Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111011413/qs3003sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270111011413/qs3003Isup2.hkl |
CCDC reference: 829689
For related literature, see: Braverman & LaDuca (2007); Chen et al. (2006); Eddaoudi et al. (2001); Ferey et al. (2005); Gu et al. (2008); Jiang et al. (2010); Kitagawa et al. (2004); Li et al. (2006); Liu et al. (2008); Pan et al. (2003); Roy et al. (2009); Wang, Yang, Liu, Li & Zhang (2008); Wang, Zhang, Yue & Zhang (2008); Zhang et al. (2009); Zhu et al. (2009).
A mixture of Cd(NO3)2.6H2O (34.5 mg, 0.1 mmol), H2PBEA (19.4 mg, 0.1 mmol), BTB (19.2 mg, 0.1 mmol) and NaOH (8.0 mg, 0.2 mmol) in H2O (10 ml) was sealed in a 16 ml Teflon-lined stainless steel container and heated at 413 K for 72 h. After cooling to room temperature, colourless [White given in CIF - please clarify] block crystals of (I) were collected by filtration and washed several times with water and ethanol (yield 32.5%, based on H2PBEA). Elemental analysis for C18H20CdN6O4 (Mr = 496.81): C 43.52, H 4.06, N 16.92%; found: 43.61, H 4.08, N 16.94%.
H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93 (triazole) or 0.97 Å (methylene), and with Uiso(H) = 1.2Ueq(C).
Data collection: SMART (Bruker 2000); cell refinement: SAINT (Bruker 2000); data reduction: SAINT (Bruker 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
[Cd(C10H8O4)(C8H12N6)] | F(000) = 1000 |
Mr = 496.81 | Dx = 1.743 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5534 reflections |
a = 9.8072 (5) Å | θ = 2.2–28.1° |
b = 17.1235 (9) Å | µ = 1.19 mm−1 |
c = 14.6837 (6) Å | T = 290 K |
β = 129.866 (2)° | Block, white |
V = 1892.68 (17) Å3 | 0.25 × 0.21 × 0.17 mm |
Z = 4 |
Bruker SMART? CCD area-detector diffractometer | 3380 independent reflections |
Radiation source: fine-focus sealed tube | 2930 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
ϕ and ω scans | θmax = 25.1°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −11→7 |
Tmin = 0.75, Tmax = 0.816 | k = −20→20 |
9517 measured reflections | l = −8→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.060 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.90 | w = 1/[σ2(Fo2) + (0.0387P)2] where P = (Fo2 + 2Fc2)/3 |
3380 reflections | (Δ/σ)max = 0.004 |
266 parameters | Δρmax = 0.66 e Å−3 |
0 restraints | Δρmin = −0.69 e Å−3 |
[Cd(C10H8O4)(C8H12N6)] | V = 1892.68 (17) Å3 |
Mr = 496.81 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.8072 (5) Å | µ = 1.19 mm−1 |
b = 17.1235 (9) Å | T = 290 K |
c = 14.6837 (6) Å | 0.25 × 0.21 × 0.17 mm |
β = 129.866 (2)° |
Bruker SMART? CCD area-detector diffractometer | 3380 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 2930 reflections with I > 2σ(I) |
Tmin = 0.75, Tmax = 0.816 | Rint = 0.050 |
9517 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 0 restraints |
wR(F2) = 0.060 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.90 | Δρmax = 0.66 e Å−3 |
3380 reflections | Δρmin = −0.69 e Å−3 |
266 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N4 | 0.7533 (3) | 0.40203 (12) | 0.97579 (19) | 0.0372 (5) | |
C7 | 0.9193 (4) | 0.39807 (18) | 1.0123 (3) | 0.0491 (7) | |
H7 | 1.0191 | 0.3910 | 1.0914 | 0.059* | |
N5 | 0.9295 (3) | 0.40501 (15) | 0.9278 (2) | 0.0555 (7) | |
C8 | 0.6561 (4) | 0.41168 (15) | 0.8605 (3) | 0.0416 (6) | |
N6 | 0.7559 (3) | 0.41408 (11) | 0.82959 (19) | 0.0388 (5) | |
C6 | 0.7063 (4) | 0.43112 (16) | 0.7140 (2) | 0.0439 (6) | |
Cd1 | 0.672989 (19) | 0.413547 (9) | 0.093614 (13) | 0.02599 (8) | |
O1 | 0.9121 (2) | 0.31542 (10) | 0.22481 (15) | 0.0437 (4) | |
O2 | 0.9654 (2) | 0.44107 (10) | 0.25622 (15) | 0.0395 (4) | |
O3 | 1.4234 (2) | 0.32343 (10) | 0.95406 (15) | 0.0416 (4) | |
O4 | 1.3812 (2) | 0.44795 (10) | 0.92418 (15) | 0.0475 (5) | |
N1 | 0.5945 (3) | 0.38750 (13) | 0.21005 (18) | 0.0372 (5) | |
N2 | 0.4250 (3) | 0.37661 (13) | 0.26298 (19) | 0.0422 (5) | |
N3 | 0.5930 (3) | 0.34905 (11) | 0.35077 (17) | 0.0332 (4) | |
C1 | 0.4337 (4) | 0.39860 (15) | 0.1806 (2) | 0.0378 (6) | |
H1 | 0.3374 | 0.4199 | 0.1084 | 0.045* | |
C2 | 0.6891 (3) | 0.35636 (15) | 0.3173 (2) | 0.0396 (6) | |
H2 | 0.8076 | 0.3416 | 0.3629 | 0.048* | |
C3 | 0.6424 (3) | 0.31997 (14) | 0.4616 (2) | 0.0381 (6) | |
H3A | 0.7525 | 0.2908 | 0.5042 | 0.046* | |
H3B | 0.5510 | 0.2849 | 0.4445 | 0.046* | |
C4 | 0.6657 (3) | 0.38653 (15) | 0.5381 (2) | 0.0338 (5) | |
H4A | 0.5630 | 0.4206 | 0.4903 | 0.041* | |
H4B | 0.7692 | 0.4167 | 0.5647 | 0.041* | |
C5 | 0.6885 (3) | 0.35974 (14) | 0.6472 (2) | 0.0344 (5) | |
H5A | 0.5862 | 0.3293 | 0.6223 | 0.041* | |
H5B | 0.7936 | 0.3273 | 0.6979 | 0.041* | |
H6A | 0.7956 | 0.4654 | 0.7263 | 0.041* | |
H6B | 0.5944 | 0.4591 | 0.6664 | 0.041* | |
C9 | 1.0126 (3) | 0.37081 (14) | 0.2853 (2) | 0.0305 (5) | |
C10 | 1.1984 (3) | 0.35538 (15) | 0.4023 (2) | 0.0375 (6) | |
H10A | 1.2402 | 0.3047 | 0.3998 | 0.045* | |
H10B | 1.2802 | 0.3949 | 0.4153 | 0.045* | |
C11 | 1.1911 (3) | 0.35738 (14) | 0.5017 (2) | 0.0323 (5) | |
C12 | 1.1880 (4) | 0.28948 (15) | 0.5520 (2) | 0.0464 (7) | |
H12 | 1.1967 | 0.2414 | 0.5265 | 0.056* | |
C13 | 1.1724 (4) | 0.29185 (15) | 0.6388 (2) | 0.0455 (7) | |
H13 | 1.1726 | 0.2453 | 0.6717 | 0.055* | |
C14 | 1.1564 (3) | 0.36186 (13) | 0.67815 (19) | 0.0298 (5) | |
C15 | 1.1600 (4) | 0.43003 (14) | 0.6287 (2) | 0.0385 (6) | |
H15 | 1.1505 | 0.4780 | 0.6539 | 0.046* | |
C16 | 1.1776 (4) | 0.42781 (14) | 0.5424 (2) | 0.0385 (6) | |
H16 | 1.1804 | 0.4744 | 0.5110 | 0.046* | |
C17 | 1.1427 (3) | 0.36511 (14) | 0.7745 (2) | 0.0328 (5) | |
H17A | 1.0947 | 0.3164 | 0.7769 | 0.039* | |
H17B | 1.0634 | 0.4070 | 0.7585 | 0.039* | |
C18 | 1.3254 (3) | 0.37895 (15) | 0.89228 (19) | 0.0283 (5) | |
H8 | 0.533 (4) | 0.4153 (14) | 0.804 (3) | 0.052 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N4 | 0.0407 (12) | 0.0471 (13) | 0.0331 (12) | 0.0077 (9) | 0.0280 (11) | 0.0051 (9) |
C7 | 0.0410 (16) | 0.077 (2) | 0.0337 (15) | 0.0099 (14) | 0.0259 (14) | 0.0081 (14) |
N5 | 0.0481 (15) | 0.088 (2) | 0.0446 (15) | 0.0125 (12) | 0.0365 (14) | 0.0116 (13) |
C8 | 0.0374 (15) | 0.0565 (18) | 0.0354 (15) | 0.0056 (12) | 0.0254 (14) | 0.0037 (12) |
N6 | 0.0462 (13) | 0.0463 (13) | 0.0353 (13) | 0.0107 (9) | 0.0313 (12) | 0.0066 (9) |
C6 | 0.0589 (17) | 0.0515 (16) | 0.0366 (15) | 0.0124 (13) | 0.0376 (14) | 0.0109 (12) |
Cd1 | 0.02463 (11) | 0.03296 (12) | 0.02093 (11) | 0.00226 (6) | 0.01485 (9) | 0.00190 (6) |
O1 | 0.0374 (9) | 0.0393 (10) | 0.0387 (10) | −0.0009 (8) | 0.0173 (9) | −0.0012 (8) |
O2 | 0.0369 (9) | 0.0343 (9) | 0.0349 (10) | 0.0067 (8) | 0.0173 (8) | 0.0022 (8) |
O3 | 0.0347 (10) | 0.0367 (10) | 0.0356 (10) | 0.0058 (8) | 0.0144 (9) | 0.0030 (8) |
O4 | 0.0363 (9) | 0.0284 (10) | 0.0425 (11) | 0.0005 (8) | 0.0091 (9) | −0.0027 (8) |
N1 | 0.0377 (12) | 0.0489 (12) | 0.0311 (11) | −0.0029 (10) | 0.0249 (10) | 0.0005 (10) |
N2 | 0.0409 (12) | 0.0551 (14) | 0.0404 (13) | 0.0016 (11) | 0.0306 (11) | 0.0036 (11) |
N3 | 0.0371 (11) | 0.0391 (11) | 0.0300 (11) | −0.0030 (9) | 0.0245 (10) | −0.0019 (9) |
C1 | 0.0382 (14) | 0.0465 (15) | 0.0313 (14) | 0.0000 (11) | 0.0234 (13) | −0.0003 (11) |
C2 | 0.0357 (13) | 0.0557 (16) | 0.0337 (14) | 0.0014 (12) | 0.0251 (12) | 0.0026 (12) |
C3 | 0.0460 (14) | 0.0417 (15) | 0.0373 (14) | −0.0012 (11) | 0.0317 (13) | 0.0050 (11) |
C4 | 0.0327 (13) | 0.0430 (13) | 0.0298 (13) | −0.0030 (11) | 0.0220 (12) | 0.0019 (11) |
C5 | 0.0327 (12) | 0.0460 (15) | 0.0310 (13) | 0.0013 (11) | 0.0235 (11) | 0.0056 (11) |
C9 | 0.0295 (12) | 0.0428 (15) | 0.0244 (12) | 0.0075 (11) | 0.0197 (11) | 0.0061 (11) |
C10 | 0.0291 (12) | 0.0455 (15) | 0.0333 (14) | 0.0099 (11) | 0.0179 (12) | 0.0047 (11) |
C11 | 0.0232 (11) | 0.0396 (14) | 0.0239 (12) | 0.0056 (10) | 0.0104 (10) | 0.0025 (10) |
C12 | 0.0653 (18) | 0.0315 (14) | 0.0421 (15) | 0.0099 (12) | 0.0344 (15) | 0.0003 (12) |
C13 | 0.0655 (18) | 0.0294 (13) | 0.0410 (15) | 0.0016 (12) | 0.0338 (15) | 0.0039 (11) |
C14 | 0.0228 (11) | 0.0324 (13) | 0.0232 (12) | −0.0028 (9) | 0.0097 (10) | −0.0011 (9) |
C15 | 0.0465 (15) | 0.0293 (13) | 0.0335 (14) | 0.0011 (11) | 0.0229 (13) | −0.0032 (10) |
C16 | 0.0478 (15) | 0.0295 (13) | 0.0346 (14) | −0.0019 (11) | 0.0249 (13) | 0.0036 (10) |
C17 | 0.0255 (12) | 0.0374 (14) | 0.0292 (13) | −0.0014 (10) | 0.0146 (11) | −0.0009 (10) |
C18 | 0.0283 (12) | 0.0324 (13) | 0.0263 (12) | −0.0032 (10) | 0.0184 (11) | −0.0061 (10) |
N4—C8 | 1.316 (3) | N3—C2 | 1.320 (3) |
N4—C7 | 1.351 (4) | N3—C3 | 1.456 (3) |
N4—Cd1i | 2.324 (2) | C1—H1 | 0.9300 |
C7—N5 | 1.311 (4) | C2—H2 | 0.9300 |
C7—H7 | 0.9300 | C3—C4 | 1.511 (3) |
N5—N6 | 1.362 (3) | C3—H3A | 0.9700 |
C8—N6 | 1.317 (3) | C3—H3B | 0.9700 |
C8—H8 | 0.93 (3) | C4—C5 | 1.539 (3) |
N6—C6 | 1.464 (3) | C4—H4A | 0.9700 |
C6—C5 | 1.505 (3) | C4—H4B | 0.9700 |
C6—H6A | 0.9700 | C5—H5A | 0.9700 |
C6—H6B | 0.9690 | C5—H5B | 0.9700 |
Cd1—O2 | 2.3171 (17) | C9—C10 | 1.526 (3) |
Cd1—N4ii | 2.324 (2) | C10—C11 | 1.506 (3) |
Cd1—N1 | 2.3243 (19) | C10—H10A | 0.9700 |
Cd1—O4iii | 2.3662 (17) | C10—H10B | 0.9700 |
Cd1—O4iv | 2.4077 (17) | C11—C16 | 1.389 (3) |
Cd1—O3iii | 2.4780 (17) | C11—C12 | 1.388 (4) |
Cd1—O1 | 2.4984 (17) | C12—C13 | 1.380 (4) |
O1—C9 | 1.240 (3) | C12—H12 | 0.9300 |
O2—C9 | 1.261 (3) | C13—C14 | 1.382 (3) |
O3—C18 | 1.238 (3) | C13—H13 | 0.9300 |
O3—Cd1v | 2.4780 (17) | C14—C15 | 1.387 (3) |
O4—C18 | 1.260 (3) | C14—C17 | 1.506 (3) |
O4—Cd1v | 2.3662 (17) | C15—C16 | 1.385 (4) |
O4—Cd1iv | 2.4077 (17) | C15—H15 | 0.9300 |
N1—C2 | 1.323 (3) | C16—H16 | 0.9300 |
N1—C1 | 1.355 (3) | C17—C18 | 1.512 (3) |
N2—C1 | 1.320 (3) | C17—H17A | 0.9700 |
N2—N3 | 1.369 (3) | C17—H17B | 0.9700 |
C8—N4—C7 | 102.2 (2) | N3—C2—H2 | 124.5 |
C8—N4—Cd1i | 129.44 (18) | N1—C2—H2 | 124.5 |
C7—N4—Cd1i | 127.35 (18) | N3—C3—C4 | 110.9 (2) |
N5—C7—N4 | 115.0 (3) | N3—C3—H3A | 109.5 |
N5—C7—H7 | 122.5 | C4—C3—H3A | 109.5 |
N4—C7—H7 | 122.5 | N3—C3—H3B | 109.5 |
C7—N5—N6 | 102.2 (2) | C4—C3—H3B | 109.5 |
N4—C8—N6 | 111.2 (2) | H3A—C3—H3B | 108.1 |
N4—C8—H8 | 128.3 (18) | C3—C4—C5 | 113.6 (2) |
N6—C8—H8 | 120.5 (18) | C3—C4—H4A | 108.8 |
C8—N6—N5 | 109.4 (2) | C5—C4—H4A | 108.8 |
C8—N6—C6 | 129.6 (2) | C3—C4—H4B | 108.8 |
N5—N6—C6 | 120.8 (2) | C5—C4—H4B | 108.8 |
N6—C6—C5 | 114.0 (2) | H4A—C4—H4B | 107.7 |
N6—C6—H6A | 108.4 | C6—C5—C4 | 108.36 (19) |
C5—C6—H6A | 109.0 | C6—C5—H5A | 110.0 |
N6—C6—H6B | 108.5 | C4—C5—H5A | 110.0 |
C5—C6—H6B | 109.1 | C6—C5—H5B | 110.0 |
H6A—C6—H6B | 107.7 | C4—C5—H5B | 110.0 |
O2—Cd1—N4ii | 89.90 (7) | H5A—C5—H5B | 108.4 |
O2—Cd1—N1 | 93.20 (7) | O1—C9—O2 | 122.4 (2) |
N4ii—Cd1—N1 | 164.07 (8) | O1—C9—C10 | 120.1 (2) |
O2—Cd1—O4iii | 153.73 (7) | O2—C9—C10 | 117.4 (2) |
N4ii—Cd1—O4iii | 89.83 (7) | C11—C10—C9 | 108.84 (18) |
N1—Cd1—O4iii | 94.22 (7) | C11—C10—H10A | 109.9 |
O2—Cd1—O4iv | 87.29 (6) | C9—C10—H10A | 109.9 |
N4ii—Cd1—O4iv | 99.17 (7) | C11—C10—H10B | 109.9 |
N1—Cd1—O4iv | 96.59 (7) | C9—C10—H10B | 109.9 |
O4iii—Cd1—O4iv | 66.84 (7) | H10A—C10—H10B | 108.3 |
O2—Cd1—O3iii | 153.22 (6) | C16—C11—C12 | 117.3 (2) |
N4ii—Cd1—O3iii | 87.58 (7) | C16—C11—C10 | 120.8 (2) |
N1—Cd1—O3iii | 82.62 (7) | C12—C11—C10 | 121.8 (2) |
O4iii—Cd1—O3iii | 52.97 (5) | C13—C12—C11 | 121.4 (2) |
O4iv—Cd1—O3iii | 119.43 (6) | C13—C12—H12 | 119.3 |
O2—Cd1—O1 | 54.00 (6) | C11—C12—H12 | 119.3 |
N4ii—Cd1—O1 | 85.33 (7) | C12—C13—C14 | 121.4 (2) |
N1—Cd1—O1 | 83.89 (7) | C12—C13—H13 | 119.3 |
O4iii—Cd1—O1 | 152.00 (6) | C14—C13—H13 | 119.3 |
O4iv—Cd1—O1 | 141.16 (6) | C13—C14—C15 | 117.6 (2) |
O3iii—Cd1—O1 | 99.21 (6) | C13—C14—C17 | 121.8 (2) |
C9—O1—Cd1 | 87.72 (14) | C15—C14—C17 | 120.6 (2) |
C9—O2—Cd1 | 95.64 (14) | C14—C15—C16 | 121.1 (2) |
C18—O3—Cd1v | 91.11 (14) | C14—C15—H15 | 119.5 |
C18—O4—Cd1v | 95.84 (14) | C16—C15—H15 | 119.5 |
C18—O4—Cd1iv | 150.54 (15) | C11—C16—C15 | 121.3 (2) |
Cd1v—O4—Cd1iv | 113.16 (7) | C11—C16—H16 | 119.4 |
C2—N1—C1 | 102.8 (2) | C15—C16—H16 | 119.4 |
C2—N1—Cd1 | 129.93 (17) | C14—C17—C18 | 109.06 (18) |
C1—N1—Cd1 | 127.22 (17) | C14—C17—H17A | 109.9 |
C1—N2—N3 | 102.5 (2) | C18—C17—H17A | 109.9 |
C2—N3—N2 | 109.38 (19) | C14—C17—H17B | 109.9 |
C2—N3—C3 | 130.1 (2) | C18—C17—H17B | 109.9 |
N2—N3—C3 | 120.53 (18) | H17A—C17—H17B | 108.3 |
N2—C1—N1 | 114.4 (2) | O3—C18—O4 | 120.0 (2) |
N2—C1—H1 | 122.8 | O3—C18—C17 | 120.8 (2) |
N1—C1—H1 | 122.8 | O4—C18—C17 | 119.1 (2) |
N3—C2—N1 | 111.0 (2) |
Symmetry codes: (i) x, y, z+1; (ii) x, y, z−1; (iii) x−1, y, z−1; (iv) −x+2, −y+1, −z+1; (v) x+1, y, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3B···O3vi | 0.97 | 2.29 | 3.220 (3) | 160 |
Symmetry code: (vi) x−1, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cd(C10H8O4)(C8H12N6)] |
Mr | 496.81 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 290 |
a, b, c (Å) | 9.8072 (5), 17.1235 (9), 14.6837 (6) |
β (°) | 129.866 (2) |
V (Å3) | 1892.68 (17) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.19 |
Crystal size (mm) | 0.25 × 0.21 × 0.17 |
Data collection | |
Diffractometer | Bruker SMART? CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.75, 0.816 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9517, 3380, 2930 |
Rint | 0.050 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.060, 0.90 |
No. of reflections | 3380 |
No. of parameters | 266 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.66, −0.69 |
Computer programs: SMART (Bruker 2000), SAINT (Bruker 2000), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3B···O3i | 0.97 | 2.29 | 3.220 (3) | 159.6 |
Symmetry code: (i) x−1, −y+1/2, z−1/2. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
Considerable attention has been paid to the construction of highly connected metal–organic frameworks (MOFs) with enhanced stability and stable porosity, not only because of their fascinating structures and topologies but also owing to their potential applications in many fields (Kitagawa et al., 2004; Ferey et al., 2005; Roy et al., 2009; Zhang et al., 2009; Jiang et al., 2010). A feasible pathway toward highly connected MOFs is to use the polynuclear metal cluster as a secondary building unit (SBU), because this cluster can effectively reduce the steric hindrance between organic ligands. The mainstream method of constructing such clusters is to utilize carboxylate-containing ligands, since carboxylate groups have excellent coordination capability and flexible coordination patterns. Furthermore, carboxylate groups can prompt core aggregation via bridging metal ions (Eddaoudi et al., 2001).
Compared with the corresponding rigid terephthalic acid, benzene-1,4-diacetic acid (H2PBEA) may show a variety of coordination modes and conformations owing to the increased flexibility of its two carboxylate groups (Pan et al., 2003; Chen et al., 2006; Braverman & LaDuca, 2007; Wang, Yang et al., 2008 or Wang, Zhang et al., 2008). Meanwhile, 1,4-bis(1,2,4-triazol-1-yl)butane (BTB) can adopt different conformations on the basis of the relative orientation of its CH2 groups (Li et al., 2006; Gu et al., 2008; Wang, Yang et al., 2008 or Wang, Zhang et al., 2008; Zhu et al., 2009). However, to the best of our knowledge, coordination polymers constructed from H2PBEA and BTB ligands have not been documented so far. Here, we have selected H2PBEA and BTB as organic linkers, generating the title new CdII coordination polymer, [Cd(BTB)(PBEA)]n, (I), the crystal structure of which we now report.
Compound (I) crystallizes in the monoclinic space group P21/c, and the asymmetric unit contains one CdII ion, one PBEA2- ligand and one BTB molecule. Each CdII centre is seven-coordinated by two triazole N atoms (N1 and N4v [(iii) in Fig. 1?]) from two different BTB ligands and five O atoms (O1, O2, O3i, O4i and O4ii) from three distinct PBEA2- ligands, resulting in a distorted pentagonal-bipyramid geometry (Fig. 1) [symmetry codes: (i) x - 1, y, z - 1; (ii) -x + 2, -y + 1, -z + 1; (v) [(iii)?] x, y, z - 1]. The equatorial plane is defined by the carboxylate O atoms, while the axial positions are occupied by two BTB N atoms. The Cd—N bond lengths are 2.323 (2) and 2.324 (2) Å, while the Cd—O bond lengths vary greatly from 2.3175 (17) to 2.4986(17 Å. The average Cd—O and Cd—N distances in (I) are comparable with those reported for Cd-based compounds (Liu et al., 2008).
Importantly, each H2PBEA ligand in (I) is completely deprotonated and links three CdII atoms, while there are two coordination patterns for the PBEA2- ligand, one in a µ1-η1:η1 chelating mode and the other in a µ2-η2:η1 briding mode. Two crystallographically equivalent CdII atoms are bridged by two tridentate bridging carboxylate groups to form a binuclear motif (the SBU), with a Cd—Cd separation of 3.985 (3) Å, and the SBUs are joined by PBEA2- ligands to form an infinite ladder-like one-dimensional chain along (110). The separation between the SBUs in the chain is 11.2773 (6) Å. Furthermore, a two-dimensional layer (Fig. 2) perpendicular to the b axis is formed by SBUs double-joined by both BTB and PBEA2- units. The Miller indices of this plane are (220), in which the BTB molecule shows a trans-trans-trans conformation with a Cd···Cd separation of 14.6837 (8). These sheets are further arranged parallel to the (100) plane and connected by hydrogen bonds, which are formed between alkyl atom C3 and a neighbouring carboxylate atom O3 [C3—H3B···O3vi; symmetry code: (vi) -1 + x, 1/2 - y, -1/2 + z].
In conclusion, we have synthesized a two-dimensional coordination polymer based on the secondary building unit [Cd2(CO2)4N2O2], in which the PBEA2- ligand forms a one-dimensional chain based on a dinuclear Cd2 SBU and the BTB ligand is used to extend the framework.