Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Applications of computer-based group-theoretical methods to perovskite crystallography are reviewed. Such methods furnish a systematic account of the effects on the high-symmetry parent structure of diverse distortions. New results are presented for elpasolites (ordered double perovskites) when both ferroelectric cation displacement and simple octahedral tilting are allowed. Group-theoretical results prove invaluable in assisting experimental studies of perovskites since, if the nature of the distortion is known, they limit the possible structures or, in relation to more extensive studies, constrain the sequences of structures that may occur. Spontaneous strains and the estimation of order parameters are briefly discussed. Group-theoretical methods are undoubtedly a powerful aid to the study of perovskite crystallography, and their computer implementation makes them more accessible than hitherto.

Subscribe to Acta Crystallographica Section A: Foundations and Advances

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds