Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Over the past two decades, the development of novel inorganic–organic hybrid porous crystalline materials or metal–organic frameworks (MOFs) using crystal engineering has provoked significant inter­est due to their potential applications as functional materials. In this context, luminescent MOFs as fluorescence sensors have recently received significant attention for the sensing of ionic species and small mol­ecules. In this work, a new luminescent heterometallic zinc(II)–barium(II)-based anionic metal–organic framework, namely poly[imidazolium [tri­aqua­(μ6-benzene-1,3,5-tri­carboxyl­ato)bariumtrizinc] tetra­hy­drate], {(C3H4N2)[BaZn3(C9H3O6)3(H2O)3]·4H2O}n (1), was synthesized under hydro­thermal conditions and characterized. Compound 1 presents a three-dimensional framework with an unprecedented (3,5)-connected topology of the point symbol (3.92).(33.42.5.93.10), and exhibits `turn-off' luminescence responses for the Cu2+ and Fe3+ ions in aqueous solution based on significantly different quenching mechanisms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619011987/qp3030sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619011987/qp3030Isup2.hkl
Contains datablock I

cdx

Chemdraw file https://doi.org/10.1107/S2053229619011987/qp3030Isup3.cdx
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229619011987/qp3030sup4.pdf
Additional figures, i.e. IR, PXRD and photograph the photographs of crystalline 1 after immersion in analysts

CCDC reference: 1911729

Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[imidazolium [triaqua(µ6-benzene-1,3,5-tricarboxylato)bariumtrizinc] tetrahydrate] top
Crystal data top
(C3H4N2)[BaZn3(C9H3O6)3(H2O)3]·4H2ODx = 2.119 Mg m3
Mr = 2035.65Mo Kα radiation, λ = 0.71073 Å
Trigonal, P31cCell parameters from 9217 reflections
a = 15.2649 (9) Åθ = 3.0–29.6°
c = 7.9050 (6) ŵ = 3.54 mm1
V = 1595.2 (2) Å3T = 296 K
Z = 1.0Rhombohedral, colourless
F(000) = 9920.22 × 0.18 × 0.18 mm
Data collection top
Bruker D8 QUEST CMOS PHOTON II
diffractometer
2689 independent reflections
Radiation source: sealed x-ray tube, Mo2617 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 7.39 pixels mm-1θmax = 28.5°, θmin = 3.0°
φ and ω scansh = 2020
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 2020
Tmin = 0.635, Tmax = 0.746l = 1010
43027 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.017 w = 1/[σ2(Fo2) + (0.0185P)2 + 0.5728P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.037(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.40 e Å3
2689 reflectionsΔρmin = 0.32 e Å3
179 parametersAbsolute structure: Flack x determined using 1256 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
28 restraintsAbsolute structure parameter: 0.014 (4)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The SQUEEZE routine, a part of the PLATON software package, was used to calculate the disorder area and remove the diffraction contribution to afford a set of solvent free diffraction intensities. After subtracting the imidazolium and water contribution, PLATON calculations indicate that the effective pore volume is 181.2 Å3 per unit cell (11.4% out of the 1595.2 Å3 unit cell volume) and contain an estimated 61 electrons. These electrons are attributable to approximately one imidazolium molecule (37 electrons) and two and a half lattice water molecules (24 electrons), presenting in a formula unit. The contents of the removed guest region are not represented in the unit cell contents in the crystal data.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ba10.3333330.6666670.44450 (6)0.02565 (9)
Zn10.3069500.3534500.2569600.01899 (8)
O10.17325 (16)0.30823 (17)0.3483 (3)0.0253 (5)
O20.22559 (19)0.45942 (16)0.4612 (4)0.0321 (5)
O30.02007 (18)0.53505 (17)0.7338 (3)0.0253 (5)
O40.18457 (19)0.42731 (19)0.6991 (4)0.0347 (6)
O50.28696 (16)0.06826 (17)0.4990 (3)0.0240 (5)
O60.21362 (18)0.08612 (17)0.2541 (3)0.0288 (5)
O70.449 (3)0.795 (3)0.736 (5)0.043 (5)0.33 (7)
H7A0.449 (10)0.848 (9)0.77 (2)0.065*0.33 (7)
H7B0.510 (6)0.811 (10)0.762 (18)0.065*0.33 (7)
O7A0.4257 (18)0.7960 (13)0.7464 (17)0.042 (3)0.67 (7)
H7AA0.476 (5)0.857 (3)0.731 (8)0.062*0.67 (7)
H7AB0.389 (5)0.816 (6)0.799 (8)0.062*0.67 (7)
O80.3333330.6666670.9576 (12)0.0229 (14)0.5
H8A0.3859600.7175900.9181570.034*0.1667
H8B0.2879000.6535500.8838170.034*0.1667
C10.1583 (2)0.3737 (2)0.4247 (4)0.0195 (6)
C20.0507 (2)0.3406 (2)0.4667 (4)0.0179 (6)
C30.0292 (2)0.4059 (2)0.5560 (4)0.0191 (6)
H30.0817680.4683670.5911870.023*
C40.0700 (2)0.3790 (2)0.5934 (4)0.0177 (6)
C50.0945 (2)0.4512 (2)0.6834 (4)0.0200 (6)
C60.1486 (2)0.2844 (2)0.5458 (4)0.0189 (6)
H60.2148920.2648530.5749220.023*
C70.1276 (2)0.2190 (2)0.4542 (4)0.0182 (6)
C80.2135 (2)0.1189 (2)0.4001 (4)0.0187 (6)
C90.0290 (2)0.2474 (2)0.4126 (4)0.0187 (6)
H90.0155130.2044420.3484880.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.01573 (9)0.01573 (9)0.0455 (2)0.00786 (5)0.0000.000
Zn10.01347 (15)0.01515 (16)0.02823 (17)0.00706 (13)0.00269 (13)0.00267 (13)
O10.0174 (10)0.0278 (12)0.0326 (13)0.0127 (9)0.0071 (9)0.0003 (9)
O20.0178 (11)0.0197 (10)0.0512 (15)0.0038 (10)0.0053 (10)0.0008 (11)
O30.0283 (12)0.0197 (11)0.0325 (13)0.0153 (10)0.0067 (9)0.0069 (9)
O40.0262 (13)0.0253 (12)0.0570 (16)0.0162 (11)0.0151 (12)0.0042 (11)
O50.0157 (10)0.0203 (11)0.0278 (11)0.0030 (9)0.0031 (9)0.0001 (9)
O60.0309 (13)0.0196 (11)0.0234 (11)0.0033 (10)0.0018 (10)0.0042 (9)
O70.029 (9)0.040 (7)0.071 (8)0.025 (7)0.007 (7)0.009 (6)
O7A0.043 (7)0.032 (3)0.054 (3)0.021 (5)0.002 (4)0.007 (2)
O80.0208 (19)0.0208 (19)0.027 (4)0.0104 (10)0.0000.000
C10.0165 (13)0.0207 (14)0.0219 (14)0.0098 (12)0.0027 (11)0.0045 (11)
C20.0159 (13)0.0159 (13)0.0201 (14)0.0067 (11)0.0002 (10)0.0035 (10)
C30.0158 (14)0.0155 (14)0.0224 (14)0.0052 (11)0.0011 (11)0.0006 (11)
C40.0189 (13)0.0148 (13)0.0217 (15)0.0101 (11)0.0019 (11)0.0009 (10)
C50.0239 (15)0.0166 (13)0.0224 (14)0.0123 (12)0.0030 (12)0.0023 (11)
C60.0152 (13)0.0183 (14)0.0229 (15)0.0081 (12)0.0026 (11)0.0006 (11)
C70.0189 (15)0.0156 (14)0.0179 (14)0.0068 (12)0.0002 (11)0.0004 (10)
C80.0165 (14)0.0132 (13)0.0247 (16)0.0061 (12)0.0017 (11)0.0001 (11)
C90.0189 (14)0.0134 (13)0.0227 (14)0.0072 (12)0.0014 (11)0.0018 (11)
Geometric parameters (Å, º) top
Ba1—O2i2.744 (2)O7—H7A0.85 (3)
Ba1—O22.744 (2)O7—H7B0.86 (3)
Ba1—O2ii2.744 (2)O7A—H7AA0.86 (3)
Ba1—O4iii2.779 (3)O7A—H7AB0.87 (3)
Ba1—O4iv2.779 (3)O8—H8Ai0.8500
Ba1—O4v2.779 (3)O8—H8Aii0.8500
Ba1—O7ii2.969 (17)O8—H8A0.8500
Ba1—O7i2.969 (17)O8—H8Bi0.8500
Ba1—O72.969 (17)O8—H8B0.8500
Ba1—O7Aii2.966 (7)O8—H8Bii0.8500
Ba1—O7Ai2.966 (7)C1—C21.495 (4)
Ba1—O7A2.966 (7)C2—C31.389 (4)
Zn1—O11.938 (2)C2—C91.398 (4)
Zn1—O3iv1.944 (2)C3—H30.9300
Zn1—O5v2.064 (2)C3—C41.388 (4)
Zn1—O6vi2.082 (2)C4—C51.507 (4)
O1—C11.282 (4)C4—C61.391 (4)
O2—C11.227 (4)C6—H60.9300
O3—C51.278 (4)C6—C71.395 (4)
O4—C51.240 (4)C7—C81.494 (4)
O5—C81.264 (4)C7—C91.382 (4)
O6—C81.257 (4)C9—H90.9300
O2i—Ba1—O2119.772 (12)O1—Zn1—O5v103.68 (9)
O2i—Ba1—O2ii119.771 (11)O1—Zn1—O6vi97.62 (10)
O2—Ba1—O2ii119.770 (11)O3iv—Zn1—O5v89.88 (9)
O2i—Ba1—O4iii75.99 (8)O3iv—Zn1—O6vi112.05 (10)
O2ii—Ba1—O4iv75.99 (8)O5v—Zn1—O6vi94.02 (9)
O2ii—Ba1—O4iii66.41 (8)C1—O1—Zn1117.7 (2)
O2—Ba1—O4iii137.97 (9)C1—O2—Ba1156.6 (2)
O2i—Ba1—O4v66.41 (8)C5—O3—Zn1vii115.9 (2)
O2—Ba1—O4iv66.41 (8)C5—O4—Ba1viii136.2 (2)
O2—Ba1—O4v75.99 (8)Zn1ix—O5—Zn1x133.05 (11)
O2ii—Ba1—O4v137.97 (9)C8—O5—Zn1ix136.4 (2)
O2i—Ba1—O4iv137.97 (9)C8—O5—Zn1x82.97 (18)
O2i—Ba1—O7i122.7 (10)C8—O6—Zn1x100.0 (2)
O2ii—Ba1—O7ii122.7 (10)Ba1—O7—H7A127 (7)
O2—Ba1—O7122.7 (10)Ba1—O7—H7B125 (6)
O2ii—Ba1—O7i83.7 (8)H7A—O7—H7B99 (7)
O2i—Ba1—O783.7 (8)Ba1—O7A—H7AA118 (4)
O2i—Ba1—O7ii57.2 (8)Ba1—O7A—H7AB117 (4)
O2ii—Ba1—O757.2 (8)H7AA—O7A—H7AB94 (5)
O2—Ba1—O7ii83.7 (8)H8A—O8—H8Aii107.3
O2—Ba1—O7i57.2 (8)H8Ai—O8—H8Aii107.3
O2i—Ba1—O7A77.5 (5)H8A—O8—H8Ai107.3
O2ii—Ba1—O7Ai77.5 (5)H8A—O8—H8Bii83.7
O2i—Ba1—O7Ai122.7 (4)H8A—O8—H8B104.5
O2—Ba1—O7A122.7 (4)H8Ai—O8—H8Bi104.5
O2i—Ba1—O7Aii63.9 (5)H8Ai—O8—H8Bii26.4
O2ii—Ba1—O7A63.9 (5)H8A—O8—H8Bi26.4
O2—Ba1—O7Aii77.5 (5)H8B—O8—H8Ai83.7
O2ii—Ba1—O7Aii122.7 (4)H8Bii—O8—H8Aii104.5
O2—Ba1—O7Ai63.9 (5)H8Bi—O8—H8Aii83.7
O4v—Ba1—O4iii76.63 (9)H8B—O8—H8Aii26.4
O4v—Ba1—O4iv76.63 (9)H8B—O8—H8Bi78.1
O4iii—Ba1—O4iv76.63 (9)H8B—O8—H8Bii78.1
O4v—Ba1—O7ii96.3 (10)H8Bi—O8—H8Bii78.1
O4iii—Ba1—O7i150.1 (8)O1—C1—C2115.8 (3)
O4iii—Ba1—O796.3 (10)O2—C1—O1124.1 (3)
O4iii—Ba1—O7ii130.6 (8)O2—C1—C2120.1 (3)
O4v—Ba1—O7150.1 (8)C3—C2—C1119.0 (3)
O4iv—Ba1—O7ii150.1 (8)C3—C2—C9119.2 (3)
O4iv—Ba1—O7130.6 (8)C9—C2—C1121.7 (3)
O4v—Ba1—O7i130.6 (8)C2—C3—H3119.7
O4iv—Ba1—O7i96.3 (10)C4—C3—C2120.7 (3)
O4iii—Ba1—O7A98.0 (4)C4—C3—H3119.7
O4iv—Ba1—O7A137.7 (5)C3—C4—C5121.1 (3)
O4iv—Ba1—O7Ai98.0 (4)C3—C4—C6119.7 (3)
O4iv—Ba1—O7Aii143.8 (5)C6—C4—C5119.1 (3)
O4v—Ba1—O7Aii98.0 (4)O3—C5—C4117.2 (3)
O4iii—Ba1—O7Aii137.7 (5)O4—C5—O3124.3 (3)
O4v—Ba1—O7Ai137.7 (5)O4—C5—C4118.4 (3)
O4iii—Ba1—O7Ai143.8 (5)C4—C6—H6120.1
O4v—Ba1—O7A143.8 (5)C4—C6—C7119.8 (3)
O7ii—Ba1—O766.1 (16)C7—C6—H6120.1
O7ii—Ba1—O7i66.1 (16)C6—C7—C8118.9 (3)
O7—Ba1—O7i66.1 (16)C9—C7—C6120.1 (3)
O7Aii—Ba1—O7ii7.1 (7)C9—C7—C8121.0 (3)
O7A—Ba1—O7ii59.9 (8)O5—C8—C7120.3 (3)
O7Ai—Ba1—O7ii67.6 (6)O6—C8—O5120.0 (3)
O7A—Ba1—O7Ai61.9 (7)O6—C8—C7119.7 (3)
O7Aii—Ba1—O7A61.9 (7)C2—C9—H9119.9
O7Aii—Ba1—O7Ai61.9 (7)C7—C9—C2120.3 (3)
O1—Zn1—O3iv146.48 (10)C7—C9—H9119.9
Ba1—O2—C1—O1112.0 (5)C1—C2—C9—C7179.7 (3)
Ba1—O2—C1—C266.8 (7)C2—C3—C4—C5177.2 (3)
Ba1viii—O4—C5—O388.1 (4)C2—C3—C4—C62.1 (4)
Ba1viii—O4—C5—C494.3 (4)C3—C2—C9—C72.8 (4)
Zn1—O1—C1—O29.0 (4)C3—C4—C5—O34.6 (4)
Zn1—O1—C1—C2169.8 (2)C3—C4—C5—O4173.1 (3)
Zn1vii—O3—C5—O423.4 (4)C3—C4—C6—C72.9 (4)
Zn1vii—O3—C5—C4154.3 (2)C4—C6—C7—C8178.3 (3)
Zn1ix—O5—C8—O6148.6 (3)C4—C6—C7—C90.8 (5)
Zn1x—O5—C8—O61.5 (3)C5—C4—C6—C7176.4 (3)
Zn1ix—O5—C8—C733.0 (4)C6—C4—C5—O3176.0 (3)
Zn1x—O5—C8—C7176.8 (3)C6—C4—C5—O46.2 (4)
Zn1x—O6—C8—O51.8 (3)C6—C7—C8—O540.2 (4)
Zn1x—O6—C8—C7176.6 (2)C6—C7—C8—O6138.2 (3)
O1—C1—C2—C3177.2 (3)C6—C7—C9—C22.0 (5)
O1—C1—C2—C95.3 (4)C8—C7—C9—C2178.9 (3)
O2—C1—C2—C33.9 (4)C9—C2—C3—C40.7 (4)
O2—C1—C2—C9173.6 (3)C9—C7—C8—O5140.8 (3)
C1—C2—C3—C4178.3 (3)C9—C7—C8—O640.9 (4)
Symmetry codes: (i) x+y, x+1, z; (ii) y+1, xy+1, z; (iii) y, x+1, z1/2; (iv) xy+1, y+1, z1/2; (v) x, x+y, z1/2; (vi) x+y, x, z; (vii) xy, y+1, z+1/2; (viii) y1, x, z+1/2; (ix) x, x+y, z+1/2; (x) y, xy, z.
Comparison of the fluorescence quenching performance between various MOF sensors for Cu2+ ions pbpdc is ???, mbpc is ???, NH2-BDC is ???, DDCPB is ???, BTC is benzene-1,3,5-tricarboxylate, TBrTA is ???, TMA is ??? and ImH is imidazolium. top
Sensing materialKSV (M-1)LOD (µM)Reference
H3O[In(pbpdc)]·3H2O1.84 × 10310.0Dan et al. (2015)
[Zn3(mbpc)2(OH)][(CH3)2NH2]·H2O3.74 × 10340.0He et al. (2016)
[Nd2(NH2-BDC)3(DMF)4]0.36 × 10325.0Luo et al. (2017)
[Cd2(DDCPB)(DMF)2H2O]4.42 × 103314.7Li et al. (2018)
[Zn21(BTC)113-OH)34-O)3(H2O)18]·21EtOH0.29 × 1031340.0Zhou et al. (2018)
[Eu2(TBrTA)3(H2O)8·2H2O]4.61 × 10375.2Smith et al. (2019)
[BaZn3(TMA)3(H2O)3](ImH)·4H2O (1)1.49 × 1055.4This work
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds