Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Two crystal structures of chal­cones, or 1,3-di­aryl­prop-2-en-1-ones, are pre­sented; both contain a p-methyl substitution on the 3-Ring, but differ with respect to the m-substitution on the 1-Ring. Their systematic names are (2E)-3-(4-methyl­phen­yl)-1-(3-{[(4-methyl­phen­yl)methyl­idene]amino}­phen­yl)prop-2-en-1-one (C24H21NO) and N-{3-[(2E)-3-(4-methyl­phen­yl)prop-2-eno­yl]phen­yl}acetamide (C18H17NO2), which are abbreviated as 3′-(N=CHC6H4-p-CH3)-4-methyl­chal­cone and 3′-(NHCOCH3)-4-methyl­chal­cone, respectively. Both chal­cones represent the first reported acetamide-substituted and imino-substituted chal­cone crystal structures, adding to the robust library of chal­cone structures within the Cambridge Structural Database. The crystal structure of 3′-(N=CHC6H4-p-CH3)-4-methyl­chal­cone exhibits close contacts between the enone O atom and the substituent arene ring, in addition to C...C inter­actions between the substituent arene rings. The structure of 3′-(NHCOCH3)-4-methyl­chal­cone exhibits a unique inter­action between the enone O atom and the 1-Ring substituent, contributing to its anti­parallel crystal packing. In addition, both structures exhibit π-stacking, which occurs between the 1-Ring and R-Ring for 3′-(N=CHC6H4-p-CH3)-4-methyl­chal­cone, and between the 1-Ring and 3-Ring for 3′-(NHCOCH3)-4-methyl­chal­cone.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229623003704/ov3165sup1.cif
Contains datablocks mPMIpCH3, mAApCH3, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229623003704/ov3165mPMIpCH3sup2.hkl
Contains datablock mPMIpCH3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229623003704/ov3165mAApCH3sup3.hkl
Contains datablock mAApCH3

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229623003704/ov3165mPMIpCH3sup4.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229623003704/ov3165mAApCH3sup5.cml
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229623003704/ov3165sup6.pdf
Additional information, tables and figures

CCDC references: 2029949; 2029928

Computing details top

For both structures, data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: X-SEED (Barbour, 2001), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020); software used to prepare material for publication: X-SEED (Barbour, 2001).

(2E)-3-(4-Methylphenyl)-1-(3-{[(4-methylphenyl)methylidene]amino}phenyl)prop-2-en-1-one (mPMIpCH3) top
Crystal data top
C24H21NOF(000) = 1440
Mr = 339.42Dx = 1.253 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
a = 19.5522 (13) ÅCell parameters from 4400 reflections
b = 5.8693 (4) Åθ = 2.8–68.3°
c = 31.3714 (19) ŵ = 0.59 mm1
β = 91.438 (4)°T = 100 K
V = 3599.0 (4) Å3Plate, colourless
Z = 80.11 × 0.11 × 0.03 mm
Data collection top
Bruker D8 Venture
diffractometer
3283 independent reflections
Radiation source: Microsource IuS Incoatec 3.02526 reflections with I > 2σ(I)
Double Bounce Multilayer Mirrors monochromatorRint = 0.043
Detector resolution: 7.9 pixels mm-1θmax = 68.3°, θmin = 4.5°
φ and ω scansh = 2223
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 67
Tmin = 0.684, Tmax = 0.753l = 3737
10519 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0423P)2 + 2.4974P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3283 reflectionsΔρmax = 0.17 e Å3
237 parametersΔρmin = 0.17 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All C-H hydrogen atoms were placed in calculated positions with Uiso = 1.2xUeqiv of the connected C atoms (1.5xUeqiv for methyl groups).

The X-ray intensity data for each chalcone derivative was measured at 100 K on a Bruker Photon II D8 Venture diffractometer equipped with both IµS-Cu and IµS-Mo microfocus X-ray sources. The Cu Kα (λ = 1.54178 Å) source was used for all crystallographic investigations. Data sets were corrected for Lorentz and polarization effects as well as absorption. The criterion for observed reflections was I > 2σ(I). Lattice parameters were determined from least-squares analysis and reflection data. Empirical absorption corrections were applied using SADABS. Structures were solved by direct methods and refined by full-matrix least-squares analysis on F2 using X-SEED equipped with SHELXT (Barbour, 2001; Sheldrick, 2015a). All non-hydrogen atoms were refined anisotropically by full-matrix least-squares on F2 using the SHELXL program (Sheldrick, 2015b).

Unit-cell projections were visualized with Mercury 2020.1 (Macrae et al., 2020), Hirshfeld analyses were executed with CrystalExplorer17.5 (Turner et al., 2017), while distance/angle measurements, as well as ORTEP images, were captured using OLEX2 (Dolomanov et al., 2009). Electrostatic potential calculations employed GAUSSIAN09 (Frisch et al., 2009).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.49474 (6)0.52779 (19)0.65074 (3)0.0298 (3)
N10.35087 (7)0.5081 (2)0.51350 (4)0.0267 (3)
C10.48027 (8)0.3248 (3)0.64654 (5)0.0237 (3)
C20.51253 (8)0.1489 (3)0.67399 (5)0.0252 (4)
H20.4937990.0004230.6743540.030*
C30.56766 (8)0.1966 (3)0.69831 (5)0.0238 (3)
H30.5853930.3467290.6960260.029*
C40.42985 (8)0.2539 (3)0.61228 (5)0.0219 (3)
C50.41504 (8)0.4089 (3)0.57967 (5)0.0232 (3)
H50.4367770.5537010.5799180.028*
C60.36870 (8)0.3544 (3)0.54667 (5)0.0243 (4)
C70.33446 (9)0.1452 (3)0.54769 (5)0.0282 (4)
H70.3010870.1089590.5262200.034*
C80.34926 (9)0.0086 (3)0.57997 (5)0.0284 (4)
H80.3263140.1512900.5802740.034*
C90.39731 (8)0.0425 (3)0.61208 (5)0.0247 (3)
H90.4078760.0661260.6337130.030*
C100.60389 (8)0.0446 (3)0.72806 (5)0.0223 (3)
C110.66169 (8)0.1229 (3)0.75075 (5)0.0253 (4)
H110.6789020.2708490.7450280.030*
C120.69437 (8)0.0108 (3)0.78141 (5)0.0256 (4)
H120.7337660.0464230.7961650.031*
C130.67045 (8)0.2271 (3)0.79092 (5)0.0246 (4)
C140.61319 (8)0.3070 (3)0.76779 (5)0.0252 (4)
H140.5958790.4545310.7737650.030*
C150.58130 (8)0.1770 (3)0.73656 (5)0.0242 (3)
H150.5436270.2381740.7206460.029*
C160.39784 (8)0.6276 (3)0.49703 (5)0.0276 (4)
H160.4439770.6019240.5059620.033*
C170.38331 (8)0.8029 (3)0.46486 (5)0.0260 (4)
C180.31642 (8)0.8442 (3)0.44997 (5)0.0262 (4)
H180.2798370.7536350.4598900.031*
C190.30344 (8)1.0161 (3)0.42093 (5)0.0262 (4)
H190.2577531.0420950.4110940.031*
C200.35566 (8)1.1524 (3)0.40567 (5)0.0264 (4)
C210.42239 (9)1.1103 (3)0.42046 (5)0.0313 (4)
H210.4589111.2007640.4104300.038*
C220.43590 (8)0.9378 (3)0.44961 (5)0.0306 (4)
H220.4816190.9111970.4593170.037*
C230.34029 (9)1.3399 (3)0.37409 (5)0.0339 (4)
H23A0.3502441.2868560.3452830.051*
H23B0.3687491.4729670.3810260.051*
H23C0.2918881.3820300.3754060.051*
C240.70477 (9)0.3717 (3)0.82490 (5)0.0308 (4)
H24A0.7316950.4914190.8114280.046*
H24B0.6699200.4415750.8426160.046*
H24C0.7350070.2762300.8427390.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0368 (7)0.0227 (6)0.0295 (6)0.0030 (5)0.0101 (5)0.0012 (5)
N10.0328 (8)0.0266 (7)0.0203 (6)0.0056 (6)0.0060 (6)0.0014 (6)
C10.0249 (8)0.0244 (8)0.0216 (8)0.0004 (7)0.0011 (6)0.0018 (6)
C20.0281 (8)0.0229 (8)0.0244 (8)0.0019 (7)0.0053 (6)0.0017 (6)
C30.0272 (8)0.0226 (8)0.0216 (7)0.0020 (7)0.0002 (6)0.0004 (6)
C40.0218 (8)0.0225 (8)0.0211 (7)0.0036 (6)0.0020 (6)0.0017 (6)
C50.0252 (8)0.0217 (8)0.0226 (7)0.0035 (7)0.0029 (6)0.0011 (6)
C60.0264 (8)0.0244 (8)0.0220 (8)0.0082 (7)0.0030 (6)0.0021 (6)
C70.0311 (9)0.0266 (9)0.0264 (8)0.0046 (7)0.0090 (7)0.0057 (7)
C80.0296 (9)0.0228 (8)0.0324 (9)0.0001 (7)0.0068 (7)0.0029 (7)
C90.0267 (8)0.0225 (8)0.0246 (8)0.0033 (7)0.0034 (6)0.0001 (6)
C100.0229 (8)0.0246 (8)0.0194 (7)0.0015 (7)0.0002 (6)0.0004 (6)
C110.0270 (8)0.0213 (8)0.0275 (8)0.0015 (7)0.0024 (6)0.0003 (6)
C120.0239 (8)0.0273 (9)0.0252 (8)0.0010 (7)0.0069 (6)0.0037 (7)
C130.0274 (8)0.0278 (9)0.0187 (7)0.0053 (7)0.0015 (6)0.0006 (6)
C140.0277 (8)0.0219 (8)0.0260 (8)0.0010 (7)0.0001 (7)0.0005 (7)
C150.0236 (8)0.0255 (8)0.0232 (8)0.0003 (7)0.0040 (6)0.0020 (7)
C160.0254 (8)0.0372 (10)0.0200 (8)0.0103 (8)0.0036 (6)0.0018 (7)
C170.0273 (8)0.0331 (9)0.0175 (7)0.0071 (7)0.0009 (6)0.0021 (7)
C180.0248 (8)0.0319 (9)0.0219 (8)0.0005 (7)0.0030 (6)0.0021 (7)
C190.0247 (8)0.0326 (9)0.0209 (7)0.0046 (7)0.0057 (6)0.0033 (7)
C200.0298 (9)0.0309 (9)0.0186 (7)0.0051 (7)0.0016 (6)0.0022 (7)
C210.0265 (9)0.0423 (10)0.0250 (8)0.0001 (8)0.0001 (7)0.0041 (7)
C220.0232 (8)0.0454 (11)0.0230 (8)0.0062 (8)0.0006 (6)0.0018 (7)
C230.0367 (10)0.0362 (10)0.0285 (9)0.0032 (8)0.0035 (7)0.0040 (8)
C240.0358 (10)0.0303 (9)0.0258 (8)0.0047 (8)0.0064 (7)0.0032 (7)
Geometric parameters (Å, º) top
O1—C11.231 (2)C13—C141.400 (2)
N1—C161.275 (2)C13—C241.507 (2)
N1—C61.414 (2)C14—C151.379 (2)
C1—C21.476 (2)C14—H140.9500
C1—C41.499 (2)C15—H150.9500
C2—C31.335 (2)C16—C171.464 (2)
C2—H20.9500C16—H160.9500
C3—C101.461 (2)C17—C221.392 (2)
C3—H30.9500C17—C181.399 (2)
C4—C51.394 (2)C18—C191.379 (2)
C4—C91.395 (2)C18—H180.9500
C5—C61.396 (2)C19—C201.391 (2)
C5—H50.9500C19—H190.9500
C6—C71.399 (2)C20—C211.396 (2)
C7—C81.382 (2)C20—C231.506 (2)
C7—H70.9500C21—C221.385 (2)
C8—C91.393 (2)C21—H210.9500
C8—H80.9500C22—H220.9500
C9—H90.9500C23—H23A0.9800
C10—C111.398 (2)C23—H23B0.9800
C10—C151.401 (2)C23—H23C0.9800
C11—C121.385 (2)C24—H24A0.9800
C11—H110.9500C24—H24B0.9800
C12—C131.388 (2)C24—H24C0.9800
C12—H120.9500
C16—N1—C6118.85 (14)C15—C14—C13121.63 (15)
O1—C1—C2121.39 (14)C15—C14—H14119.2
O1—C1—C4119.38 (14)C13—C14—H14119.2
C2—C1—C4119.22 (14)C14—C15—C10120.66 (15)
C3—C2—C1120.93 (15)C14—C15—H15119.7
C3—C2—H2119.5C10—C15—H15119.7
C1—C2—H2119.5N1—C16—C17122.46 (15)
C2—C3—C10127.47 (16)N1—C16—H16118.8
C2—C3—H3116.3C17—C16—H16118.8
C10—C3—H3116.3C22—C17—C18118.61 (15)
C5—C4—C9119.42 (14)C22—C17—C16120.30 (15)
C5—C4—C1117.76 (14)C18—C17—C16121.05 (16)
C9—C4—C1122.82 (14)C19—C18—C17120.19 (16)
C4—C5—C6120.91 (15)C19—C18—H18119.9
C4—C5—H5119.5C17—C18—H18119.9
C6—C5—H5119.5C18—C19—C20121.58 (15)
C5—C6—C7119.10 (15)C18—C19—H19119.2
C5—C6—N1122.87 (15)C20—C19—H19119.2
C7—C6—N1117.87 (14)C19—C20—C21118.12 (15)
C8—C7—C6119.91 (15)C19—C20—C23120.70 (15)
C8—C7—H7120.0C21—C20—C23121.17 (16)
C6—C7—H7120.0C22—C21—C20120.68 (16)
C7—C8—C9120.95 (16)C22—C21—H21119.7
C7—C8—H8119.5C20—C21—H21119.7
C9—C8—H8119.5C21—C22—C17120.82 (16)
C8—C9—C4119.63 (15)C21—C22—H22119.6
C8—C9—H9120.2C17—C22—H22119.6
C4—C9—H9120.2C20—C23—H23A109.5
C11—C10—C15117.57 (14)C20—C23—H23B109.5
C11—C10—C3119.80 (15)H23A—C23—H23B109.5
C15—C10—C3122.56 (14)C20—C23—H23C109.5
C12—C11—C10121.34 (15)H23A—C23—H23C109.5
C12—C11—H11119.3H23B—C23—H23C109.5
C10—C11—H11119.3C13—C24—H24A109.5
C11—C12—C13121.03 (15)C13—C24—H24B109.5
C11—C12—H12119.5H24A—C24—H24B109.5
C13—C12—H12119.5C13—C24—H24C109.5
C12—C13—C14117.69 (14)H24A—C24—H24C109.5
C12—C13—C24121.39 (15)H24B—C24—H24C109.5
C14—C13—C24120.93 (15)
O1—C1—C2—C313.4 (2)C3—C10—C11—C12175.32 (14)
C4—C1—C2—C3165.41 (14)C10—C11—C12—C130.5 (2)
C1—C2—C3—C10177.79 (14)C11—C12—C13—C141.4 (2)
O1—C1—C4—C516.6 (2)C11—C12—C13—C24178.65 (15)
C2—C1—C4—C5162.19 (14)C12—C13—C14—C150.1 (2)
O1—C1—C4—C9162.82 (15)C24—C13—C14—C15179.88 (15)
C2—C1—C4—C918.4 (2)C13—C14—C15—C102.4 (2)
C9—C4—C5—C60.7 (2)C11—C10—C15—C143.3 (2)
C1—C4—C5—C6179.86 (14)C3—C10—C15—C14173.79 (14)
C4—C5—C6—C73.1 (2)C6—N1—C16—C17175.29 (14)
C4—C5—C6—N1178.44 (14)N1—C16—C17—C22176.32 (16)
C16—N1—C6—C541.8 (2)N1—C16—C17—C181.3 (2)
C16—N1—C6—C7142.73 (16)C22—C17—C18—C190.3 (2)
C5—C6—C7—C83.2 (2)C16—C17—C18—C19177.41 (15)
N1—C6—C7—C8178.77 (15)C17—C18—C19—C200.0 (2)
C6—C7—C8—C90.9 (2)C18—C19—C20—C210.3 (2)
C7—C8—C9—C41.5 (2)C18—C19—C20—C23179.74 (15)
C5—C4—C9—C81.7 (2)C19—C20—C21—C220.2 (2)
C1—C4—C9—C8177.80 (14)C23—C20—C21—C22179.80 (16)
C2—C3—C10—C11179.24 (16)C20—C21—C22—C170.1 (3)
C2—C3—C10—C153.8 (3)C18—C17—C22—C210.3 (2)
C15—C10—C11—C121.8 (2)C16—C17—C22—C21177.37 (15)
N-{3-[(2E)-3-(4-Methylphenyl)prop-2-enoyl]phenyl}acetamide (mAApCH3) top
Crystal data top
C18H17NO2F(000) = 1184
Mr = 279.32Dx = 1.306 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
a = 25.1922 (5) ÅCell parameters from 9920 reflections
b = 5.7621 (1) Åθ = 3.7–72.1°
c = 20.7012 (4) ŵ = 0.68 mm1
β = 109.066 (1)°T = 100 K
V = 2840.14 (9) Å3Prism, colourless
Z = 80.46 × 0.17 × 0.15 mm
Data collection top
Bruker D8 Venture
diffractometer
2786 independent reflections
Radiation source: Microsource IuS Incoatec 3.02596 reflections with I > 2σ(I)
Double Bounce Multilayer Mirrors monochromatorRint = 0.025
Detector resolution: 7.9 pixels mm-1θmax = 72.2°, θmin = 3.7°
φ and ω scansh = 3030
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 76
Tmin = 0.646, Tmax = 0.754l = 2525
14321 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0459P)2 + 2.0674P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2786 reflectionsΔρmax = 0.24 e Å3
195 parametersΔρmin = 0.18 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All C-H hydrogen atoms were placed in calculated positions with Uiso = 1.2xUeqiv of the connected C atoms (1.5xUeqiv for methyl groups). The H atom attached to nitrogen N1 was located in Fourier diff map and assigned Uiso = 1.2xUeqiv.

The X-ray intensity data for each chalcone derivative was measured at 100 K on a Bruker Photon II D8 Venture diffractometer equipped with both IµS-Cu and IµS-Mo microfocus X-ray sources. The Cu Kα (λ = 1.54178 Å) source was used for all crystallographic investigations. Data sets were corrected for Lorentz and polarization effects as well as absorption. The criterion for observed reflections was I > 2σ(I). Lattice parameters were determined from least-squares analysis and reflection data. Empirical absorption corrections were applied using SADABS. Structures were solved by direct methods and refined by full-matrix least-squares analysis on F2 using X-SEED equipped with SHELXT (Barbour, 2001; Sheldrick, 2015a). All non-hydrogen atoms were refined anisotropically by full-matrix least-squares on F2 using the SHELXL program (Sheldrick, 2015b).

Unit-cell projections were visualized with Mercury 2020.1 (Macrae et al., 2020), Hirshfeld analyses were executed with CrystalExplorer17.5 (Turner et al., 2017), while distance/angle measurements, as well as ORTEP images, were captured using OLEX2 (Dolomanov et al., 2009). Electrostatic potential calculations employed GAUSSIAN09 (Frisch et al., 2009).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.46820 (3)0.81616 (14)0.39168 (4)0.0250 (2)
O20.72479 (3)0.81750 (17)0.64907 (4)0.0312 (2)
N10.63056 (4)0.88412 (16)0.60966 (4)0.0186 (2)
HN10.6047 (6)0.979 (3)0.6119 (7)0.028*
C10.49200 (4)0.62787 (19)0.39523 (5)0.0186 (2)
C20.46888 (4)0.4432 (2)0.34406 (5)0.0206 (2)
H20.4853160.2930050.3511900.025*
C30.42525 (4)0.4852 (2)0.28807 (5)0.0197 (2)
H30.4108230.6388780.2833040.024*
C40.54573 (4)0.58199 (19)0.45210 (5)0.0172 (2)
C50.56419 (4)0.74641 (19)0.50440 (5)0.0172 (2)
H50.5422540.8812250.5035050.021*
C60.61438 (4)0.71465 (19)0.55778 (5)0.0166 (2)
C70.64652 (4)0.51542 (19)0.55888 (5)0.0188 (2)
H70.6807340.4913440.5951270.023*
C80.62815 (5)0.3539 (2)0.50687 (6)0.0212 (2)
H80.6501120.2192100.5077280.025*
C90.57818 (4)0.38495 (19)0.45336 (5)0.0199 (2)
H90.5662280.2727490.4179230.024*
C100.39684 (4)0.32381 (19)0.23303 (5)0.0181 (2)
C110.34430 (5)0.38547 (19)0.18694 (5)0.0204 (2)
H150.3279150.5297860.1921410.025*
C120.31589 (4)0.2384 (2)0.13378 (5)0.0202 (2)
H140.2799160.2822820.1038210.024*
C130.33906 (4)0.02806 (19)0.12351 (5)0.0191 (2)
C140.39167 (4)0.03316 (19)0.16940 (5)0.0200 (2)
H120.4084610.1754180.1632210.024*
C150.41973 (4)0.10988 (19)0.22367 (5)0.0193 (2)
H110.4548710.0622760.2548670.023*
C160.68404 (4)0.9267 (2)0.65190 (5)0.0192 (2)
C170.68940 (5)1.1167 (2)0.70315 (6)0.0231 (3)
H17A0.6821741.0537580.7434650.035*
H17B0.6620721.2392540.6827880.035*
H17C0.7274441.1813380.7166950.035*
C180.30808 (5)0.1296 (2)0.06553 (6)0.0238 (3)
H18A0.2817670.2265560.0795070.036*
H18B0.3350260.2289930.0535280.036*
H18C0.2872750.0360900.0257900.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0218 (4)0.0224 (4)0.0252 (4)0.0049 (3)0.0002 (3)0.0060 (3)
O20.0169 (4)0.0408 (5)0.0333 (5)0.0008 (4)0.0047 (3)0.0127 (4)
N10.0164 (4)0.0197 (5)0.0187 (4)0.0018 (4)0.0043 (3)0.0025 (4)
C10.0178 (5)0.0196 (5)0.0190 (5)0.0002 (4)0.0068 (4)0.0017 (4)
C20.0203 (5)0.0182 (5)0.0216 (5)0.0006 (4)0.0046 (4)0.0033 (4)
C30.0202 (5)0.0179 (5)0.0210 (5)0.0010 (4)0.0066 (4)0.0019 (4)
C40.0167 (5)0.0191 (5)0.0168 (5)0.0012 (4)0.0066 (4)0.0005 (4)
C50.0165 (5)0.0168 (5)0.0190 (5)0.0015 (4)0.0068 (4)0.0000 (4)
C60.0171 (5)0.0182 (5)0.0159 (5)0.0023 (4)0.0072 (4)0.0005 (4)
C70.0175 (5)0.0210 (5)0.0169 (5)0.0019 (4)0.0045 (4)0.0032 (4)
C80.0225 (5)0.0188 (5)0.0228 (5)0.0052 (4)0.0080 (4)0.0009 (4)
C90.0221 (5)0.0196 (5)0.0180 (5)0.0007 (4)0.0066 (4)0.0026 (4)
C100.0180 (5)0.0192 (5)0.0171 (5)0.0033 (4)0.0057 (4)0.0013 (4)
C110.0218 (5)0.0185 (5)0.0208 (5)0.0007 (4)0.0068 (4)0.0001 (4)
C120.0182 (5)0.0233 (6)0.0173 (5)0.0027 (4)0.0035 (4)0.0005 (4)
C130.0218 (5)0.0211 (6)0.0167 (5)0.0073 (4)0.0093 (4)0.0016 (4)
C140.0216 (5)0.0185 (5)0.0224 (5)0.0017 (4)0.0107 (4)0.0022 (4)
C150.0162 (5)0.0210 (6)0.0204 (5)0.0007 (4)0.0058 (4)0.0000 (4)
C160.0174 (5)0.0235 (6)0.0160 (5)0.0025 (4)0.0046 (4)0.0008 (4)
C170.0207 (5)0.0269 (6)0.0204 (5)0.0031 (4)0.0049 (4)0.0034 (4)
C180.0270 (6)0.0259 (6)0.0192 (5)0.0082 (5)0.0084 (4)0.0051 (4)
Geometric parameters (Å, º) top
O1—C11.2302 (14)C9—H90.9500
O2—C161.2219 (14)C10—C151.4010 (15)
N1—C161.3675 (13)C10—C111.4011 (15)
N1—C61.4097 (14)C11—C121.3880 (15)
N1—HN10.862 (16)C11—H150.9500
C1—C21.4800 (15)C12—C131.3917 (16)
C1—C41.4988 (14)C12—H140.9500
C2—C31.3333 (15)C13—C141.4003 (15)
C2—H20.9500C13—C181.5044 (15)
C3—C101.4638 (14)C14—C151.3865 (15)
C3—H30.9500C14—H120.9500
C4—C91.3943 (15)C15—H110.9500
C4—C51.3990 (15)C16—C171.4997 (15)
C5—C61.3930 (14)C17—H17A0.9800
C5—H50.9500C17—H17B0.9800
C6—C71.4007 (15)C17—H17C0.9800
C7—C81.3835 (16)C18—H18A0.9800
C7—H70.9500C18—H18B0.9800
C8—C91.3903 (15)C18—H18C0.9800
C8—H80.9500
C16—N1—C6126.20 (9)C11—C10—C3118.81 (10)
C16—N1—HN1117.2 (10)C12—C11—C10120.86 (10)
C6—N1—HN1116.3 (10)C12—C11—H15119.6
O1—C1—C2121.41 (10)C10—C11—H15119.6
O1—C1—C4119.99 (10)C11—C12—C13121.29 (10)
C2—C1—C4118.60 (9)C11—C12—H14119.4
C3—C2—C1120.78 (10)C13—C12—H14119.4
C3—C2—H2119.6C12—C13—C14117.85 (10)
C1—C2—H2119.6C12—C13—C18120.92 (10)
C2—C3—C10128.03 (11)C14—C13—C18121.23 (10)
C2—C3—H3116.0C15—C14—C13121.26 (10)
C10—C3—H3116.0C15—C14—H12119.4
C9—C4—C5119.49 (10)C13—C14—H12119.4
C9—C4—C1122.13 (10)C14—C15—C10120.74 (10)
C5—C4—C1118.37 (9)C14—C15—H11119.6
C6—C5—C4120.74 (10)C10—C15—H11119.6
C6—C5—H5119.6O2—C16—N1123.00 (10)
C4—C5—H5119.6O2—C16—C17121.81 (10)
C5—C6—C7119.39 (10)N1—C16—C17115.19 (9)
C5—C6—N1118.36 (9)C16—C17—H17A109.5
C7—C6—N1122.25 (9)C16—C17—H17B109.5
C8—C7—C6119.60 (9)H17A—C17—H17B109.5
C8—C7—H7120.2C16—C17—H17C109.5
C6—C7—H7120.2H17A—C17—H17C109.5
C7—C8—C9121.28 (10)H17B—C17—H17C109.5
C7—C8—H8119.4C13—C18—H18A109.5
C9—C8—H8119.4C13—C18—H18B109.5
C8—C9—C4119.50 (10)H18A—C18—H18B109.5
C8—C9—H9120.2C13—C18—H18C109.5
C4—C9—H9120.2H18A—C18—H18C109.5
C15—C10—C11117.97 (10)H18B—C18—H18C109.5
C15—C10—C3123.22 (10)
O1—C1—C2—C38.13 (16)C5—C4—C9—C80.53 (16)
C4—C1—C2—C3171.62 (10)C1—C4—C9—C8178.84 (10)
C1—C2—C3—C10179.22 (10)C2—C3—C10—C1514.93 (17)
O1—C1—C4—C9171.19 (10)C2—C3—C10—C11165.48 (11)
C2—C1—C4—C98.57 (15)C15—C10—C11—C120.12 (15)
O1—C1—C4—C57.14 (15)C3—C10—C11—C12179.73 (10)
C2—C1—C4—C5173.11 (9)C10—C11—C12—C131.50 (16)
C9—C4—C5—C60.36 (15)C11—C12—C13—C141.20 (15)
C1—C4—C5—C6178.73 (9)C11—C12—C13—C18179.68 (10)
C4—C5—C6—C70.07 (15)C12—C13—C14—C150.46 (15)
C4—C5—C6—N1179.07 (9)C18—C13—C14—C15178.65 (9)
C16—N1—C6—C5156.74 (10)C13—C14—C15—C101.84 (16)
C16—N1—C6—C724.29 (16)C11—C10—C15—C141.52 (15)
C5—C6—C7—C80.33 (15)C3—C10—C15—C14178.07 (10)
N1—C6—C7—C8179.29 (9)C6—N1—C16—O20.32 (17)
C6—C7—C8—C90.16 (16)C6—N1—C16—C17179.59 (10)
C7—C8—C9—C40.28 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···O1i0.862 (16)2.165 (16)3.0213 (12)172.3 (14)
C7—H7···O20.952.282.8281 (14)116
Symmetry code: (i) x+1, y+2, z+1.
Selected angles (°) top
Φ1, Φ2, and Φ3 are torsion angles defined as C5—C4—C1—C2, C4—C1—C2—C3, and C2—C3—C10—C11, respectively.
ChalconeΦ1Φ2Φ3
m'PMIpCH3-173.11 (11)-171.62 (11)165.47 (13)
m'AApCH3-162.18 (15)165.39 (15)179.24 (18)
Selected twist and fold angles (°) top
m'AApCH3 has no R-ring.
Chalcone1-Ring/3-Ring twist1-Ring/3-Ring fold1-Ring/R-Ring twist1-Ring/R-Ring fold
m'PMIpCH3178.52 (6)154.6 (8)140.16 (6)25.27 (16)
m'AApCH30.89 (4)4.21 (4)n.a.n.a.
Distances (Å) for close contacts top
Distances to the 1-Ring, 3-Ring, and R-Ring reflect distances to the centroids of those rings. The sums of the van der Waals (VDW) radii (Å) for hydrogen plus carbon, nitrogen, or oxygen are 2.9, 2.75, and 2.72, respectively, while the sum for carbon plus carbon is 3.4 and the sum for hydrogen plus hydrogen is 2.4; distances greater than the sum of the VDW radii are italicized. The symmetry codes apply to those molecules interacting with the asymmetric unit. Symmetry codes m'PMIpCH3: (i) -x+1, -y+2, -z+1; (ii) -x+1, y, -z+3/2; (iii) x, y-1, z. Symmetry codes for m'AApCH3: (i) -x+1, -y+2, -z+1; (ii) x+1/2, -y+1/2, z+1/2; (iii) x+1/2, -y+3/2, z+1/2; (iv) -x+1, y, -z+1/2. Standard uncertainties are listed in parentheses.
m'PMIpCH3Distancem'AApCH3Distance
C21—H21···O1i2.6701 (10)N1—HN1···O1i2.164 (16)
C15—H15···C15ii2.8394 (16)C3—H3···H17Bi2.28041 (4)
C15···C15ii3.310 (3)O2···H18A—C18ii2.400 (2)
1-Ring···R-Ringiii4.7168 (10)O2···H11—C11iii2.6087 (8)
C7–H7···C18iii2.8745 (16)1-Ring···3-Ringiv4.7134 (7)
C9—H9···C14iv2.9584 (11)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds