Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The least protonated hexamolybdoplatinate(IV) polyanion, [H2[alpha]-PtMo6O24]6-, is isolated by using Nd3+ as a counter-cation. Two O atoms of the central PtO6 octahedron are protonated. The Mo-Mo distances are 3.244 (2), 3.295 (2) and 3.393 (1) Å, and the Pt-Mo distances are 3.251 (1), 3.332 (2) and 3.338 (1) Å. The anion has the Pt atom on an inversion centre and has close to \overline 3m symmetry, with Pt-O bond lengths in the range 2.002 (8)-2.015 (8) Å and Mo-O bond lengths in the ranges 1.689 (9)-1.747 (8), 1.890 (8)-2.037 (8) and 2.109 (8)-2.384 (8) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100009689/qa0346sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100009689/qa0346Isup2.hkl
Contains datablock I

Comment top

Crystallograpic studies of the hexamolybdoplatinate(IV) polyanions [H6α-PtMo6O24]2− (Lee, 1994), [H4.5α-PtMo6O24]3.5−, [H4β-PtMo6O24]4− and [H3.5α-PtMo6O24]4.5− (Lee & Sasaki, 1994; Joo et al., 1994) have been reported previously. The behaviour of gradual protonation of the polyanion and geometric isomerism in Anderson-type heteropolyanions was only found in this polyanion system. The [H6α-PtMo6O24]2−, [H4.5α-PtMo6O24]3.5−, [H4β-PtMo6O24]4− and [H3.5α-PtMo6O24]4.5− polyanion species were isolated at pH 0.7, 2.5, 5.4 and 6.4, respectively. It seems that the [H2α-PtMo6O24]6− species were isolated above pH 8.0, from the process of protonation in this polyanion system. However, it was isolated at pH 3.2 by using Nd3+ as the counter-ion.

The present polyanion, [H2α-PtMo6O24]6−, has the Pt atom on an inversion centre and has close to 3 m symmetry. The O atoms in the anion can be divided into three groups, Ot, Ob and Oc, where Ot represents a terminal O atom bound to one Mo atom, Ob represents a bridging O atom bound to two Mo atoms and Oc represents a central O atom coordinated to both the Pt and the two Mo atoms. The position of the H atoms, as expected, could not be observed even in the electron-density difference maps. The attached positions of the H atoms were determined from the unusually long Mo—O distances. It was concluded that the H atoms of the polyanion are bound to the Oc1 atoms from the Mo1—Oc1 (2.384 Å) and Mo2—Oc1 (2.345 Å) distances, which are longer than the Mo1—Oc3 (2.131 Å), Mo2—Oc2 (2.209 Å), Mo3—Oc2 (2.109 Å) and Mo3—Oc3 (2.218 Å) distances. The average bond-distance elongation of Mo—Oc by protonation is about 0.197 Å. This value agrees well with those of the same family of polyanions. The H atom of Oc1 does not contribute to the interanion hydrogen bond. The Mo—Ot bond distances of the Ot atoms coordinated to Nd3+ show elongation.

The Nd3+ cation achieves tricapped trigonal prismatic coordination, with Ob4, Ot7 and Ot8 forming one base triangle, OW1, OW3 and Ot12 forming the other, and OW2, OW4 and OW5 capping the side faces. The bond distances between Nd and OW(1—5) atoms are in the range of 2.451–2.521 Å. The average Nd—O distance is 2.50 Å, which agrees with the typical lanthanide–O bond distance. Of the seven independent water molecules in the crystal structure, five are bonded to the Nd3+ ion. The remaining two water molecules in the unit cell only fill the empty space like zeolitic water. The [H2α-PtMo6O24]6− polyanion forms infinite three-dimensional networks with surrounding polyanions via six Nd3+ ions.

Experimental top

The title compound was prepared by mixing a hot aqueous solution of [H2α-PtMo6O24]8− (0.5 mM/20 ml) and Nd(NO3)3·6H2O (0.1 mM/20 ml). The pH was adjusted to 3.2 by adding 3.0 M HNO3. The solution was concentrated to about 20 ml by heating in a water bath. After a day, monoclinic grey crystals were obtained at room temperature.

Refinement top

The largest difference peak lies 2.93 Å from the nearest atom (OW5) and 4.66 Å from the Nd atom. It may represent an additional partially occupied disordered water molecule site.

Computing details top

Data collection: STADI4 (Stoe & Cie, 1996); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97.

(I) top
Crystal data top
Nd2[H2PtMo6O24]·14H2OF(000) = 3136
Mr = 1697.45Dx = 3.471 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
a = 21.079 (2) ÅCell parameters from 28 reflections
b = 10.324 (4) Åθ = 10.0–11.4°
c = 15.8637 (18) ŵ = 9.78 mm1
β = 109.780 (9)°T = 298 K
V = 3248.5 (13) Å3Monoclinic, grey
Z = 40.12 × 0.08 × 0.06 mm
Data collection top
Stoe Stadi-4
diffractometer
2851 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 27.5°, θmin = 2.1°
ω/2θ scansh = 2725
Absorption correction: numerical (stoe, 1996)
?
k = 013
Tmin = 0.185, Tmax = 0.340l = 020
3719 measured reflections3 standard reflections every 60 min
3719 independent reflections intensity decay: 5.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050H-atom parameters not refined
wR(F2) = 0.120Calculated w = 1/[σ2(Fo2) + (0.0476P)2 + 51.4635P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
3719 reflectionsΔρmax = 2.68 e Å3
214 parametersΔρmin = 2.09 e Å3
0 restraints
Crystal data top
Nd2[H2PtMo6O24]·14H2OV = 3248.5 (13) Å3
Mr = 1697.45Z = 4
Monoclinic, C2/cMo Kα radiation
a = 21.079 (2) ŵ = 9.78 mm1
b = 10.324 (4) ÅT = 298 K
c = 15.8637 (18) Å0.12 × 0.08 × 0.06 mm
β = 109.780 (9)°
Data collection top
Stoe Stadi-4
diffractometer
2851 reflections with I > 2σ(I)
Absorption correction: numerical (stoe, 1996)
?
Rint = 0.000
Tmin = 0.185, Tmax = 0.3403 standard reflections every 60 min
3719 measured reflections intensity decay: 5.0%
3719 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.120H-atom parameters not refined
S = 1.13Δρmax = 2.68 e Å3
3719 reflectionsΔρmin = 2.09 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt0.25000.75000.00000.01014 (15)
Nd0.60036 (3)0.72948 (6)0.14767 (4)0.01336 (16)
Mo10.30649 (6)0.44624 (10)0.01866 (7)0.0126 (2)
Mo20.34703 (5)0.97780 (10)0.13068 (7)0.0129 (2)
Mo30.40127 (5)0.67833 (10)0.13165 (7)0.0113 (2)
OC10.2395 (4)0.8838 (7)0.0860 (5)0.0121 (17)
OC20.3454 (4)0.8169 (8)0.0382 (5)0.0118 (17)
OC30.2947 (4)0.6138 (8)0.0905 (5)0.0132 (17)
OB40.3758 (5)0.8218 (8)0.2024 (6)0.0151 (18)
OB50.2893 (4)1.0649 (8)0.0206 (6)0.0160 (18)
OB60.3914 (4)0.5510 (8)0.0425 (5)0.0155 (18)
OT70.4784 (4)0.7326 (9)0.1308 (6)0.0193 (19)
OT80.4187 (5)0.5889 (9)0.2296 (6)0.0180 (19)
OT90.3234 (5)1.0609 (9)0.2080 (6)0.0199 (19)
OT100.4230 (5)1.0412 (9)0.1340 (7)0.025 (2)
OT110.3283 (5)0.3479 (9)0.1091 (6)0.023 (2)
OT120.3263 (5)0.3598 (9)0.0638 (6)0.0191 (19)
OW10.6800 (5)0.8998 (9)0.1321 (7)0.026 (2)
OW20.7072 (5)0.6308 (11)0.2452 (7)0.031 (2)
OW30.5420 (5)0.7546 (11)0.0188 (6)0.032 (2)
OW40.5474 (5)0.9460 (10)0.1262 (8)0.035 (3)
OW50.5605 (5)0.5054 (10)0.0919 (7)0.029 (2)
OW60.4049 (7)0.8314 (11)0.0853 (7)0.039 (3)
OW70.1763 (7)0.8413 (11)0.2088 (8)0.041 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt0.0102 (3)0.0104 (3)0.0100 (3)0.0005 (2)0.0036 (2)0.0001 (2)
Nd0.0130 (3)0.0156 (3)0.0127 (3)0.0007 (3)0.0058 (2)0.0006 (2)
Mo10.0151 (5)0.0113 (5)0.0121 (5)0.0005 (4)0.0057 (4)0.0014 (4)
Mo20.0128 (5)0.0113 (5)0.0157 (5)0.0005 (4)0.0060 (4)0.0012 (4)
Mo30.0104 (5)0.0121 (5)0.0115 (5)0.0001 (4)0.0039 (4)0.0008 (4)
OC10.019 (5)0.006 (4)0.012 (4)0.001 (3)0.005 (3)0.000 (3)
OC20.011 (4)0.013 (4)0.009 (4)0.002 (3)0.001 (3)0.002 (3)
OC30.014 (4)0.016 (4)0.011 (4)0.001 (3)0.007 (3)0.001 (3)
OB40.019 (5)0.013 (4)0.016 (4)0.004 (4)0.009 (4)0.002 (3)
OB50.013 (4)0.012 (4)0.025 (5)0.001 (4)0.009 (4)0.003 (4)
OB60.012 (4)0.018 (4)0.013 (4)0.001 (4)0.001 (3)0.008 (3)
OT70.013 (4)0.025 (5)0.021 (4)0.002 (4)0.008 (4)0.001 (4)
OT80.022 (5)0.019 (4)0.013 (4)0.002 (4)0.005 (4)0.000 (3)
OT90.022 (5)0.019 (5)0.019 (4)0.001 (4)0.007 (4)0.004 (4)
OT100.018 (5)0.019 (5)0.039 (6)0.006 (4)0.011 (4)0.000 (4)
OT110.034 (6)0.020 (5)0.015 (4)0.004 (4)0.008 (4)0.008 (4)
OT120.021 (5)0.019 (5)0.019 (4)0.000 (4)0.009 (4)0.009 (4)
OW10.026 (5)0.024 (5)0.035 (6)0.004 (4)0.019 (5)0.004 (4)
OW20.016 (5)0.050 (7)0.028 (5)0.016 (5)0.010 (4)0.012 (5)
OW30.027 (6)0.046 (7)0.019 (5)0.014 (5)0.005 (4)0.013 (5)
OW40.026 (6)0.023 (5)0.057 (7)0.009 (5)0.013 (5)0.014 (5)
OW50.035 (6)0.032 (6)0.027 (5)0.013 (5)0.019 (5)0.009 (4)
OW60.058 (8)0.037 (6)0.026 (6)0.016 (6)0.018 (5)0.004 (5)
OW70.053 (8)0.033 (6)0.034 (6)0.001 (6)0.012 (6)0.002 (5)
Geometric parameters (Å, º) top
Pt—OC3i2.002 (8)Mo1—OC32.131 (8)
Pt—OC32.002 (8)Mo1—OC1i2.384 (8)
Pt—OC1i2.006 (8)Mo1—Mo33.2437 (16)
Pt—OC12.006 (8)Mo1—Mo2i3.3927 (14)
Pt—OC2i2.015 (8)Mo2—OT91.703 (9)
Pt—OC22.015 (8)Mo2—OT101.715 (9)
Pt—Mo33.2511 (11)Mo2—OB41.947 (8)
Pt—Mo13.3318 (15)Mo2—OB51.975 (9)
Pt—Mo23.3379 (12)Mo2—OC22.209 (8)
Nd—OB4ii2.451 (8)Mo2—OC12.345 (9)
Nd—OW42.470 (10)Mo2—Mo33.2945 (18)
Nd—OW22.478 (10)Mo3—OT71.723 (9)
Nd—OT72.494 (9)Mo3—OT81.736 (9)
Nd—OW12.501 (10)Mo3—OB61.890 (8)
Nd—OW52.518 (10)Mo3—OB42.037 (8)
Nd—OW32.521 (9)Mo3—OC22.109 (8)
Nd—OT12iii2.530 (9)Mo3—OC32.218 (9)
Nd—OT8ii2.567 (9)Mo3—Ndii3.5521 (12)
Nd—Mo3ii3.5521 (12)OC1—Mo1i2.384 (8)
Mo1—OT111.689 (9)OB4—Ndii2.451 (8)
Mo1—OT121.747 (8)OB5—Mo1i1.904 (9)
Mo1—OB5i1.904 (9)OT8—Ndii2.567 (9)
Mo1—OB62.014 (9)OT12—Ndiii2.530 (9)
OC3i—Pt—OC3180.0OC1i—Mo1—Pt36.56 (19)
OC3i—Pt—OC1i97.5 (3)Mo3—Mo1—Pt59.24 (3)
OC3—Pt—OC1i82.5 (3)OT11—Mo1—Mo2110.0 (3)
OC3i—Pt—OC182.5 (3)OT12—Mo1—Mo2132.2 (3)
OC3—Pt—OC197.5 (3)OB5i—Mo1—Mo2100.9 (3)
OC1i—Pt—OC1180.0OB6—Mo1—Mo253.1 (2)
OC3i—Pt—OC2i81.1 (3)OC3—Mo1—Mo224.6 (2)
OC3—Pt—OC2i98.9 (3)OC1i—Mo1—Mo259.68 (19)
OC1i—Pt—OC2i83.6 (3)Mo3—Mo1—Mo228.81 (2)
OC1—Pt—OC2i96.4 (3)Pt—Mo1—Mo230.607 (19)
OC3i—Pt—OC298.9 (3)OT9—Mo2—OT10106.5 (5)
OC3—Pt—OC281.1 (3)OT9—Mo2—OB496.0 (4)
OC1i—Pt—OC296.4 (3)OT10—Mo2—OB4101.2 (4)
OC1—Pt—OC283.6 (3)OT9—Mo2—OB599.4 (4)
OC2i—Pt—OC2180.0OT10—Mo2—OB598.2 (4)
OC3i—Pt—Mo3137.9 (2)OB4—Mo2—OB5150.5 (4)
OC3—Pt—Mo342.1 (2)OT9—Mo2—OC2156.1 (4)
OC1i—Pt—Mo388.3 (2)OT10—Mo2—OC296.4 (4)
OC1—Pt—Mo391.7 (2)OB4—Mo2—OC272.4 (3)
OC2i—Pt—Mo3141.0 (2)OB5—Mo2—OC283.6 (3)
OC2—Pt—Mo339.0 (2)OT9—Mo2—OC186.4 (4)
OC3i—Pt—Mo1142.4 (2)OT10—Mo2—OC1164.8 (4)
OC3—Pt—Mo137.6 (2)OB4—Mo2—OC185.0 (3)
OC1i—Pt—Mo145.1 (2)OB5—Mo2—OC171.2 (3)
OC1—Pt—Mo1134.9 (2)OC2—Mo2—OC172.1 (3)
OC2i—Pt—Mo189.7 (2)OT9—Mo2—Mo3130.9 (3)
OC2—Pt—Mo190.3 (2)OT10—Mo2—Mo392.2 (3)
Mo3—Pt—Mo159.03 (3)OB4—Mo2—Mo335.1 (2)
OC3i—Pt—Mo289.5 (2)OB5—Mo2—Mo3122.7 (3)
OC3—Pt—Mo290.5 (2)OC2—Mo2—Mo339.2 (2)
OC1i—Pt—Mo2136.2 (2)OC1—Mo2—Mo384.93 (19)
OC1—Pt—Mo243.8 (2)OT9—Mo2—Pt122.4 (3)
OC2i—Pt—Mo2140.1 (2)OT10—Mo2—Pt131.1 (3)
OC2—Pt—Mo239.9 (2)OB4—Mo2—Pt77.6 (3)
Mo3—Pt—Mo259.98 (3)OB5—Mo2—Pt73.0 (3)
Mo1—Pt—Mo2118.85 (3)OC2—Mo2—Pt35.8 (2)
Mo1—Pt—Mo2i61.15 (3)OC1—Mo2—Pt36.30 (19)
OB4ii—Nd—OW473.5 (3)Mo3—Mo2—Pt58.70 (3)
OB4ii—Nd—OW273.1 (3)OT9—Mo2—Mo1130.9 (3)
OW4—Nd—OW2137.0 (4)OT10—Mo2—Mo1114.4 (3)
OB4ii—Nd—OT788.0 (3)OB4—Mo2—Mo151.3 (3)
OW4—Nd—OT764.6 (3)OB5—Mo2—Mo1100.3 (3)
OW2—Nd—OT7139.3 (3)OC2—Mo2—Mo126.9 (2)
OB4ii—Nd—OW184.2 (3)OC1—Mo2—Mo158.90 (19)
OW4—Nd—OW168.7 (3)Mo3—Mo2—Mo128.32 (3)
OW2—Nd—OW181.5 (4)Pt—Mo2—Mo130.545 (16)
OT7—Nd—OW1133.1 (3)OT7—Mo3—OT8105.4 (4)
OB4ii—Nd—OW5129.2 (3)OT7—Mo3—OB694.9 (4)
OW4—Nd—OW5134.5 (4)OT8—Mo3—OB6103.7 (4)
OW2—Nd—OW588.1 (4)OT7—Mo3—OB4101.1 (4)
OT7—Nd—OW576.4 (3)OT8—Mo3—OB484.8 (4)
OW1—Nd—OW5140.1 (3)OB6—Mo3—OB4159.2 (4)
OB4ii—Nd—OW3147.5 (3)OT7—Mo3—OC294.4 (4)
OW4—Nd—OW374.0 (4)OT8—Mo3—OC2152.7 (4)
OW2—Nd—OW3135.6 (3)OB6—Mo3—OC292.9 (3)
OT7—Nd—OW376.5 (3)OB4—Mo3—OC272.9 (3)
OW1—Nd—OW386.0 (4)OT7—Mo3—OC3163.5 (4)
OW5—Nd—OW374.9 (4)OT8—Mo3—OC389.5 (4)
OB4ii—Nd—OT12iii133.7 (3)OB6—Mo3—OC374.1 (3)
OW4—Nd—OT12iii125.8 (3)OB4—Mo3—OC387.2 (3)
OW2—Nd—OT12iii65.8 (3)OC2—Mo3—OC374.2 (3)
OT7—Nd—OT12iii137.7 (3)OT7—Mo3—Mo1129.9 (3)
OW1—Nd—OT12iii69.8 (3)OT8—Mo3—Mo190.4 (3)
OW5—Nd—OT12iii70.8 (3)OB6—Mo3—Mo135.0 (3)
OW3—Nd—OT12iii69.8 (3)OB4—Mo3—Mo1127.9 (3)
OB4ii—Nd—OT8ii61.1 (3)OC2—Mo3—Mo191.1 (2)
OW4—Nd—OT8ii115.9 (3)OC3—Mo3—Mo140.8 (2)
OW2—Nd—OT8ii68.7 (3)OT7—Mo3—Pt130.0 (3)
OT7—Nd—OT8ii70.6 (3)OT8—Mo3—Pt124.1 (3)
OW1—Nd—OT8ii139.1 (3)OB6—Mo3—Pt80.9 (3)
OW5—Nd—OT8ii68.1 (3)OB4—Mo3—Pt78.7 (3)
OW3—Nd—OT8ii135.0 (3)OC2—Mo3—Pt37.0 (2)
OT12iii—Nd—OT8ii118.2 (3)OC3—Mo3—Pt37.3 (2)
OB4ii—Nd—Mo3ii33.8 (2)Mo1—Mo3—Pt61.73 (3)
OW4—Nd—Mo3ii96.7 (3)OT7—Mo3—Mo291.2 (3)
OW2—Nd—Mo3ii68.5 (2)OT8—Mo3—Mo2118.1 (3)
OT7—Nd—Mo3ii75.8 (2)OB6—Mo3—Mo2134.3 (3)
OW1—Nd—Mo3ii115.6 (2)OB4—Mo3—Mo233.3 (2)
OW5—Nd—Mo3ii95.5 (2)OC2—Mo3—Mo241.4 (2)
OW3—Nd—Mo3ii152.1 (3)OC3—Mo3—Mo288.0 (2)
OT12iii—Nd—Mo3ii132.5 (2)Mo1—Mo3—Mo2122.87 (5)
OT8ii—Nd—Mo3ii27.4 (2)Pt—Mo3—Mo261.32 (3)
OT11—Mo1—OT12105.3 (5)OT7—Mo3—Ndii106.4 (3)
OT11—Mo1—OB5i101.3 (4)OT8—Mo3—Ndii42.8 (3)
OT12—Mo1—OB5i102.7 (4)OB6—Mo3—Ndii143.7 (3)
OT11—Mo1—OB6101.2 (4)OB4—Mo3—Ndii42.0 (2)
OT12—Mo1—OB689.6 (4)OC2—Mo3—Ndii113.8 (2)
OB5i—Mo1—OB6150.5 (4)OC3—Mo3—Ndii89.3 (2)
OT11—Mo1—OC394.6 (4)Mo1—Mo3—Ndii116.41 (4)
OT12—Mo1—OC3156.2 (4)Pt—Mo3—Ndii105.35 (3)
OB5i—Mo1—OC385.5 (4)Mo2—Mo3—Ndii75.29 (3)
OB6—Mo1—OC373.8 (3)Pt—OC1—Mo299.9 (3)
OT11—Mo1—OC1i164.4 (4)Pt—OC1—Mo1i98.4 (3)
OT12—Mo1—OC1i89.9 (4)Mo2—OC1—Mo1i91.7 (3)
OB5i—Mo1—OC1i71.4 (3)Pt—OC2—Mo3104.0 (4)
OB6—Mo1—OC1i82.0 (3)Pt—OC2—Mo2104.3 (4)
OC3—Mo1—OC1i71.4 (3)Mo3—OC2—Mo299.4 (3)
OT11—Mo1—Mo392.0 (3)Pt—OC3—Mo1107.4 (4)
OT12—Mo1—Mo3122.2 (3)Pt—OC3—Mo3100.6 (4)
OB5i—Mo1—Mo3127.8 (3)Mo1—OC3—Mo396.4 (3)
OB6—Mo1—Mo332.6 (2)Mo2—OB4—Mo3111.6 (4)
OC3—Mo1—Mo342.8 (2)Mo2—OB4—Ndii144.1 (4)
OC1i—Mo1—Mo382.6 (2)Mo3—OB4—Ndii104.2 (3)
OT11—Mo1—Pt128.8 (3)Mo1i—OB5—Mo2122.0 (4)
OT12—Mo1—Pt125.6 (3)Mo3—OB6—Mo1112.4 (4)
OB5i—Mo1—Pt73.8 (3)Mo3—OT7—Nd159.3 (5)
OB6—Mo1—Pt77.2 (2)Mo3—OT8—Ndii109.8 (4)
OC3—Mo1—Pt35.0 (2)Mo1—OT12—Ndiii157.4 (5)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1, y, z+1/2; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaNd2[H2PtMo6O24]·14H2O
Mr1697.45
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)21.079 (2), 10.324 (4), 15.8637 (18)
β (°) 109.780 (9)
V3)3248.5 (13)
Z4
Radiation typeMo Kα
µ (mm1)9.78
Crystal size (mm)0.12 × 0.08 × 0.06
Data collection
DiffractometerStoe Stadi-4
diffractometer
Absorption correctionNumerical (Stoe, 1996)
Tmin, Tmax0.185, 0.340
No. of measured, independent and
observed [I > 2σ(I)] reflections
3719, 3719, 2851
Rint0.000
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.120, 1.13
No. of reflections3719
No. of parameters214
H-atom treatmentH-atom parameters not refined
Calculated w = 1/[σ2(Fo2) + (0.0476P)2 + 51.4635P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.68, 2.09

Computer programs: STADI4 (Stoe & Cie, 1996), STADI4, X-RED (Stoe & Cie, 1996), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Pt—OC32.002 (8)Mo1—OB62.014 (9)
Pt—OC12.006 (8)Mo1—OC32.131 (8)
Pt—OC22.015 (8)Mo1—OC1iii2.384 (8)
Pt—Mo33.2511 (11)Mo1—Mo33.2437 (16)
Pt—Mo13.3318 (15)Mo1—Mo2iii3.3927 (14)
Pt—Mo23.3379 (12)Mo2—OT91.703 (9)
Nd—OB4i2.451 (8)Mo2—OT101.715 (9)
Nd—OW42.470 (10)Mo2—OB41.947 (8)
Nd—OW22.478 (10)Mo2—OB51.975 (9)
Nd—OT72.494 (9)Mo2—OC22.209 (8)
Nd—OW12.501 (10)Mo2—OC12.345 (9)
Nd—OW52.518 (10)Mo2—Mo33.2945 (18)
Nd—OW32.521 (9)Mo3—OT71.723 (9)
Nd—OT12ii2.530 (9)Mo3—OT81.736 (9)
Nd—OT8i2.567 (9)Mo3—OB61.890 (8)
Nd—Mo3i3.5521 (12)Mo3—OB42.037 (8)
Mo1—OT111.689 (9)Mo3—OC22.109 (8)
Mo1—OT121.747 (8)Mo3—OC32.218 (9)
Mo1—OB5iii1.904 (9)
OC3—Pt—OC197.5 (3)Mo3—Pt—Mo259.98 (3)
OC3—Pt—OC281.1 (3)Mo1—Pt—Mo2118.85 (3)
OC1—Pt—OC283.6 (3)Mo1—Pt—Mo2iii61.15 (3)
Mo3—Pt—Mo159.03 (3)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y+1, z; (iii) x+1/2, y+3/2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds