Buy article online - an online subscription or single-article purchase is required to access this article.
Bis(5-amino-1,2,4-triazol-3-yl)methane (BATZM, C5H8N8) was synthesized and its crystal structure characterized by single-crystal X-ray diffraction; it belongs to the space group Fdd2 (orthorhombic) with Z = 8. The structure of BATZM can be described as a V-shaped molecule with reasonable chemical geometry and no disorder. The specific molar heat capacity (Cp,m) of BATZM was determined using the continuous Cp mode of a microcalorimeter and theoretical calculations, and the Cp,m value is 211.19 J K−1 mol−1 at 298.15 K. The relative deviations between the theoretical and experimental values of Cp,m, HT – H298.15K and ST – S298.15K of BATZM are almost equivalent at each temperature. The detonation velocity (D) and detonation pressure (P) of BATZM were estimated using the nitrogen equivalent equation according to the experimental density; BATZM has a higher detonation velocity (7954.87 ± 3.29 m s−1) and detonation pressure (25.72 ± 0.03 GPa) than TNT.
Supporting information
CCDC reference: 1060496
Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Bis(5-amino-1,2,4-triazol-3-yl)methane
top
Crystal data top
C5H8N8 | Dx = 1.496 Mg m−3 |
Mr = 180.19 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Fdd2 | Cell parameters from 918 reflections |
a = 18.632 (3) Å | θ = 3.0–25.9° |
b = 19.933 (3) Å | µ = 0.11 mm−1 |
c = 4.3095 (6) Å | T = 296 K |
V = 1600.6 (4) Å3 | Acicular, colourless |
Z = 8 | 0.38 × 0.28 × 0.14 mm |
F(000) = 752 | |
Data collection top
Bruker APEXII CCD diffractometer | 757 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.016 |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | θmax = 28.0°, θmin = 3.0° |
Tmin = 0.960, Tmax = 0.985 | h = −24→23 |
1858 measured reflections | k = −9→24 |
816 independent reflections | l = −5→4 |
Refinement top
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.028 | w = 1/[σ2(Fo2) + (0.0322P)2 + 0.6778P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.068 | (Δ/σ)max < 0.001 |
S = 1.07 | Δρmax = 0.12 e Å−3 |
816 reflections | Δρmin = −0.13 e Å−3 |
73 parameters | Extinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
5 restraints | Extinction coefficient: 0.0044 (7) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack x determined using 253 quotients [(I+)-(I-)]/[(I+)+(I-)]
(Parsons et al., 2013) |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 1.0 (10) |
Special details top
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
N2 | 0.08768 (7) | 0.07813 (8) | −0.1174 (4) | 0.0339 (4) | |
C3 | 0.000000 | 0.000000 | −0.3477 (7) | 0.0320 (6) | |
C1 | 0.01192 (9) | 0.14092 (9) | 0.1546 (4) | 0.0266 (4) | |
N3 | −0.02808 (7) | 0.09508 (7) | 0.0117 (4) | 0.0268 (4) | |
C2 | 0.02091 (9) | 0.05860 (8) | −0.1521 (4) | 0.0261 (4) | |
N1 | 0.08068 (7) | 0.13222 (8) | 0.0808 (4) | 0.0341 (4) | |
N4 | −0.01377 (9) | 0.19194 (8) | 0.3320 (4) | 0.0358 (5) | |
H3 | 0.0419 (9) | −0.0126 (10) | −0.478 (5) | 0.043* | |
H4A | −0.0565 (7) | 0.1859 (10) | 0.403 (6) | 0.043* | |
H4B | 0.0172 (9) | 0.2130 (10) | 0.448 (5) | 0.043* | |
H1 | 0.1188 (8) | 0.1486 (9) | 0.160 (5) | 0.043* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
N2 | 0.0245 (7) | 0.0391 (8) | 0.0380 (10) | −0.0006 (6) | 0.0033 (8) | −0.0040 (8) |
C3 | 0.0329 (13) | 0.0359 (14) | 0.0271 (16) | −0.0005 (11) | 0.000 | 0.000 |
C1 | 0.0222 (8) | 0.0302 (9) | 0.0272 (11) | −0.0002 (7) | −0.0004 (8) | 0.0060 (8) |
N3 | 0.0203 (7) | 0.0297 (8) | 0.0303 (9) | −0.0003 (6) | −0.0006 (7) | 0.0022 (6) |
C2 | 0.0233 (8) | 0.0304 (9) | 0.0246 (10) | 0.0004 (7) | 0.0011 (8) | 0.0056 (8) |
N1 | 0.0199 (7) | 0.0411 (9) | 0.0412 (10) | −0.0047 (7) | −0.0016 (7) | −0.0058 (8) |
N4 | 0.0311 (8) | 0.0363 (9) | 0.0398 (12) | −0.0032 (7) | 0.0040 (9) | −0.0069 (8) |
Geometric parameters (Å, º) top
N2—C2 | 1.312 (2) | C1—N1 | 1.332 (2) |
N2—N1 | 1.382 (2) | C1—N4 | 1.359 (2) |
C3—C2 | 1.492 (2) | N3—C2 | 1.364 (2) |
C3—C2i | 1.492 (2) | N1—H1 | 0.853 (12) |
C3—H3 | 0.993 (16) | N4—H4A | 0.861 (12) |
C3—H3i | 0.993 (16) | N4—H4B | 0.871 (12) |
C1—N3 | 1.330 (2) | | |
| | | |
C2—N2—N1 | 102.28 (14) | C1—N3—C2 | 103.35 (14) |
C2—C3—C2i | 111.2 (2) | N2—C2—N3 | 114.66 (16) |
C2—C3—H3 | 108.1 (12) | N2—C2—C3 | 122.98 (14) |
C2i—C3—H3 | 109.1 (12) | N3—C2—C3 | 122.34 (14) |
C2—C3—H3i | 109.1 (12) | C1—N1—N2 | 109.88 (15) |
C2i—C3—H3i | 108.1 (12) | C1—N1—H1 | 130.9 (15) |
H3—C3—H3i | 111 (3) | N2—N1—H1 | 117.9 (14) |
N3—C1—N1 | 109.83 (16) | C1—N4—H4A | 114.9 (15) |
N3—C1—N4 | 125.24 (15) | C1—N4—H4B | 116.7 (14) |
N1—C1—N4 | 124.79 (16) | H4A—N4—H4B | 118 (2) |
| | | |
N1—C1—N3—C2 | −0.1 (2) | C2i—C3—C2—N2 | 106.21 (19) |
N4—C1—N3—C2 | 175.64 (18) | C2i—C3—C2—N3 | −72.01 (15) |
N1—N2—C2—N3 | −1.0 (2) | N3—C1—N1—N2 | −0.5 (2) |
N1—N2—C2—C3 | −179.38 (17) | N4—C1—N1—N2 | −176.29 (17) |
C1—N3—C2—N2 | 0.8 (2) | C2—N2—N1—C1 | 0.92 (19) |
C1—N3—C2—C3 | 179.12 (18) | | |
Symmetry code: (i) −x, −y, z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N3ii | 0.85 (1) | 1.98 (1) | 2.782 (2) | 157 (2) |
N4—H4B···N4iii | 0.87 (1) | 2.52 (2) | 3.204 (2) | 136 (2) |
N4—H4A···N2iv | 0.86 (1) | 2.22 (1) | 3.082 (2) | 174 (2) |
Symmetry codes: (ii) x+1/4, −y+1/4, z+1/4; (iii) −x, −y+1/2, z+1/2; (iv) x−1/4, −y+1/4, z+3/4. |
Thermodynamic properties of BATZM at pressure 101.3 kPa topT (K) | Cp,m (J K-1 mol-1) | | RD | HT–H298.15K (kJ mol-1) | | RD | ST–S298.15K (J K-1 mol-1) | | RD |
| Exp | Calc | | Exp | Calc | | Exp | Calc | |
288.15 | 204.66 | 182.58 | 10.79 | -2.08 | -1.85 | 10.83 | -7.09 | -6.33 | 10.82 |
293.15 | 207.93 | 185.44 | 10.81 | -1.05 | -0.93 | 10.85 | -3.54 | -3.16 | 10.83 |
298.15 | 211.19 | 188.29 | 10.84 | – | – | – | – | – | – |
303.15 | 214.46 | 191.13 | 10.88 | 1.06 | 0.95 | 10.88 | 3.54 | 3.15 | 10.86 |
308.15 | 217.73 | 193.96 | 10.92 | 2.14 | 1.91 | 10.90 | 7.07 | 6.30 | 10.88 |
313.15 | 220.99 | 196.77 | 10.96 | 3.24 | 2.89 | 10.92 | 10.61 | 9.45 | 10.90 |
318.15 | 224.26 | 199.58 | 11.01 | 4.35 | 3.88 | 10.93 | 14.13 | 12.59 | 10.92 |
323.15 | 227.53 | 202.37 | 11.06 | 5.48 | 4.88 | 10.95 | 17.65 | 15.72 | 10.94 |
328.15 | 230.79 | 205.15 | 11.11 | 6.63 | 5.90 | 10.96 | 21.17 | 18.85 | 10.96 |
333.15 | 234.06 | 207.92 | 11.17 | 7.79 | 6.94 | 10.98 | 24.69 | 21.97 | 10.99 |
338.15 | 237.32 | 210.67 | 11.23 | 8.97 | 7.98 | 10.99 | 28.20 | 25.09 | 11.01 |
343.15 | 240.59 | 213.42 | 11.29 | 10.17 | 9.05 | 11.01 | 31.71 | 28.21 | 11.04 |
348.15 | 243.86 | 216.15 | 11.36 | 11.38 | 10.12 | 11.02 | 35.21 | 31.31 | 11.07 |
Notes: Exp is the result of an experimental determination;
Calc is the result of a theoretical calculation;
RD = 102(XExp - XCalc)/XExp; HT – H298.15K is
the enthalpy change of taking 298.15 K as the benchmark;
ST - S298.15K is the entropy change of taking 298.15 K
as the benchmark. |
Nitrogen equivalents of different detonation products topDetonation product | C | H2 | N2 | CO | CO2 |
Nitrogen equivalent index | 0.15 | 0.29 | 1 | 0.78 | 1.35 |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.