectionsΔρmin = 0.27 e Å3
139 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015)
0 restraintsExtinction coefficient: 0.061 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 678 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.03 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.08993 (10)0.32402 (6)0.37637 (3)0.03545 (19)
O10.2989 (4)0.3778 (3)0.41188 (17)0.0652 (7)
O20.0379 (5)0.3889 (2)0.29567 (13)0.0597 (6)
O30.1136 (4)0.17999 (19)0.36341 (16)0.0586 (6)
O40.0963 (4)0.3466 (2)0.43551 (14)0.0633 (6)
N10.2940 (4)0.6659 (2)0.28748 (14)0.0396 (5)
H1A0.268 (6)0.589 (4)0.312 (2)0.064 (11)*
H1B0.168 (8)0.708 (4)0.294 (2)0.075 (13)*
N20.6047 (5)1.0979 (2)0.38845 (15)0.0358 (5)
H2A0.630 (7)1.131 (3)0.337 (2)0.065 (11)*
H2B0.701 (6)1.133 (3)0.423 (2)0.053 (10)*
H2C0.457 (8)1.124 (4)0.405 (2)0.073 (12)*
C10.4605 (4)0.7387 (2)0.33616 (13)0.0298 (5)
C20.4484 (4)0.8800 (2)0.34173 (14)0.0277 (5)
H20.32490.92780.31520.033*
C30.6179 (4)0.9490 (2)0.38614 (13)0.0277 (5)
C40.8014 (5)0.8841 (3)0.42598 (16)0.0358 (5)
H40.91680.93380.4560.043*
C50.8108 (5)0.7433 (3)0.42049 (16)0.0399 (6)
H50.93350.69610.44790.048*
C60.6437 (4)0.6708 (2)0.37561 (15)0.0360 (5)
H60.65410.57490.37180.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0362 (3)0.0308 (3)0.0394 (3)0.0059 (2)0.0053 (3)0.0020 (2)
O10.0536 (13)0.0594 (14)0.0828 (16)0.0218 (12)0.0247 (13)0.0001 (12)
O20.0785 (16)0.0548 (12)0.0459 (10)0.0150 (12)0.0114 (11)0.0145 (9)
O30.0493 (12)0.0308 (9)0.0958 (16)0.0012 (9)0.0123 (12)0.0022 (10)
O40.0627 (14)0.0737 (16)0.0536 (11)0.0018 (14)0.0136 (11)0.0073 (10)
N10.0455 (13)0.0297 (10)0.0436 (11)0.0084 (10)0.0000 (10)0.0041 (9)
N20.0393 (12)0.0273 (10)0.0407 (11)0.0047 (9)0.0032 (11)0.0032 (8)
C10.0354 (13)0.0280 (11)0.0261 (9)0.0036 (9)0.0053 (9)0.0003 (8)
C20.0281 (12)0.0269 (10)0.0281 (9)0.0014 (9)0.0002 (9)0.0016 (8)
C30.0316 (11)0.0268 (10)0.0247 (9)0.0021 (9)0.0040 (10)0.0008 (7)
C40.0311 (12)0.0459 (14)0.0304 (11)0.0006 (11)0.0011 (10)0.0009 (9)
C50.0375 (13)0.0467 (15)0.0355 (12)0.0120 (12)0.0018 (11)0.0079 (10)
C60.0449 (14)0.0264 (10)0.0366 (11)0.0080 (10)0.0065 (10)0.0049 (10)
Geometric parameters (Å, º) top
Cl1—O41.431 (2)C1—C61.396 (3)
Cl1—O21.431 (2)C1—C21.398 (3)
Cl1—O11.432 (2)C2—C31.378 (3)
Cl1—O31.442 (2)C2—H20.95
N1—C11.418 (3)C3—C41.385 (4)
N1—H1A0.86 (4)C4—C51.392 (4)
N1—H1B0.85 (4)C4—H40.95
N2—C31.471 (3)C5—C61.389 (4)
N2—H2A0.87 (4)C5—H50.95
N2—H2B0.85 (4)C6—H60.95
N2—H2C0.93 (5)
O4—Cl1—O2109.01 (15)C2—C1—N1120.2 (2)
O4—Cl1—O1109.70 (15)C3—C2—C1119.2 (2)
O2—Cl1—O1110.19 (15)C3—C2—H2120.4
O4—Cl1—O3108.28 (14)C1—C2—H2120.4
O2—Cl1—O3109.88 (14)C2—C3—C4122.7 (2)
O1—Cl1—O3109.75 (14)C2—C3—N2117.9 (2)
C1—N1—H1A109 (2)C4—C3—N2119.4 (2)
C1—N1—H1B106 (3)C3—C4—C5117.6 (2)
H1A—N1—H1B103 (3)C3—C4—H4121.2
C3—N2—H2A110 (2)C5—C4—H4121.2
C3—N2—H2B113 (2)C6—C5—C4121.1 (3)
H2A—N2—H2B108 (3)C6—C5—H5119.4
C3—N2—H2C109 (2)C4—C5—H5119.4
H2A—N2—H2C107 (4)C5—C6—C1120.1 (2)
H2B—N2—H2C109 (3)C5—C6—H6120.0
C6—C1—C2119.3 (2)C1—C6—H6120.0
C6—C1—N1120.4 (2)
C6—C1—C2—C30.0 (3)N2—C3—C4—C5178.4 (2)
N1—C1—C2—C3177.1 (2)C3—C4—C5—C60.9 (4)
C1—C2—C3—C40.1 (3)C4—C5—C6—C11.0 (4)
C1—C2—C3—N2178.0 (2)C2—C1—C6—C50.5 (3)
C2—C3—C4—C50.4 (4)N1—C1—C6—C5177.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.86 (4)2.60 (4)3.429 (4)163 (3)
N1—H1A···O20.86 (4)2.40 (4)3.113 (3)141 (3)
N1—H1B···O2i0.85 (4)2.55 (4)3.191 (3)134 (3)
N2—H2A···N1ii0.87 (4)2.00 (4)2.856 (3)168 (3)
N2—H2B···O1iii0.85 (4)2.61 (3)3.287 (4)138 (3)
N2—H2B···O3iv0.85 (4)2.61 (4)3.084 (4)117 (3)
N2—H2B···O4iv0.85 (4)2.42 (4)3.091 (4)137 (3)
N2—H2C···O3v0.93 (5)2.16 (4)2.985 (4)147 (3)
N2—H2C···O4iii0.93 (5)2.50 (4)3.004 (3)114 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1/2, y+3/2, z+1; (iv) x+1, y+1, z; (v) x, y+1, z.
benzene-1,3-diaminium tetrachloridozincate(II) (3) top
Crystal data top
(C6H10N2)[ZnCl4]Dx = 1.793 Mg m3
Mr = 317.35Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 7163 reflections
a = 14.0070 (11) Åθ = 2.3–26.2°
b = 11.6085 (9) ŵ = 2.96 mm1
c = 7.2286 (5) ÅT = 300 K
V = 1175.37 (15) Å3Plate, clear brown
Z = 40.60 × 0.40 × 0.15 mm
F(000) = 632
Data collection top
Bruker SMART X2S benchtop
diffractometer
2373 independent reflections
Radiation source: XOS X-beam microfocus source2242 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.047
Detector resolution: 8.3330 pixels mm-1θmax = 26.4°, θmin = 2.9°
ω scansh = 1712
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 1414
Tmin = 0.39, Tmax = 0.73l = 88
13300 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0302P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2373 reflectionsΔρmax = 0.23 e Å3
137 parametersΔρmin = 0.43 e Å3
7 restraintsAbsolute structure: Refined as an inversion twin.
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.217 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.62942 (2)0.59599 (3)0.11294 (8)0.03168 (13)
Cl10.70069 (7)0.71712 (8)0.09310 (14)0.0427 (2)
Cl20.69054 (6)0.41969 (7)0.05242 (16)0.0444 (3)
Cl30.67671 (7)0.66110 (9)0.39359 (15)0.0481 (3)
Cl40.47047 (7)0.60647 (10)0.0747 (2)0.0586 (3)
N10.7761 (2)0.4550 (3)0.6358 (6)0.0440 (8)
H1A0.771 (4)0.390 (3)0.565 (6)0.066*
H1B0.737 (3)0.500 (4)0.570 (7)0.066*
H1C0.749 (4)0.448 (4)0.743 (5)0.066*
N20.9972 (2)0.7825 (3)0.6528 (6)0.0435 (9)
H2B0.948 (3)0.827 (4)0.607 (7)0.065*
H2C1.046 (3)0.804 (4)0.577 (6)0.065*
H2A1.003 (4)0.820 (4)0.758 (5)0.065*
C10.8746 (2)0.4998 (3)0.6432 (6)0.0338 (8)
C20.8882 (2)0.6177 (3)0.6437 (6)0.0337 (9)
H20.83670.66840.64140.04*
C30.9809 (2)0.6573 (3)0.6477 (5)0.0332 (8)
C41.0589 (3)0.5835 (3)0.6496 (6)0.0393 (10)
H41.12080.61240.6510.047*
C51.0425 (3)0.4662 (4)0.6495 (6)0.0433 (10)
H51.09390.41540.65070.052*
C60.9499 (3)0.4235 (3)0.6476 (6)0.0402 (10)
H60.93890.34450.64940.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0333 (2)0.0277 (2)0.0340 (2)0.00183 (13)0.00168 (19)0.0002 (2)
Cl10.0495 (5)0.0401 (5)0.0386 (5)0.0033 (4)0.0126 (4)0.0072 (4)
Cl20.0390 (4)0.0277 (4)0.0664 (7)0.0060 (3)0.0081 (4)0.0031 (4)
Cl30.0561 (6)0.0528 (6)0.0354 (5)0.0058 (5)0.0074 (5)0.0064 (5)
Cl40.0299 (4)0.0692 (7)0.0768 (10)0.0000 (4)0.0001 (5)0.0125 (6)
N10.0363 (15)0.0399 (17)0.056 (2)0.0068 (13)0.0070 (17)0.0011 (19)
N20.0355 (16)0.0373 (19)0.058 (3)0.0016 (13)0.0073 (15)0.0106 (17)
C10.0301 (15)0.0373 (19)0.034 (2)0.0008 (13)0.0029 (14)0.0022 (17)
C20.0269 (15)0.0366 (18)0.037 (3)0.0043 (13)0.0015 (15)0.0037 (17)
C30.0311 (16)0.0338 (19)0.035 (2)0.0003 (13)0.0021 (14)0.0070 (16)
C40.0299 (16)0.045 (2)0.043 (3)0.0045 (14)0.0031 (16)0.0096 (17)
C50.0383 (18)0.046 (2)0.046 (3)0.0155 (15)0.0048 (17)0.0086 (18)
C60.048 (2)0.0332 (19)0.040 (3)0.0031 (15)0.0017 (18)0.0021 (17)
Geometric parameters (Å, º) top
Zn1—Cl42.2469 (10)N2—H2A0.88 (3)
Zn1—Cl22.2611 (9)C1—C61.378 (5)
Zn1—Cl32.2640 (12)C1—C21.383 (5)
Zn1—Cl12.2785 (10)C2—C31.378 (5)
N1—C11.474 (4)C2—H20.93
N1—H1A0.92 (3)C3—C41.389 (5)
N1—H1B0.90 (3)C4—C51.381 (6)
N1—H1C0.87 (3)C4—H40.93
N2—C31.473 (5)C5—C61.389 (5)
N2—H2B0.92 (2)C5—H50.93
N2—H2C0.92 (3)C6—H60.93
Cl4—Zn1—Cl2113.60 (4)C6—C1—C2122.0 (3)
Cl4—Zn1—Cl3112.46 (5)C6—C1—N1119.4 (3)
Cl2—Zn1—Cl3111.39 (4)C2—C1—N1118.6 (3)
Cl4—Zn1—Cl1108.68 (4)C3—C2—C1117.4 (3)
Cl2—Zn1—Cl1105.44 (4)C3—C2—H2121.3
Cl3—Zn1—Cl1104.57 (4)C1—C2—H2121.3
C1—N1—H1A112 (3)C2—C3—C4122.5 (3)
C1—N1—H1B113 (3)C2—C3—N2118.4 (3)
H1A—N1—H1B98 (5)C4—C3—N2119.1 (3)
C1—N1—H1C114 (4)C5—C4—C3118.5 (3)
H1A—N1—H1C113 (5)C5—C4—H4120.7
H1B—N1—H1C105 (5)C3—C4—H4120.7
C3—N2—H2B115 (3)C4—C5—C6120.5 (3)
C3—N2—H2C112 (3)C4—C5—H5119.8
H2B—N2—H2C102 (4)C6—C5—H5119.8
C3—N2—H2A121 (4)C1—C6—C5119.1 (4)
H2B—N2—H2A96 (5)C1—C6—H6120.4
H2C—N2—H2A108 (5)C5—C6—H6120.4
Hydrogen-bond geometry (Å, º) top
The N–H bond distances were restrained to 0.89 Å. See section 2.2 for details.
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.92 (3)2.34 (3)3.236 (4)166 (4)
N1—H1B···Cl30.90 (3)2.41 (3)3.276 (4)162 (4)
N1—H1C···Cl2ii0.87 (3)2.40 (3)3.267 (4)174 (5)
N2—H2B···Cl2iii0.92 (2)2.25 (3)3.158 (3)167 (5)
N2—H2C···Cl3iv0.92 (3)2.29 (3)3.203 (4)174 (4)
N2—H2A···Cl1v0.88 (3)3.00 (5)3.391 (4)109 (4)
N2—H2A···Cl4v0.88 (3)2.49 (3)3.332 (4)161 (5)
C2—H2···Cl1ii0.932.763.442 (4)131
C2—H2···Cl30.932.873.506 (4)127
C4—H4···Cl1v0.932.933.572 (4)127
C4—H4···Cl2vi0.932.763.580 (4)147
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x, y, z+1; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1/2, y+3/2, z; (v) x+1/2, y+3/2, z+1; (vi) x+2, y+1, z+1/2.
Hirshfeld surface coverage for diamminium ions in (1) and (2) top
Values reported are percentages from fingerprint plots.
Interaction(1)(2a)(2b)
H···H37.036.235.5
H···O42.041.242.6
H···C15.416.816.2
C···C4.03.53.9
C···O1.72.21.7
Calculated interaction energies for (6) top
Energies are expressed in kJ mol-1. Values in parentheses include correction for BSSE.
Primary InteractionaB3LYP/6-31G(d,p)M06-2X/6-31G(d,p)ωB97X-D/6-31G(d,p)
N1—H1A···O2-480.96 (-483.45)-549.04 (-543.54)-523.46 (-518.25)
N1—H1B···O2i-523.71 (-521.07)-587.45 (-582.57)-560.56 (-555.59)
N2—H2C···O3v-616.52 (-595.67)-689.80 (-668.96)-667.09 (-664.03)
N2—H2B···O3iv-608.87 (-587.89)-684.87 (-663.76)-661.40 (-647.04)
N2—H2C···O4iii-613.96 (-591.90)-684.14 (-665.93)-664.66 (-647.76)
N2—H2C···N1iib-87.21 (-81.34)-105.42 (-94.88)-108.75 (-95.48)
Notes: (a) symmetry identifiers are the same as those in Table 5; (b) two perchlorate counter-ions were included in these calculations.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds