Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of methyl α-D-manno­pyranosyl-(1→3)-2-O-acetyl-β-D-manno­pyran­oside monohydrate, C15H26O12·H2O, (II), has been determined and the structural parameters for its constituent α-D-manno­pyranosyl residue compared with those for methyl α-D-manno­pyran­oside. Mono-O-acetyl­ation appears to promote the crystallization of (II), inferred from the difficulty in crystallizing methyl α-D-manno­pyranosyl-(1→3)-β-D-manno­pyran­oside despite repeated attempts. The conformational properties of the O-acetyl side chain in (II) are similar to those observed in recent studies of peracetyl­ated mannose-containing oligosaccharides, having a preferred geometry in which the C2—H2 bond eclipses the C=O bond of the acetyl group. The C2—O2 bond in (II) elongates by ∼0.02 Å upon O-acetyl­ation. The phi (φ) and psi (ψ) torsion angles that dictate the conformation of the inter­nal O-glycosidic linkage in (II) are similar to those determined recently in aqueous solution by NMR spectroscopy for unacetyl­ated (II) using the statistical program MA′AT, with a greater dis­parity found for ψ (Δ = ∼16°) than for φ (Δ = ∼6°).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619004728/qs3082sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619004728/qs3082Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229619004728/qs3082sup3.pdf
NMR chemical shifts in disaccharide (II)

CCDC reference: 1908451

Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Methyl α-D-mannopyranosyl-(1-3)-2-O-Acetyl-β-D-mannopyranoside monohydrate top
Crystal data top
C15H26O12·H2ODx = 1.472 Mg m3
Mr = 416.37Cu Kα radiation, λ = 1.54184 Å
Hexagonal, P65Cell parameters from 9714 reflections
a = 7.8682 (3) Åθ = 6.5–72.2°
c = 52.555 (3) ŵ = 1.13 mm1
V = 2817.7 (3) Å3T = 120 K
Z = 6Block, colourless
F(000) = 13320.30 × 0.23 × 0.14 mm
Data collection top
Bruker APEXII
diffractometer
3719 independent reflections
Radiation source: Incoatec micro-focus3719 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.021
combination of ω and φ–scansθmax = 72.6°, θmin = 5.1°
Absorption correction: numerical
(SADABS; Krause et al., 2015)
h = 99
Tmin = 0.816, Tmax = 0.907k = 99
37134 measured reflectionsl = 6464
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0341P)2 + 0.5721P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3719 reflectionsΔρmax = 0.20 e Å3
287 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack x determined using 1835 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.028 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.05807 (18)1.00809 (19)0.54669 (3)0.0230 (3)
O20.76178 (17)0.62776 (18)0.54504 (2)0.0167 (2)
O40.31695 (19)0.68238 (19)0.50809 (2)0.0177 (3)
H4O0.216 (4)0.636 (4)0.5168 (5)0.030 (7)*
O50.75643 (17)0.97678 (18)0.54738 (2)0.0166 (3)
O60.3921 (3)0.8446 (3)0.57154 (3)0.0380 (4)
H6O0.338 (4)0.879 (5)0.5823 (6)0.039 (8)*
O70.9678 (2)0.5185 (2)0.53482 (3)0.0325 (3)
C10.8953 (2)0.9597 (3)0.53176 (3)0.0173 (3)
H10.9327081.0509030.5169080.021*
C20.8101 (2)0.7488 (2)0.52257 (3)0.0157 (3)
H20.9069760.7347400.5117610.019*
C30.6224 (3)0.6899 (2)0.50786 (3)0.0144 (3)
H30.6556730.7739810.4923230.017*
C40.4795 (2)0.7205 (2)0.52397 (3)0.0142 (3)
H40.4338400.6281090.5387620.017*
C50.5825 (2)0.9338 (2)0.53345 (3)0.0152 (3)
H50.6210691.0230950.5183850.018*
C60.4526 (3)0.9744 (3)0.55047 (3)0.0191 (3)
H6A0.5254331.1119300.5565240.023*
H6B0.3363520.9556850.5408460.023*
C71.1834 (3)1.2161 (3)0.54980 (4)0.0271 (4)
H7A1.2807571.2413430.5630740.041*
H7B1.1043041.2752160.5547270.041*
H7C1.2507861.2737390.5337170.041*
C80.8604 (2)0.5337 (3)0.54988 (4)0.0182 (3)
C90.8169 (3)0.4518 (3)0.57627 (4)0.0239 (4)
H9A0.8529070.3495860.5778210.036*
H9B0.6765640.3951130.5797790.036*
H9C0.8928920.5568610.5885070.036*
O1'0.53187 (18)0.48920 (18)0.50014 (2)0.0163 (2)
O2'0.27523 (19)0.22351 (19)0.44429 (2)0.0177 (3)
H2'O0.172 (4)0.119 (4)0.4428 (5)0.032 (7)*
O3'0.27615 (19)0.08114 (18)0.47211 (3)0.0212 (3)
H3'O0.301 (3)0.151 (4)0.4816 (5)0.018 (5)*
O4'0.6920 (2)0.05956 (19)0.46951 (2)0.0216 (3)
H4'O0.753 (5)0.048 (5)0.4571 (7)0.047 (8)*
O5'0.66923 (17)0.51175 (17)0.46008 (2)0.0148 (2)
O6'0.8987 (2)0.4274 (2)0.42393 (3)0.0251 (3)
H6'O0.816 (5)0.456 (5)0.4197 (6)0.044 (8)*
C1'0.4947 (2)0.4615 (2)0.47384 (3)0.0146 (3)
H1'0.4412940.5463910.4679250.017*
C2'0.3387 (2)0.2467 (2)0.47017 (3)0.0158 (3)
H2'0.2248190.2144830.4815980.019*
C3'0.4230 (3)0.1157 (2)0.47688 (3)0.0163 (3)
H3'0.4559950.1305320.4954160.020*
C4'0.6097 (3)0.1767 (2)0.46164 (3)0.0162 (3)
H4'0.5773730.1556030.4430930.019*
C5'0.7577 (2)0.3936 (2)0.46646 (3)0.0152 (3)
H5'0.7959640.4126900.4848330.018*
C6'0.9407 (3)0.4712 (3)0.45016 (4)0.0202 (4)
H6'A1.0199560.6153290.4522870.024*
H6'B1.0204190.4139760.4562120.024*
O1W0.1202 (2)0.1001 (2)0.43620 (3)0.0220 (3)
H1WA0.133 (4)0.130 (4)0.4204 (7)0.041 (8)*
H1WB0.174 (5)0.207 (5)0.4430 (6)0.043 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0166 (6)0.0188 (6)0.0343 (7)0.0093 (5)0.0071 (5)0.0058 (5)
O20.0181 (6)0.0186 (6)0.0172 (6)0.0120 (5)0.0012 (5)0.0010 (5)
O40.0141 (6)0.0217 (6)0.0157 (6)0.0076 (5)0.0007 (5)0.0009 (5)
O50.0170 (6)0.0193 (6)0.0161 (6)0.0110 (5)0.0027 (5)0.0041 (5)
O60.0642 (11)0.0549 (10)0.0193 (7)0.0481 (10)0.0177 (7)0.0105 (7)
O70.0292 (7)0.0345 (8)0.0446 (9)0.0241 (7)0.0147 (7)0.0118 (7)
C10.0140 (7)0.0173 (8)0.0202 (8)0.0075 (6)0.0004 (6)0.0010 (6)
C20.0170 (8)0.0160 (8)0.0160 (8)0.0098 (7)0.0039 (6)0.0012 (6)
C30.0172 (8)0.0127 (7)0.0126 (7)0.0070 (6)0.0015 (6)0.0003 (6)
C40.0146 (7)0.0161 (8)0.0115 (7)0.0074 (6)0.0006 (6)0.0002 (6)
C50.0156 (7)0.0165 (8)0.0154 (8)0.0095 (6)0.0018 (6)0.0004 (6)
C60.0225 (9)0.0220 (8)0.0175 (8)0.0146 (7)0.0003 (6)0.0027 (7)
C70.0165 (9)0.0195 (9)0.0417 (12)0.0063 (7)0.0015 (8)0.0094 (8)
C80.0110 (7)0.0158 (8)0.0270 (9)0.0061 (6)0.0024 (6)0.0032 (7)
C90.0276 (9)0.0255 (9)0.0241 (10)0.0174 (8)0.0072 (8)0.0029 (7)
O1'0.0219 (6)0.0141 (6)0.0119 (6)0.0083 (5)0.0007 (5)0.0017 (4)
O2'0.0167 (6)0.0173 (6)0.0134 (6)0.0044 (5)0.0020 (4)0.0017 (4)
O3'0.0218 (6)0.0135 (6)0.0222 (6)0.0043 (5)0.0049 (5)0.0018 (5)
O4'0.0291 (7)0.0228 (6)0.0201 (6)0.0183 (6)0.0052 (5)0.0039 (5)
O5'0.0168 (6)0.0134 (5)0.0135 (5)0.0070 (5)0.0026 (4)0.0007 (4)
O6'0.0249 (7)0.0293 (7)0.0202 (7)0.0130 (6)0.0075 (5)0.0021 (5)
C1'0.0165 (8)0.0151 (7)0.0121 (7)0.0079 (6)0.0021 (6)0.0007 (6)
C2'0.0151 (8)0.0173 (8)0.0119 (7)0.0059 (7)0.0011 (6)0.0008 (6)
C3'0.0173 (8)0.0131 (8)0.0147 (8)0.0048 (7)0.0008 (6)0.0002 (6)
C4'0.0203 (8)0.0150 (8)0.0142 (7)0.0096 (7)0.0004 (6)0.0006 (6)
C5'0.0172 (8)0.0156 (8)0.0139 (8)0.0090 (7)0.0014 (6)0.0024 (6)
C6'0.0175 (8)0.0195 (8)0.0219 (9)0.0081 (7)0.0018 (7)0.0013 (7)
O1W0.0264 (7)0.0186 (7)0.0197 (7)0.0102 (6)0.0002 (5)0.0010 (5)
Geometric parameters (Å, º) top
O1—C11.383 (2)C9—H9A0.9800
O1—C71.437 (2)C9—H9B0.9800
O2—C81.337 (2)C9—H9C0.9800
O2—C21.444 (2)O1'—C1'1.407 (2)
O4—C41.428 (2)O2'—C2'1.429 (2)
O4—H4O0.83 (3)O2'—H2'O0.82 (3)
O5—C11.426 (2)O3'—C3'1.417 (2)
O5—C51.435 (2)O3'—H3'O0.84 (3)
O6—C61.417 (2)O4'—C4'1.428 (2)
O6—H6O0.83 (3)O4'—H4'O0.84 (4)
O7—C81.207 (2)O5'—C1'1.422 (2)
C1—C21.524 (2)O5'—C5'1.452 (2)
C1—H11.0000O6'—C6'1.419 (2)
C2—C31.520 (2)O6'—H6'O0.82 (4)
C2—H21.0000C1'—C2'1.525 (2)
C3—O1'1.429 (2)C1'—H1'1.0000
C3—C41.520 (2)C2'—C3'1.521 (2)
C3—H31.0000C2'—H2'1.0000
C4—C51.537 (2)C3'—C4'1.524 (2)
C4—H41.0000C3'—H3'1.0000
C5—C61.508 (2)C4'—C5'1.531 (2)
C5—H51.0000C4'—H4'1.0000
C6—H6A0.9900C5'—C6'1.517 (2)
C6—H6B0.9900C5'—H5'1.0000
C7—H7A0.9800C6'—H6'A0.9900
C7—H7B0.9800C6'—H6'B0.9900
C7—H7C0.9800O1W—H1WA0.86 (3)
C8—C91.495 (3)O1W—H1WB0.81 (4)
C1—O1—C7113.08 (14)C8—C9—H9A109.5
C8—O2—C2119.09 (13)C8—C9—H9B109.5
C4—O4—H4O109.2 (18)H9A—C9—H9B109.5
C1—O5—C5111.68 (12)C8—C9—H9C109.5
C6—O6—H6O110 (2)H9A—C9—H9C109.5
O1—C1—O5107.16 (14)H9B—C9—H9C109.5
O1—C1—C2108.81 (14)C1'—O1'—C3113.60 (13)
O5—C1—C2110.15 (14)C2'—O2'—H2'O109 (2)
O1—C1—H1110.2C3'—O3'—H3'O106.5 (17)
O5—C1—H1110.2C4'—O4'—H4'O108 (2)
C2—C1—H1110.2C1'—O5'—C5'114.20 (12)
O2—C2—C3108.63 (13)C6'—O6'—H6'O108 (2)
O2—C2—C1106.63 (13)O1'—C1'—O5'111.09 (13)
C3—C2—C1108.94 (14)O1'—C1'—C2'106.59 (13)
O2—C2—H2110.8O5'—C1'—C2'111.97 (13)
C3—C2—H2110.8O1'—C1'—H1'109.0
C1—C2—H2110.8O5'—C1'—H1'109.0
O1'—C3—C4109.51 (14)C2'—C1'—H1'109.0
O1'—C3—C2110.66 (13)O2'—C2'—C3'112.14 (14)
C4—C3—C2110.58 (13)O2'—C2'—C1'107.36 (13)
O1'—C3—H3108.7C3'—C2'—C1'109.84 (14)
C4—C3—H3108.7O2'—C2'—H2'109.1
C2—C3—H3108.7C3'—C2'—H2'109.1
O4—C4—C3107.27 (13)C1'—C2'—H2'109.1
O4—C4—C5110.30 (13)O3'—C3'—C2'107.83 (14)
C3—C4—C5108.98 (13)O3'—C3'—C4'112.47 (14)
O4—C4—H4110.1C2'—C3'—C4'110.07 (14)
C3—C4—H4110.1O3'—C3'—H3'108.8
C5—C4—H4110.1C2'—C3'—H3'108.8
O5—C5—C6108.35 (14)C4'—C3'—H3'108.8
O5—C5—C4110.08 (13)O4'—C4'—C3'108.75 (14)
C6—C5—C4112.36 (14)O4'—C4'—C5'109.48 (14)
O5—C5—H5108.7C3'—C4'—C5'109.90 (14)
C6—C5—H5108.7O4'—C4'—H4'109.6
C4—C5—H5108.7C3'—C4'—H4'109.6
O6—C6—C5109.25 (14)C5'—C4'—H4'109.6
O6—C6—H6A109.8O5'—C5'—C6'105.90 (14)
C5—C6—H6A109.8O5'—C5'—C4'109.51 (14)
O6—C6—H6B109.8C6'—C5'—C4'113.28 (14)
C5—C6—H6B109.8O5'—C5'—H5'109.4
H6A—C6—H6B108.3C6'—C5'—H5'109.4
O1—C7—H7A109.5C4'—C5'—H5'109.4
O1—C7—H7B109.5O6'—C6'—C5'113.09 (15)
H7A—C7—H7B109.5O6'—C6'—H6'A109.0
O1—C7—H7C109.5C5'—C6'—H6'A109.0
H7A—C7—H7C109.5O6'—C6'—H6'B109.0
H7B—C7—H7C109.5C5'—C6'—H6'B109.0
O7—C8—O2123.98 (18)H6'A—C6'—H6'B107.8
O7—C8—C9125.89 (17)H1WA—O1W—H1WB102 (3)
O2—C8—C9110.13 (15)
C7—O1—C1—O579.07 (18)C2—O2—C8—C9168.49 (15)
C7—O1—C1—C2161.85 (15)C4—C3—O1'—C1'112.13 (15)
C5—O5—C1—O1178.65 (13)C2—C3—O1'—C1'125.72 (15)
C5—O5—C1—C263.13 (18)C3—O1'—C1'—O5'77.51 (16)
C8—O2—C2—C3128.63 (15)C3—O1'—C1'—C2'160.26 (13)
C8—O2—C2—C1114.09 (16)C5'—O5'—C1'—O1'61.63 (17)
O1—C1—C2—O258.60 (17)C5'—O5'—C1'—C2'57.43 (18)
O5—C1—C2—O258.59 (17)O1'—C1'—C2'—O2'170.46 (13)
O1—C1—C2—C3175.67 (14)O5'—C1'—C2'—O2'67.87 (17)
O5—C1—C2—C358.48 (18)O1'—C1'—C2'—C3'67.36 (16)
O2—C2—C3—O1'60.93 (16)O5'—C1'—C2'—C3'54.31 (18)
C1—C2—C3—O1'176.72 (13)O2'—C2'—C3'—O3'58.14 (17)
O2—C2—C3—C460.60 (17)C1'—C2'—C3'—O3'177.43 (13)
C1—C2—C3—C455.19 (17)O2'—C2'—C3'—C4'64.88 (18)
O1'—C3—C4—O463.88 (16)C1'—C2'—C3'—C4'54.41 (18)
C2—C3—C4—O4173.92 (13)O3'—C3'—C4'—O4'63.40 (18)
O1'—C3—C4—C5176.70 (13)C2'—C3'—C4'—O4'176.35 (13)
C2—C3—C4—C554.50 (17)O3'—C3'—C4'—C5'176.78 (13)
C1—O5—C5—C6174.48 (14)C2'—C3'—C4'—C5'56.52 (18)
C1—O5—C5—C462.30 (17)C1'—O5'—C5'—C6'179.33 (14)
O4—C4—C5—O5174.52 (13)C1'—O5'—C5'—C4'58.19 (17)
C3—C4—C5—O557.00 (17)O4'—C4'—C5'—O5'176.17 (13)
O4—C4—C5—C664.63 (18)C3'—C4'—C5'—O5'56.79 (18)
C3—C4—C5—C6177.85 (14)O4'—C4'—C5'—C6'65.87 (19)
O5—C5—C6—O663.86 (19)C3'—C4'—C5'—C6'174.75 (15)
C4—C5—C6—O658.0 (2)O5'—C5'—C6'—O6'69.90 (18)
C2—O2—C8—O711.7 (3)C4'—C5'—C6'—O6'50.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O7i0.83 (3)1.94 (3)2.764 (2)175 (3)
O6—H6O···O2ii0.83 (3)1.96 (3)2.793 (2)173 (3)
O2—H2O···O1W0.82 (3)2.10 (3)2.902 (2)165 (3)
O3—H3O···O4iii0.84 (3)1.96 (3)2.7820 (19)168 (2)
O4—H4O···O1Wiv0.84 (4)2.17 (3)2.9463 (19)153 (3)
O6—H6O···O6v0.82 (4)2.06 (4)2.819 (2)153 (3)
O1W—H1WA···O1vi0.86 (3)2.58 (3)3.224 (2)133 (3)
O1W—H1WA···O5vi0.86 (3)2.23 (3)3.0838 (18)170 (3)
O1W—H1WB···O5vii0.81 (4)2.12 (4)2.9303 (19)177 (3)
Symmetry codes: (i) x1, y, z; (ii) y, x+y+1, z+1/6; (iii) x, y1, z; (iv) x+1, y, z; (v) xy+1, x, z1/6; (vi) xy, x1, z1/6; (vii) x1, y1, z.
Selected bond lengths, bond angles, and torsion angles in methyl α-D-mannopyranosyl-(13)-2-O-acetyl-β-D-mannopyranoside monohydrate, (II), and methyl α-D-mannopyranoside, (III) top
Structural parameterCompound/residue
(II) (R1)a(II) (R2)d(III)c
Bond lengths (Å)
C1—C21.5241.5251.524
C2—C31.5201.5201.529
C3—C41.5201.5251.519
C4—C51.5371.5311.529
C5—C61.5081.5171.518
C1—O11.3831.4071.400
C1—O51.4261.4221.415
C2—O21.4441.4291.415
C3—O1'1.429
C3—O31.4171.422
C4—O41.4281.4271.430
C5—O51.4351.4521.435
C6—O61.4181.4191.413
O1—CH31.4371.423
Bond angles (°)
C5—O5—C1111.68
C5'—O5'—C1'114.21114.29
C1'—O1'—C3113.60
C1—O1—CH3113.07113.91
C2—O2—Ccarb119.10
O2—Ccar—CMe110.11
O2—Ccar—Ocar123.98
Ocar—Ccar—CMe125.91
Bond torsions (°)
C1—C2—C3—C4-55.19
C1—O5—C5—C462.31
C1'—C2'—C3'—C4'-54.43-53.37
C1'—O5'—C5'—C4'58.1759.13
C2—C1—O1—CH3 (φ)161.86
O5—C1—O1—CH3 (φ)-79.07
H1—C1—O1—CH3 (φ)40.93
C2'—C1'—O1'—C3 (φ')-160.30-177.69
O5'—C1'—O1'—C3 (φ')77.4960.51
H1'—C1'—O1'—C3 (φ')-42.68-56.22
C1'—O1'—C3—C2 (ψ')-125.73
C1'—O1'—C3—C4 (ψ')112.12
C1'—O1'—C3—H3 (ψ')-6.43
O5—C5—C6—O6-63.82 (gg)
O5'—C5'—C6'—O6'-69.88 (gg)-65.10 (gg)
C1—C2—O2—Ccar-114.10
H2—C2—O2—Ccar6.63
C3—C2—O2—Ccar128.62
C2—O2—Ccar—CMe168.48
C2—O2—Ccar—Ocar-11.69
Notes: (a) R1 and R2 denote the βMan and αMan residues in disaccharide (II)), respectively; see structure in text. The primed atoms in R2 are shown as unprimed for the bond lengths to simplify the table. (b) Ccar is the carbonyl C atom of the 2-O-acetyl side chain of (II), Ocar is the carbonyl O atom of the side chain and CMe is the methyl C atom of the side chain. (c) Bond angles and torsions in (III) are listed in some cases with primed atoms to allow visual comparison with the αMan residue (R2) of (II); data were taken from Jeffrey et al. (1977). (d) Bonds are shown with unprimed atoms in residue R2 of (II) to simplify structural comparisons in the table. gg = gauche–gauche.
Cremer–Pople puckering parameters for aldohexopyranosyl residues in (II) and (III) top
Compound/residueθ (°)φ (°)Q (Å)q2 (Å)q3 (Å)
(II): βMan (R1)2.00 (18)16 (5)0.5893 (18)0.0208 (18)0.5889 (18)
(II): αMan (R2)2.78 (18)230 (2)0.5659 (18)0.0303 (18)0.5653 (18)
(III): αMana1.22860.5570.01180.5569
Note: (a) errors were not reported for structure (III); data were taken from Jeffrey et al. (1977).
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds