Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The proto-alkaloid synephrine {SYN; systematic name: 4-[1-hy­droxy-2-(methyl­amino)­eth­yl]phenol}, C9H13NO2, is found to crystallize as a neutral mol­ecule in the racemate and as a zwitterion in the pure enanti­omer, in which the phenolic H atom has been transferred to the amino group. In the racemate crystal, an enanti­omeric pair on an inversion centre is weakly linked by alcoholic O—H and N—H groups into an R22(10) ring. The trigonal pyramidal amino group is also linked to the phenolic and alcoholic groups to form a C(6) chain. In the enanti­opure crystal, the deprotonated phenolic O atom is involved in trifurcated hydrogen bonding to two quaternary ammonium groups and an alcoholic O—H group to form a fused R24(11) ring and a C(7) chain. From the results of the crystal structure analysis, thermal analyses and DFT calculations validated from FT–IR spectra, a different tautomer was found in the racemic molecule (RS-SYN) versus the enanti­opure molecule (R-SYN).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618014419/qf3019sup1.cif
Contains datablocks global, RS-SYN, R-SYN

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618014419/qf3019RS-SYNsup2.hkl
Contains datablock RS-SYN

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618014419/qf3019R-SYNsup3.hkl
Contains datablock R-SYN

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229618014419/qf3019R-SYNsup4.cml
Supplementary material

CCDC references: 1872931; 1872930

Computing details top

For both structures, data collection: CrystalClear-SM Expert (Rigaku, 2015); cell refinement: CrystalClear-SM Expert (Rigaku, 2015); data reduction: SORTAV (Blessing, 1995) and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009), WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

4-[1-Hydroxy-2-(methylamino)ethyl]phenol (RS-SYN) top
Crystal data top
C9H13NO2F(000) = 360
Mr = 167.2Dx = 1.287 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 653 reflections
a = 8.768 (3) Åθ = 25.5–68°
b = 11.935 (4) ŵ = 0.74 mm1
c = 9.001 (3) ÅT = 100 K
β = 113.623 (9)°Prism, colorless
V = 863.0 (5) Å30.4 × 0.3 × 0.2 mm
Z = 4
Data collection top
Rigaku XtaLAB P200
diffractometer
1546 independent reflections
Radiation source: sealed x-ray tube1107 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 5.81 pixels mm-1θmax = 68.3°, θmin = 7.0°
phi or ω oscillation scansh = 1010
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
k = 1414
Tmin = 0.74, Tmax = 0.86l = 1010
4832 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: mixed
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0795P)2]
where P = (Fo2 + 2Fc2)/3
1546 reflections(Δ/σ)max < 0.001
119 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.2 e Å3
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.19178 (18)0.73325 (13)1.16284 (17)0.0282 (4)
H1O0.2039970.6737581.2162640.042*
O20.48132 (18)0.59805 (13)0.64037 (16)0.0258 (4)
N10.2175 (2)0.55872 (16)0.34169 (18)0.0255 (4)
C10.2981 (2)0.68056 (17)0.7561 (2)0.0220 (5)
C20.2115 (3)0.77427 (18)0.7695 (2)0.0256 (5)
H20.1766510.8282570.684870.031*
C30.1745 (3)0.79101 (18)0.9042 (2)0.0267 (5)
H30.1132780.8553620.9098810.032*
C40.2268 (2)0.71378 (18)1.0312 (2)0.0232 (5)
C50.3152 (2)0.61982 (18)1.0196 (2)0.0246 (5)
H50.3523360.5665881.1052460.03*
C60.3494 (2)0.60360 (18)0.8833 (2)0.0249 (5)
H60.4089860.5386880.8765860.03*
C70.3288 (2)0.65820 (17)0.6044 (2)0.0230 (5)
H70.3334370.731090.5515550.028*
C80.1883 (2)0.58744 (19)0.4872 (2)0.0256 (5)
H8A0.1782220.5177090.5421750.031*
H8B0.0822220.6291010.454660.031*
C90.0896 (3)0.4819 (2)0.2361 (2)0.0327 (5)
H9A0.0834610.4160440.29860.049*
H9B0.1181950.4581840.1462430.049*
H9C0.0184660.5200030.1929770.049*
H2O0.562 (4)0.645 (3)0.662 (4)0.054 (9)*
H1N0.314 (3)0.523 (2)0.377 (3)0.028 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0360 (8)0.0323 (9)0.0218 (7)0.0076 (7)0.0172 (6)0.0022 (6)
O20.0247 (8)0.0304 (9)0.0240 (7)0.0004 (7)0.0113 (6)0.0013 (6)
N10.0248 (9)0.0349 (11)0.0159 (8)0.0027 (8)0.0072 (7)0.0012 (7)
C10.0185 (9)0.0289 (12)0.0175 (9)0.0012 (8)0.0062 (7)0.0024 (8)
C20.0284 (11)0.0274 (12)0.0219 (10)0.0037 (9)0.0109 (8)0.0036 (8)
C30.0300 (11)0.0262 (11)0.0260 (10)0.0048 (9)0.0132 (9)0.0000 (8)
C40.0218 (10)0.0313 (12)0.0179 (10)0.0002 (9)0.0094 (8)0.0046 (8)
C50.0242 (10)0.0307 (12)0.0188 (9)0.0047 (9)0.0084 (8)0.0027 (8)
C60.0256 (10)0.0280 (11)0.0210 (10)0.0045 (8)0.0091 (8)0.0016 (8)
C70.0252 (10)0.0257 (11)0.0187 (9)0.0030 (8)0.0093 (8)0.0025 (8)
C80.0267 (10)0.0338 (12)0.0177 (9)0.0005 (9)0.0103 (8)0.0010 (8)
C90.0346 (11)0.0421 (14)0.0197 (9)0.0051 (10)0.0090 (8)0.0021 (9)
Geometric parameters (Å, º) top
O1—C41.358 (2)C3—H30.95
O1—H1O0.84C4—C51.391 (3)
O2—C71.436 (2)C5—C61.388 (3)
O2—H2O0.86 (4)C5—H50.95
N1—C91.465 (3)C6—H60.95
N1—C81.472 (2)C7—C81.517 (3)
N1—H1N0.88 (3)C7—H71
C1—C21.384 (3)C8—H8A0.99
C1—C61.394 (3)C8—H8B0.99
C1—C71.518 (3)C9—H9A0.98
C2—C31.389 (3)C9—H9B0.98
C2—H20.95C9—H9C0.98
C3—C41.395 (3)
C4—O1—H1O109.5C5—C6—H6119.3
C7—O2—H2O110 (2)C1—C6—H6119.3
C8—N1—C9111.24 (16)O2—C7—C8107.58 (16)
C9—N1—H1N107.8 (16)O2—C7—C1111.69 (15)
C8—N1—H1N105.9 (15)C8—C7—C1109.64 (16)
C2—C1—C6117.94 (17)O2—C7—H7109.3
C2—C1—C7121.44 (17)C8—C7—H7109.3
C6—C1—C7120.54 (18)C1—C7—H7109.3
C1—C2—C3121.35 (19)N1—C8—C7111.48 (16)
C1—C2—H2119.3N1—C8—H8A109.3
C3—C2—H2119.3C7—C8—H8A109.3
C2—C3—C4120.31 (19)N1—C8—H8B109.3
C2—C3—H3119.8C7—C8—H8B109.3
C4—C3—H3119.8H8A—C8—H8B108
O1—C4—C5122.06 (18)N1—C9—H9A109.5
O1—C4—C3119.13 (18)N1—C9—H9B109.5
C5—C4—C3118.81 (18)H9A—C9—H9B109.5
C6—C5—C4120.17 (18)N1—C9—H9C109.5
C6—C5—H5119.9H9A—C9—H9C109.5
C4—C5—H5119.9H9B—C9—H9C109.5
C5—C6—C1121.41 (19)
C6—C1—C2—C30.8 (3)C7—C1—C6—C5176.76 (18)
C7—C1—C2—C3175.90 (19)C2—C1—C7—O2149.85 (18)
C1—C2—C3—C41.1 (3)O2—C7—C1—C633.5 (3)
C2—C3—C4—O1178.73 (18)C2—C1—C7—C891.0 (2)
C2—C3—C4—C50.4 (3)C6—C1—C7—C885.6 (2)
O1—C4—C5—C6179.51 (17)C9—N1—C8—C7174.72 (17)
C3—C4—C5—C60.4 (3)O2—C7—C8—N155.4 (2)
C4—C5—C6—C10.6 (3)C1—C7—C8—N1177.02 (16)
C2—C1—C6—C50.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N1i0.841.752.587 (2)173
O2—H2O···O1ii0.86 (4)1.84 (4)2.683 (2)164 (3)
N1—H1N···O2iii0.88 (3)2.36 (3)3.188 (2)156 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+3/2, z1/2; (iii) x+1, y+1, z+1.
4-[1-Hydroxy-2-(methylamino)ethyl]phenol (R-SYN) top
Crystal data top
C9H13NO2F(000) = 360
Mr = 167.2Dx = 1.265 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 1029 reflections
a = 6.5581 (15) Åθ = 25.7–68.2°
b = 7.8144 (18) ŵ = 0.73 mm1
c = 17.137 (5) ÅT = 100 K
V = 878.2 (4) Å3Plate, colorless
Z = 40.4 × 0.4 × 0.2 mm
Data collection top
Rigaku XtaLAB P200
diffractometer
1586 independent reflections
Radiation source: sealed x-ray tube1504 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 5.81 pixels mm-1θmax = 68.2°, θmin = 7.2°
phi or ω oscillation scansh = 77
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
k = 99
Tmin = 0.74, Tmax = 0.88l = 2018
7138 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0659P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max < 0.001
1586 reflectionsΔρmax = 0.24 e Å3
122 parametersΔρmin = 0.20 e Å3
0 restraintsAbsolute structure: Flack x determined using 590 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 constraintsAbsolute structure parameter: 0.06 (10)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3094 (3)0.4999 (2)0.20752 (10)0.0194 (4)
C20.3508 (3)0.4273 (3)0.28024 (12)0.0228 (4)
H20.4330680.3274450.283160.027*
C30.2739 (3)0.4983 (2)0.34833 (11)0.0222 (4)
H30.3026650.4452350.3969650.027*
C40.1541 (3)0.6474 (2)0.34669 (11)0.0198 (4)
C50.1139 (3)0.7205 (3)0.27349 (12)0.0227 (5)
H50.0343310.8218610.270390.027*
C60.1885 (3)0.6470 (3)0.20571 (11)0.0220 (4)
H60.1566540.6978320.1568470.026*
C70.3849 (3)0.4194 (3)0.13296 (11)0.0212 (4)
H70.4288140.2991040.1437490.025*
C80.5630 (3)0.5188 (2)0.09937 (11)0.0210 (5)
H8A0.5186370.6364980.0864670.025*
H8B0.6731720.5264140.1387210.025*
C90.7764 (3)0.5442 (3)0.01937 (12)0.0289 (5)
H9A0.9002820.5700730.0103580.043*
H9B0.7048060.6509570.0316470.043*
H9C0.8132380.4856450.067930.043*
N10.6424 (2)0.4329 (2)0.02740 (10)0.0206 (4)
O10.0845 (2)0.71864 (18)0.41231 (7)0.0229 (4)
O20.2353 (2)0.41891 (19)0.07252 (8)0.0276 (4)
H1NA0.536 (4)0.396 (3)0.0024 (15)0.031 (6)*
H1NB0.736 (5)0.344 (4)0.0406 (16)0.050 (8)*
H2O0.127 (6)0.348 (4)0.0888 (18)0.062 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0150 (9)0.0248 (9)0.0186 (9)0.0034 (7)0.0013 (7)0.0005 (7)
C20.0177 (9)0.0271 (9)0.0235 (10)0.0028 (8)0.0013 (7)0.0010 (8)
C30.0194 (9)0.0307 (9)0.0165 (9)0.0019 (8)0.0029 (8)0.0040 (7)
C40.0133 (9)0.0285 (9)0.0177 (9)0.0028 (8)0.0000 (7)0.0010 (8)
C50.0198 (10)0.0253 (9)0.0231 (10)0.0040 (8)0.0010 (8)0.0025 (8)
C60.0208 (10)0.0292 (9)0.0159 (9)0.0004 (8)0.0000 (8)0.0047 (7)
C70.0190 (9)0.0269 (9)0.0178 (10)0.0024 (8)0.0003 (7)0.0014 (8)
C80.0185 (10)0.0253 (9)0.0191 (10)0.0013 (8)0.0015 (8)0.0032 (7)
C90.0260 (10)0.0358 (10)0.0250 (10)0.0039 (9)0.0067 (9)0.0051 (9)
N10.0171 (8)0.0279 (8)0.0167 (8)0.0007 (7)0.0017 (6)0.0000 (7)
O10.0197 (6)0.0316 (7)0.0174 (7)0.0019 (6)0.0025 (6)0.0009 (5)
O20.0213 (7)0.0431 (9)0.0184 (7)0.0080 (7)0.0004 (5)0.0027 (6)
Geometric parameters (Å, º) top
C1—C21.396 (3)C7—C81.516 (3)
C1—C61.397 (3)C7—H71
C1—C71.508 (3)N1—C81.497 (2)
C2—C31.387 (3)C8—H8A0.99
C2—H20.95C8—H8B0.99
C3—C41.405 (3)N1—C91.473 (3)
C3—H30.95C9—H9A0.98
O1—C41.335 (2)C9—H9B0.98
C4—C51.404 (3)C9—H9C0.98
C5—C61.385 (3)N1—H1NA0.91 (3)
C5—H50.95N1—H1NB0.95 (3)
C6—H60.95O2—H2O0.94 (4)
O2—C71.427 (2)
C2—C1—C6117.69 (16)C1—C7—H7109.3
C2—C1—C7121.54 (17)C8—C7—H7109.3
C6—C1—C7120.73 (15)N1—C8—C7110.55 (16)
C3—C2—C1121.18 (18)N1—C8—H8A109.5
C3—C2—H2119.4C7—C8—H8A109.5
C1—C2—H2119.4N1—C8—H8B109.5
C2—C3—C4121.21 (16)C7—C8—H8B109.5
C2—C3—H3119.4H8A—C8—H8B108.1
C4—C3—H3119.4N1—C9—H9A109.5
O1—C4—C5121.22 (17)N1—C9—H9B109.5
O1—C4—C3121.35 (15)H9A—C9—H9B109.5
C5—C4—C3117.42 (16)N1—C9—H9C109.5
C6—C5—C4120.95 (18)H9A—C9—H9C109.5
C6—C5—H5119.5H9B—C9—H9C109.5
C4—C5—H5119.5C8—N1—C9113.03 (16)
C5—C6—C1121.54 (16)C9—N1—H1NA109.8 (15)
C5—C6—H6119.2C8—N1—H1NA109.7 (16)
C1—C6—H6119.2C9—N1—H1NB100.1 (18)
O2—C7—C1112.97 (15)C8—N1—H1NB110.7 (16)
O2—C7—C8104.80 (15)H1NA—N1—H1NB113 (2)
C1—C7—C8111.16 (16)C7—O2—H2O107.8 (19)
O2—C7—H7109.3
C6—C1—C2—C30.3 (3)C7—C1—C6—C5178.52 (18)
C7—C1—C2—C3177.39 (17)O2—C7—C1—C2137.31 (18)
C1—C2—C3—C41.0 (3)O2—C7—C1—C640.3 (2)
C2—C3—C4—O1178.18 (18)C2—C1—C7—C8105.2 (2)
C2—C3—C4—C50.6 (3)C6—C1—C7—C877.2 (2)
O1—C4—C5—C6179.28 (18)O2—C7—C8—N160.22 (19)
C3—C4—C5—C60.5 (3)C1—C7—C8—N1177.43 (15)
C4—C5—C6—C11.3 (3)C7—C8—N1—C9164.65 (16)
C2—C1—C6—C50.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···O1i0.91 (3)1.89 (3)2.740 (2)155 (2)
N1—H1NB···O1ii0.95 (3)1.73 (3)2.661 (2)164 (3)
O2—H2O···O1iii0.94 (4)1.72 (4)2.630 (2)162 (3)
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y1/2, z+1/2.
Selected comparison of the calculated harmonic frequencies and experimental wavenumbers (FT–IR) of RS-SYN. top
FT–IR (cm-1)Peaks profile*Calc. freq. (cm-1)Calc. int.PEDs (%)Mode sssign.**
3050–3670BVS367737.4νO1H(100)ν(O—H)
36578.5νO2H(100)ν(O—H)
3287VS35334.3νN1H(99)ν(N—H)
2983M307241.8νC8H(91)ν(C—H)
2959M300656.7νC7H(93)ν(C—H)
2877M2936132.0νC9H3(90)ν(C—H)
1611M173667.5νC2C3(28)+νC5C6(11)ν(CC)
16905.2νC1C6(27)-νC4C5(19)ν(CC)
1509S161288.3νC4C5(13)-νC4O1(12)ν(C—O)
1465M150916.9δC9N1H(42)-δC7C8N1H(11)δ(N—H)
1435M149622.1δC9N1H(24)-δsHC9H(29)δ(N—H)
1336M137893.0νC4O1(40)ν(C—O)
1309M134530.0νC1C7(15)+δC7O2H(13)δ(O—H)
1266S126710.6νC1C7(13)+δN1C8H(10)δ(C—H)
12602.4νC1C7(16)-δC7O2H(13)δ(O—H)
1205M1212165.1δC4O1H(41)-δC6C5H(10)δ(O—H)
1097S110063.5νC7O2(32)-δN1C8H(12)ν(C—O)
1054S10707.9νC7C8(21)-νC9N1(11)+δC7O2H(2)ν(C-N), δ(O—H)
930BM94716.6-νC7C8(19)-νC7O2(25)ν(C—O)
884M87340.3δC3H(45)+δC2H(31)δ(C—H)
835S85430.0δC6H(21)+δC5H(62)δ(C—H)'
780M76794.7-δC9N1H(12)+γC7C8N1H(47)δ(N—H)
637M59832.6δC4C5C6(22)δ(C—C)
575M56432.9δC6C7C8(11)+δC8C7O2(12)δ(C—O)
558M5403.4γO1C4C5C6(14)γ(C—O)
Notes: (*) B = broad, V = very, W = weak, M = medium and S = strong peaks. (**) ν = stretching, δ = bending and γ = rocking vibrations.
Selected comparison of the calculated harmonic frequencies and experimental wavenumbers (FT–IR) of R-SYN. top
FT–IR (cm-1)Peaks profile*Calc. freq. (cm-1)Calc. int.PEDs (%)Mode assign.**
3300–3610BM371285.2νO2H(100)ν(O—H)
3041W320418.1νC5H(95)ν(C—H)
3013W320028.1νC3H(95)ν(C—H)
2930–3100BM346248.4νN1H(94)ν(N—H)
2938VW311219.4νC2H(33)+νC6H(64)ν(C—H)
2871VW311061.5νC2H(65)-νC6H(34)ν(C—H)
2590-2880BM334568.5νN1H(93)ν(N—H)
2763W309510.0-νC9H(30)-νC9H(25)-νC9H(44)ν(C—H)
2723W293273.5νC7H(90)ν(C—H)
1605BM170338.8δsN1H2(87)δs(N—H)
1558M165394.9-νC2C3(10)+νC1C6(31)ν(CC)
1542M1644157.4-νC2C3(24)+νC4C5(29)ν(CC)
1499S154418.7νC3C4(13)ν(CC)
1488S153420.0δC9H2(38)δas(C—H)
152716.5δC9H2(43)δs(C—H)
1466S150320.9δC8H2(39)+δC9H2(18)δs(C—H)
149920.6-νC2C3(32)+νC5C6(32)δ(CC)
1426M144835.6δO2C7H(15)δ(C—H)
1433166.6δHC9N1H1(18)-δHC9N1H2(38)δs(N—H)
1341M136069.3δC7O2H(16)-δC9N1H(10)δ(O—H), δ(N—H)
1249BVS1274185.5-νC5C6(12)+νC4O1(54)ν(CO)
127249.7-δC7O2H(25)+δO2C7H(21)δ(O—H)
1209M121428.4-νC6C1(17)+δO2C7H(10)δ(C—H)
1159S118714.6δO2C7H(10)δ(C—H)
1146M1177118.2δC2H(17)+δC3H(17)δs(C—H)
1077M11569.1δO2C7H(10)+δC9H3(10)δ(C—H)
1058M11158.4δC4C3H(15)+δC6C5H(20)δ(C—H)
1032M107318.7νC9N1(69)ν(C—N)
971BM1059116.2-νC7C8(18)+νC7O2(39)ν(C—O)
842S902125.3νC8N1(55)ν(C—N)
802M84944.7γC2H(20)γ(C—H)
589M57416.4δC3C4C5(22)δ(C—C)
559M54132.6δC8C7O2(21)δ(C—O)
469M43010.1δC1C7C8(21)-δC8N1C9(13)δ(C—N)
Notes: (*) B = broad, V = very, W = weak, M = medium and S = strong peaks. (**) ν = stretching, δ = bending and γ = rocking vibrations.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds