Buy article online - an online subscription or single-article purchase is required to access this article.
It is demonstrated that it is possible to perform single-crystal measurements in diamond anvil cells (DACs) with a monochromatic beam at modern hot neutron sources that offer the benefit of short neutron wavelengths with high fluxes. A piston–cylinder DAC with conical Boehler–Almax diamonds that allows for a wide accessibility of the reciprocal space has been developed. The diffraction data collected in this cell using hot neutrons are of very good quality and can be used for a full and reliable structure refinement.
Supporting information
CCDC reference: 1817441
Crystal data top
Fe4MnSi3 | Orientation matrix based on 12 centered reflections |
Mr = 362.6 | Dx = 6.331 Mg m−3 |
Hexagonal, P63/mcm | X-ray radiation, λ = 1.17 Å |
Hall symbol: -P 6c;-2 | Cell parameters from 12 reflections |
a = 6.80 (1) Å | θ = 33–36° |
c = 4.75 (4) Å | µ = 0.02 mm−1 |
V = 190.2 (16) Å3 | T = 293 K |
Z = 2 | 0.2, black |
F(000) = 95.315 | 0.45 × 0.48 × 0.9 mm |
Data collection top
4-circle diffractometer | Rint = 0.108 |
Radiation source: reactor | θmax = 48.7°, θmin = 5.7° |
ω scans | h = −8→8 |
831 measured reflections | k = −8→8 |
60 independent reflections | l = −4→5 |
52 reflections with I > 3σ(I) | |
Refinement top
Refinement on F | 0 restraints |
R[F2 > 2σ(F2)] = 0.078 | 0 constraints |
wR(F2) = 0.065 | Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2) |
S = 3.15 | (Δ/σ)max = 0.0002 |
60 reflections | Δρmax = 2.66 e Å−3 |
12 parameters | Δρmin = −2.17 e Å−3 |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
Mn1 | 0.7577 (16) | 0.7577 (16) | 0.25 | 0.017 (5) | 0.30 (3) |
Fe1 | 0.7577 (16) | 0.7577 (16) | 0.25 | 0.017 (5) | 0.70 (3) |
Fe2 | 0.666667 | 0.333333 | 0 | 0.0101 (19) | |
Si1 | 0.3997 (16) | 0.3997 (16) | 0.25 | 0.011 (6) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Mn1 | 0.022 (5) | 0.022 (5) | 0.009 (11) | 0.012 (5) | 0 | 0 |
Fe1 | 0.022 (5) | 0.022 (5) | 0.009 (11) | 0.012 (5) | 0 | 0 |
Fe2 | 0.0105 (18) | 0.0105 (18) | 0.009 (4) | 0.0052 (9) | 0 | 0 |
Si1 | 0.011 (5) | 0.011 (5) | 0.011 (13) | 0.006 (5) | 0 | 0 |
Bond lengths (Å) top
Mn1—Mn1i | 2.853 (18) | Fe1—Fe1iii | 2.89 (3) |
Mn1—Mn1ii | 2.853 (18) | Fe1—Fe1iv | 2.89 (3) |
Mn1—Mn1iii | 2.89 (3) | Fe1—Fe1v | 2.89 (3) |
Mn1—Mn1iv | 2.89 (3) | Fe1—Fe1vi | 2.89 (3) |
Mn1—Mn1v | 2.89 (3) | Fe1—Fe2 | 2.887 (16) |
Mn1—Mn1vi | 2.89 (3) | Fe1—Fe2vii | 2.887 (16) |
Mn1—Fe1 | 0 | Fe1—Fe2viii | 2.887 (16) |
Mn1—Fe1i | 2.853 (18) | Fe1—Fe2ix | 2.887 (16) |
Mn1—Fe1ii | 2.853 (18) | Fe1—Si1 | 2.435 (15) |
Mn1—Fe1iii | 2.89 (3) | Fe1—Si1x | 2.37 (2) |
Mn1—Fe1iv | 2.89 (3) | Fe1—Si1xi | 2.37 (2) |
Mn1—Fe1v | 2.89 (3) | Fe1—Si1xii | 2.61 (4) |
Mn1—Fe1vi | 2.89 (3) | Fe1—Si1vii | 2.61 (4) |
Mn1—Fe2 | 2.887 (16) | Fe2—Fe2xiii | 2.38 (4) |
Mn1—Fe2vii | 2.887 (16) | Fe2—Fe2ix | 2.38 (4) |
Mn1—Fe2viii | 2.887 (16) | Fe2—Si1 | 2.393 (15) |
Mn1—Fe2ix | 2.887 (16) | Fe2—Si1xiv | 2.393 (18) |
Mn1—Si1 | 2.435 (15) | Fe2—Si1xi | 2.393 (16) |
Mn1—Si1x | 2.37 (2) | Fe2—Si1xii | 2.393 (15) |
Mn1—Si1xi | 2.37 (2) | Fe2—Si1xv | 2.393 (16) |
Mn1—Si1xii | 2.61 (4) | Fe2—Si1v | 2.393 (18) |
Mn1—Si1vii | 2.61 (4) | Si1—Si1xii | 2.74 (4) |
Fe1—Fe1i | 2.853 (18) | Si1—Si1vii | 2.74 (4) |
Fe1—Fe1ii | 2.853 (18) | | |
Symmetry codes: (i) −y+2, x−y+1, z; (ii) −x+y+1, −x+2, z; (iii) y, −x+y+1, z−1/2; (iv) y, −x+y+1, z+1/2; (v) x−y+1, x, z−1/2; (vi) x−y+1, x, z+1/2; (vii) −x+1, −y+1, z+1/2; (viii) −x+1, −y+1, −z; (ix) x, y, −z+1/2; (x) −y+1, x−y+1, z; (xi) −x+y+1, −x+1, z; (xii) −x+1, −y+1, z−1/2; (xiii) x, y, −z−1/2; (xiv) −y+1, x−y, z; (xv) y, −x+y, z−1/2. |
Subscribe to Journal of Applied Crystallography
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.