Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A rare-earth-containing com­pound, ytterbium aluminium anti­monide, Yb3AlSb3 (Ca3AlAs3-type structure), has been successfully synthesized within the Yb–Al–Sb system through flux methods. According to the Zintl formalism, this structure is nominally made up of (Yb2+)3[(Al1−)(1b – Sb2−)2(2b – Sb1−)], where 1b and 2b indicate 1-bonded and 2-bonded, respectively, and Al is treated as part of the covalent anionic network. The crystal structure features infinite corner-sharing AlSb4 tetra­hedra, [AlSb2Sb2/2]6−, with Yb2+ cations residing between the tetra­hedra to provide charge balance. Herein, the synthetic con­ditions, the crystal structure determined from single-crystal X-ray diffraction data, and electronic structure calculations are reported.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229621005192/ov3148sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621005192/ov3148Isup2.hkl
Contains datablock I

CCDC reference: 2083846

Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: SHELXTL (Bruker, 2016); software used to prepare material for publication: SHELXTL (Bruker, 2016) and XPREP (Sheldrick, 2008).

Ytterbium aluminium antimonide top
Crystal data top
AlSb3Yb3Dx = 7.468 Mg m3
Mr = 911.35Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 9949 reflections
a = 12.803 (3) Åθ = 2.9–30.6°
b = 4.4751 (9) ŵ = 44.11 mm1
c = 14.148 (3) ÅT = 100 K
V = 810.6 (3) Å3Needle, black
Z = 40.06 × 0.05 × 0.03 mm
F(000) = 1504
Data collection top
Bruker APEXII CCD
diffractometer
1283 reflections with I > 2σ(I)
Radiation source: microsourceRint = 0.038
φ and ω scansθmax = 30.6°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1818
Tmin = 0.100, Tmax = 0.201k = 66
16634 measured reflectionsl = 2020
1395 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0144P)2 + 1.4011P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.016(Δ/σ)max = 0.002
wR(F2) = 0.034Δρmax = 1.39 e Å3
S = 1.17Δρmin = 1.38 e Å3
1395 reflectionsExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
44 parametersExtinction coefficient: 0.00046 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Single-crystal X-ray diffraction data were collected from a Bruker X-ray diffractometer with Mo radiation and processed by APEX 3 and SADABS (see Table 1) (Bruker, 2016). The black needle crystals were selected and cut to appropriate dimensions in Paratone-N oil. The space group Pnma was determined by XPREP automatically (Sheldrick, 2008). The structure was solved by direct methods in the SHELXTL suite of programs (Sheldrick, 2008). During the refinement cycles, unphysical atomic positions based on van der Waals radius were ignored manually, with the final refinement cycles obtained a highest residue peak 2.725 e-3 and a deepest hole of -1.784 e-3. The absorption correction was further employed in the refinement using SADABS (Bruker, 2016) resulting in a drop in the R1 factor to 1.58 % with highest residue peak 1.389 e-3 and the deepest hole -1.378 e-3. Atomic coordinates were standardized using the STRUCTURE TIDY program (Gelato & Parthé, 1987).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Yb10.55940 (2)0.2500000.61179 (2)0.00583 (6)
Yb20.27262 (2)0.2500000.72127 (2)0.00586 (6)
Yb30.35004 (2)0.2500000.00587 (2)0.00623 (6)
Sb10.25645 (3)0.2500000.38116 (2)0.00527 (7)
Sb20.11386 (3)0.2500000.10925 (2)0.00517 (7)
Sb30.04007 (3)0.2500000.64920 (2)0.00543 (8)
Al10.06670 (12)0.2500000.29703 (12)0.0061 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb10.00605 (10)0.00642 (11)0.00503 (11)0.0000.00007 (8)0.000
Yb20.00642 (10)0.00572 (11)0.00543 (11)0.0000.00049 (8)0.000
Yb30.00714 (10)0.00650 (11)0.00505 (11)0.0000.00028 (8)0.000
Sb10.00581 (15)0.00496 (15)0.00504 (16)0.0000.00015 (12)0.000
Sb20.00593 (15)0.00540 (16)0.00418 (16)0.0000.00035 (12)0.000
Sb30.00601 (15)0.00547 (15)0.00480 (16)0.0000.00029 (12)0.000
Al10.0072 (7)0.0050 (7)0.0061 (7)0.0000.0010 (6)0.000
Geometric parameters (Å, º) top
Yb1—Sb2i3.1509 (5)Yb2—Al1ii3.2230 (12)
Yb1—Sb2ii3.1509 (5)Yb2—Al1i3.2230 (12)
Yb1—Sb2iii3.2039 (7)Yb2—Yb3i4.0939 (6)
Yb1—Sb1iv3.2520 (5)Yb2—Yb3ii4.0939 (6)
Yb1—Sb1v3.2520 (5)Yb2—Yb3vii4.1466 (8)
Yb1—Sb3vi3.3906 (8)Yb3—Sb1viii3.1589 (5)
Yb1—Yb2vi3.6097 (6)Yb3—Sb1ix3.1589 (5)
Yb1—Yb23.9849 (8)Yb3—Sb3iii3.2760 (6)
Yb1—Yb3iii4.0764 (8)Yb3—Sb3ix3.3313 (5)
Yb1—Yb1v4.1623 (7)Yb3—Sb3viii3.3313 (5)
Yb1—Yb1iv4.1623 (7)Yb3—Sb23.3590 (7)
Yb2—Sb2i3.1034 (5)Sb1—Al12.7053 (17)
Yb2—Sb2ii3.1034 (5)Sb2—Al12.7245 (18)
Yb2—Sb33.1470 (7)Sb3—Al1x2.7302 (10)
Yb2—Sb1ii3.2034 (5)Sb3—Al1xi2.7302 (10)
Yb2—Sb1i3.2034 (5)
Sb2i—Yb1—Sb2ii90.493 (19)Sb1viii—Yb3—Sb3iii86.932 (15)
Sb2i—Yb1—Sb2iii98.168 (9)Sb1ix—Yb3—Sb3iii86.932 (14)
Sb2ii—Yb1—Sb2iii98.168 (9)Sb1viii—Yb3—Sb3ix176.402 (9)
Sb2i—Yb1—Sb1iv177.931 (9)Sb1ix—Yb3—Sb3ix92.665 (16)
Sb2ii—Yb1—Sb1iv91.267 (18)Sb3iii—Yb3—Sb3ix95.394 (15)
Sb2iii—Yb1—Sb1iv82.658 (9)Sb1viii—Yb3—Sb3viii92.665 (16)
Sb2i—Yb1—Sb1v91.267 (17)Sb1ix—Yb3—Sb3viii176.402 (9)
Sb2ii—Yb1—Sb1v177.931 (9)Sb3iii—Yb3—Sb3viii95.394 (15)
Sb2iii—Yb1—Sb1v82.658 (9)Sb3ix—Yb3—Sb3viii84.393 (17)
Sb1iv—Yb1—Sb1v86.954 (19)Sb1viii—Yb3—Sb281.643 (13)
Sb2i—Yb1—Sb3vi87.708 (9)Sb1ix—Yb3—Sb281.643 (13)
Sb2ii—Yb1—Sb3vi87.708 (9)Sb3iii—Yb3—Sb2163.769 (12)
Sb2iii—Yb1—Sb3vi171.614 (12)Sb3ix—Yb3—Sb296.612 (14)
Sb1iv—Yb1—Sb3vi91.275 (9)Sb3viii—Yb3—Sb296.612 (14)
Sb1v—Yb1—Sb3vi91.275 (9)Sb1viii—Yb3—Yb1xiii51.533 (8)
Sb2i—Yb1—Yb2vi122.672 (11)Sb1ix—Yb3—Yb1xiii51.533 (8)
Sb2ii—Yb1—Yb2vi122.672 (10)Sb3iii—Yb3—Yb1xiii113.857 (16)
Sb2iii—Yb1—Yb2vi118.297 (14)Sb3ix—Yb3—Yb1xiii129.349 (8)
Sb1iv—Yb1—Yb2vi55.363 (11)Sb3viii—Yb3—Yb1xiii129.349 (8)
Sb1v—Yb1—Yb2vi55.363 (10)Sb2—Yb3—Yb1xiii49.912 (14)
Sb3vi—Yb1—Yb2vi53.317 (12)Sb1viii—Yb3—Yb2ix129.596 (14)
Sb2i—Yb1—Yb249.896 (10)Sb1ix—Yb3—Yb2ix82.131 (16)
Sb2ii—Yb1—Yb249.896 (10)Sb3iii—Yb3—Yb2ix141.571 (8)
Sb2iii—Yb1—Yb2125.444 (10)Sb3ix—Yb3—Yb2ix48.834 (12)
Sb1iv—Yb1—Yb2130.999 (11)Sb3viii—Yb3—Yb2ix94.358 (16)
Sb1v—Yb1—Yb2130.999 (11)Sb2—Yb3—Yb2ix47.977 (7)
Sb3vi—Yb1—Yb262.942 (8)Yb1xiii—Yb3—Yb2ix87.353 (12)
Yb2vi—Yb1—Yb2116.259 (15)Sb1viii—Yb3—Yb2viii82.131 (15)
Sb2i—Yb1—Yb3iii129.639 (10)Sb1ix—Yb3—Yb2viii129.596 (14)
Sb2ii—Yb1—Yb3iii129.639 (10)Sb3iii—Yb3—Yb2viii141.571 (8)
Sb2iii—Yb1—Yb3iii53.330 (8)Sb3ix—Yb3—Yb2viii94.358 (16)
Sb1iv—Yb1—Yb3iii49.514 (10)Sb3viii—Yb3—Yb2viii48.834 (12)
Sb1v—Yb1—Yb3iii49.514 (10)Sb2—Yb3—Yb2viii47.977 (7)
Sb3vi—Yb1—Yb3iii118.284 (10)Yb1xiii—Yb3—Yb2viii87.353 (12)
Yb2vi—Yb1—Yb3iii64.967 (15)Yb2ix—Yb3—Yb2viii66.263 (15)
Yb2—Yb1—Yb3iii178.774 (8)Sb1viii—Yb3—Yb2xiv49.793 (9)
Sb2i—Yb1—Yb1v49.636 (9)Sb1ix—Yb3—Yb2xiv49.793 (9)
Sb2ii—Yb1—Yb1v96.654 (14)Sb3iii—Yb3—Yb2xiv61.789 (14)
Sb2iii—Yb1—Yb1v48.532 (11)Sb3ix—Yb3—Yb2xiv133.789 (9)
Sb1iv—Yb1—Yb1v131.158 (12)Sb3viii—Yb3—Yb2xiv133.789 (9)
Sb1v—Yb1—Yb1v85.317 (12)Sb2—Yb3—Yb2xiv101.980 (13)
Sb3vi—Yb1—Yb1v136.991 (10)Yb1xiii—Yb3—Yb2xiv52.068 (6)
Yb2vi—Yb1—Yb1v140.673 (8)Yb2ix—Yb3—Yb2xiv129.133 (11)
Yb2—Yb1—Yb1v87.635 (12)Yb2viii—Yb3—Yb2xiv129.133 (11)
Yb3iii—Yb1—Yb1v91.331 (13)Al1—Sb1—Yb3ii81.84 (3)
Sb2i—Yb1—Yb1iv96.654 (14)Al1—Sb1—Yb3i81.84 (3)
Sb2ii—Yb1—Yb1iv49.636 (9)Yb3ii—Sb1—Yb3i90.199 (17)
Sb2iii—Yb1—Yb1iv48.532 (11)Al1—Sb1—Yb2viii65.48 (2)
Sb1iv—Yb1—Yb1iv85.317 (12)Yb3ii—Sb1—Yb2viii147.037 (15)
Sb1v—Yb1—Yb1iv131.158 (13)Yb3i—Sb1—Yb2viii81.343 (15)
Sb3vi—Yb1—Yb1iv136.991 (10)Al1—Sb1—Yb2ix65.48 (2)
Yb2vi—Yb1—Yb1iv140.673 (8)Yb3ii—Sb1—Yb2ix81.343 (15)
Yb2—Yb1—Yb1iv87.635 (12)Yb3i—Sb1—Yb2ix147.037 (15)
Yb3iii—Yb1—Yb1iv91.331 (13)Yb2viii—Sb1—Yb2ix88.613 (19)
Yb1v—Yb1—Yb1iv65.038 (15)Al1—Sb1—Yb1iv131.650 (17)
Sb2i—Yb2—Sb2ii92.274 (18)Yb3ii—Sb1—Yb1iv78.953 (14)
Sb2i—Yb2—Sb3106.117 (12)Yb3i—Sb1—Yb1iv141.550 (14)
Sb2ii—Yb2—Sb3106.117 (12)Yb2viii—Sb1—Yb1iv125.910 (14)
Sb2i—Yb2—Sb1ii156.728 (12)Yb2ix—Sb1—Yb1iv67.994 (11)
Sb2ii—Yb2—Sb1ii84.917 (16)Al1—Sb1—Yb1v131.650 (17)
Sb3—Yb2—Sb1ii96.828 (11)Yb3ii—Sb1—Yb1v141.550 (14)
Sb2i—Yb2—Sb1i84.917 (16)Yb3i—Sb1—Yb1v78.953 (14)
Sb2ii—Yb2—Sb1i156.728 (12)Yb2viii—Sb1—Yb1v67.994 (11)
Sb3—Yb2—Sb1i96.828 (11)Yb2ix—Sb1—Yb1v125.910 (14)
Sb1ii—Yb2—Sb1i88.613 (19)Yb1iv—Sb1—Yb1v86.955 (19)
Sb2i—Yb2—Al1ii111.80 (3)Al1—Sb2—Yb2ix66.78 (2)
Sb2ii—Yb2—Al1ii50.97 (3)Al1—Sb2—Yb2viii66.78 (2)
Sb3—Yb2—Al1ii135.37 (2)Yb2ix—Sb2—Yb2viii92.272 (18)
Sb1ii—Yb2—Al1ii49.79 (3)Al1—Sb2—Yb1viii80.38 (3)
Sb1i—Yb2—Al1ii108.92 (3)Yb2ix—Sb2—Yb1viii146.707 (14)
Sb2i—Yb2—Al1i50.97 (3)Yb2viii—Sb2—Yb1viii79.157 (14)
Sb2ii—Yb2—Al1i111.80 (3)Al1—Sb2—Yb1ix80.38 (3)
Sb3—Yb2—Al1i135.37 (2)Yb2ix—Sb2—Yb1ix79.157 (14)
Sb1ii—Yb2—Al1i108.92 (3)Yb2viii—Sb2—Yb1ix146.707 (14)
Sb1i—Yb2—Al1i49.79 (3)Yb1viii—Sb2—Yb1ix90.493 (19)
Al1ii—Yb2—Al1i87.93 (4)Al1—Sb2—Yb1xiii154.63 (4)
Sb2i—Yb2—Yb1xii133.498 (8)Yb2ix—Sb2—Yb1xiii126.898 (9)
Sb2ii—Yb2—Yb1xii133.498 (8)Yb2viii—Sb2—Yb1xiii126.898 (9)
Sb3—Yb2—Yb1xii59.773 (15)Yb1viii—Sb2—Yb1xiii81.833 (9)
Sb1ii—Yb2—Yb1xii56.642 (10)Yb1ix—Sb2—Yb1xiii81.833 (9)
Sb1i—Yb2—Yb1xii56.642 (10)Al1—Sb2—Yb3128.61 (4)
Al1ii—Yb2—Yb1xii105.37 (3)Yb2ix—Sb2—Yb378.506 (13)
Al1i—Yb2—Yb1xii105.37 (3)Yb2viii—Sb2—Yb378.506 (13)
Sb2i—Yb2—Yb150.948 (9)Yb1viii—Sb2—Yb3129.695 (11)
Sb2ii—Yb2—Yb150.948 (9)Yb1ix—Sb2—Yb3129.695 (11)
Sb3—Yb2—Yb1138.219 (14)Yb1xiii—Sb2—Yb376.758 (13)
Sb1ii—Yb2—Yb1112.428 (9)Al1x—Sb3—Al1xi110.08 (6)
Sb1i—Yb2—Yb1112.428 (9)Al1x—Sb3—Yb2112.54 (3)
Al1ii—Yb2—Yb162.69 (3)Al1xi—Sb3—Yb2112.54 (3)
Al1i—Yb2—Yb162.69 (3)Al1x—Sb3—Yb3xiii79.33 (4)
Yb1xii—Yb2—Yb1162.008 (8)Al1xi—Sb3—Yb3xiii79.33 (4)
Sb2i—Yb2—Yb3i53.517 (12)Yb2—Sb3—Yb3xiii156.866 (14)
Sb2ii—Yb2—Yb3i101.160 (15)Al1x—Sb3—Yb3i80.25 (3)
Sb3—Yb2—Yb3i52.836 (7)Al1xi—Sb3—Yb3i158.67 (4)
Sb1ii—Yb2—Yb3i149.637 (11)Yb2—Sb3—Yb3i78.329 (12)
Sb1i—Yb2—Yb3i95.699 (16)Yb3xiii—Sb3—Yb3i84.607 (15)
Al1ii—Yb2—Yb3i150.67 (3)Al1x—Sb3—Yb3ii158.67 (4)
Al1i—Yb2—Yb3i96.49 (3)Al1xi—Sb3—Yb3ii80.25 (3)
Yb1xii—Yb2—Yb3i101.360 (15)Yb2—Sb3—Yb3ii78.329 (12)
Yb1—Yb2—Yb3i93.673 (12)Yb3xiii—Sb3—Yb3ii84.607 (15)
Sb2i—Yb2—Yb3ii101.160 (15)Yb3i—Sb3—Yb3ii84.392 (17)
Sb2ii—Yb2—Yb3ii53.517 (12)Al1x—Sb3—Yb1xii76.03 (4)
Sb3—Yb2—Yb3ii52.836 (7)Al1xi—Sb3—Yb1xii76.03 (4)
Sb1ii—Yb2—Yb3ii95.699 (16)Yb2—Sb3—Yb1xii66.909 (9)
Sb1i—Yb2—Yb3ii149.637 (11)Yb3xiii—Sb3—Yb1xii136.224 (14)
Al1ii—Yb2—Yb3ii96.49 (3)Yb3i—Sb3—Yb1xii125.189 (10)
Al1i—Yb2—Yb3ii150.67 (3)Yb3ii—Sb3—Yb1xii125.189 (11)
Yb1xii—Yb2—Yb3ii101.360 (14)Sb1—Al1—Sb2103.30 (5)
Yb1—Yb2—Yb3ii93.673 (11)Sb1—Al1—Sb3x109.09 (4)
Yb3i—Yb2—Yb3ii66.263 (14)Sb2—Al1—Sb3x112.50 (4)
Sb2i—Yb2—Yb3vii112.578 (11)Sb1—Al1—Sb3xi109.09 (4)
Sb2ii—Yb2—Yb3vii112.578 (11)Sb2—Al1—Sb3xi112.50 (4)
Sb3—Yb2—Yb3vii122.737 (9)Sb3x—Al1—Sb3xi110.08 (6)
Sb1ii—Yb2—Yb3vii48.862 (10)Sb1—Al1—Yb2ix64.73 (3)
Sb1i—Yb2—Yb3vii48.862 (10)Sb2—Al1—Yb2ix62.24 (3)
Al1ii—Yb2—Yb3vii61.61 (3)Sb3x—Al1—Yb2ix168.88 (5)
Al1i—Yb2—Yb3vii61.61 (3)Sb3xi—Al1—Yb2ix80.983 (17)
Yb1xii—Yb2—Yb3vii62.964 (14)Sb1—Al1—Yb2viii64.73 (3)
Yb1—Yb2—Yb3vii99.044 (12)Sb2—Al1—Yb2viii62.24 (3)
Yb3i—Yb2—Yb3vii144.539 (8)Sb3x—Al1—Yb2viii80.983 (17)
Yb3ii—Yb2—Yb3vii144.539 (8)Sb3xi—Al1—Yb2viii168.88 (5)
Sb1viii—Yb3—Sb1ix90.197 (17)Yb2ix—Al1—Yb2viii87.93 (4)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1/2, y+1, z+1/2; (iii) x+1/2, y, z+1/2; (iv) x+1, y+1, z+1; (v) x+1, y, z+1; (vi) x+1/2, y, z+3/2; (vii) x, y, z+1; (viii) x+1/2, y, z1/2; (ix) x+1/2, y+1, z1/2; (x) x, y, z+1; (xi) x, y+1, z+1; (xii) x1/2, y, z+3/2; (xiii) x1/2, y, z+1/2; (xiv) x, y, z1.
Fractional atomic coordinates (× 104) and equivalent isotropic displacement parameters (Å2 × 103)
Ueq is defined as one third of the trace of the orthogonalized Uij tensor
top
xyzUeq
Yb15594 (1)25006118 (1)6(1)
Yb22726 (1)25007213 (1)6(1)
Yb33500 (1)250059 (1)6(1)
Sb12564 (1)25003812 (1)5(1)
Sb21139 (1)25001092 (1)5(1)
Sb3401 (1)25006492 (1)5(1)
Al1667 (1)25002970 (1)6(1)
Anisotropic displacement parameters (Å2 × 103) top
U11U22U33U23U13U12
Yb16(1)6(1)5(1)00(1)0
Yb26(1)6(1)5(1)00(1)0
Yb37(1)6(1)5(1)00(1)0
Sb16(1)5(1)5(1)00(1)0
Sb26(1)5(1)4(1)00(1)0
Sb36(1)5(1)5(1)00(1)0
Al17(1)5(1)6(1)01(1)0
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds