Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Both title compounds are polynuclear polymeric complexes with binuclear units. In the former compound, [Ag2(C8H7O2)2(C10H9N3)]n, the two AgI atoms display distorted square-planar coordinations. This compound contains a twofold axis and a crystallographic inversion centre, and di-2-pyridylamine (DPA) ligands crosslink adjacent binuclear units to form infinite polymeric chains. Crystal packing is stabilized by van der Waals inter­actions and partial [pi]-[pi] stacking inter­actions between the chains. The latter compound, [Ag2(C7H4NO4)2(C10H9N3)]n, contains crystallographic inversion centres and the two AgI atoms exhibit two types of distorted square-pyramidal coordination. Ag-Ag argentophilic inter­actions and Ag-O crosslinking between adjacent binuclear units contribute to form infinite polymeric chains. Weak [pi]-[pi] stacking inter­actions are observed in the polymer chain. Crystal packing is stabilized by C-H...O hydrogen bonds and by weak [pi]-[pi] stacking inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010605102X/rb3021sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010605102X/rb3021Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010605102X/rb3021IIsup3.hkl
Contains datablock II

CCDC references: 634877; 634878

Comment top

AgI—N and AgI—O bonding complexes are potential bioinorganic materials (Clement & Jarrett, 1994; Russell & Hugo, 1994; Shaw, 1999; Feng et al., 2000; Gimeno & Laguna, 2004). Nomiya et al. (2004) reported that the dimeric or polymeric AgI—O bonding complexes show a wide range of antimicrobial activities. Kasuga et al. (2006) synthesized the polymeric light-stable and water-soluble AgI—O bonding complex, and demonstrated its antimicrobial activity against selected bacteria, yeasts and moulds. The aim of this study is to synthesize a new type of the antimicrobial AgI–benzoate complexe. Here, we report the crystal structures of the title polynuclear polymeric complexes with dinuclear units, the former being [C26H23N3O4Ag2]n, (I), made up of di-2-pyridylamine (DPA) and p-toluic acid (TA), with the electron-donating methyl group, and the latter being [C24H17N5O8Ag2]n, (II), comprised of DPA and p-nitrobenzoic acid (NA), with the electron-attracting nitro group.

The structure of (I) is shown to be a binuclear complex, which is composed of two AgI atoms, one DPA ligand and two TA ligands (Fig. 1). Selected geometric parameters are given in Table 1. The two halves of DPA are related by a twofold axis which passes through the central secondary amino group, N2—H22. Also, a crystallographic inversion centre is located at (1/2, 1/2, 1), i.e. at the centre of the Ag1—Ag1i bond vector [symmetry code: (i) 1 − x, 1 − y, 2 − z]. The Ag1 atom is coordinated by Ag1i, pyridyl atom N1 from DPA and carboxyl atoms O1 and O2 from two TAs. The Ag1—Ag1i distance (Table 1) is approximately equal to that of metallic silver (2.886 Å), indicating an apparent Ag—Ag metal bond (Zheng et al., 2003; Zhu et al., 2003; Tang et al., 2004; You et al., 2004). The chelating atoms form a distorted square-planar coordination geometry around Ag1 (r.m.s. deviation of fitted atoms = 0.1651 Å).

DPA crosslinks adjacent binuclear units to form infinite zigzag polymer chains along the c axis (Fig. 2), with the pyridine ring of DPA (C1–C5/N1) tilted from the coordination plane (Ag1/Ag1i/N1/O1/O2) by 17.2 (1)°, and with the two halves of DPA twisting about the central N2—H22 bond by 33.7 (1)°. In the polymer chain, bifurcated hydrogen bonds are present, namely N2—H22···O1 and N2—H22···O1ii [symmetry code: (ii) 1 - x, y, 3/2 − z] (Fig. 1, Table 2).

The crystal packing of (I) is stabilized by van der Waals interactions between the TAs of neighbouring polymer chains, with C9···C13iii and C13···C9iii of 3.541 (8) Å [symmetry code: (iii) 1/2 − x, 3/2 − y, 1 − z]. A partial ππ stacking interaction is also observed between adjacent parallel pyridine rings of DPA (Fig. 3, Table 3).

The structure of (II) is shown in Fig. 4, and selected geometric details are given in Table 4. The pyridine rings of DPA, C1–C5/N1 and C6–C10/N3, and the phenyl rings of NA, C12–C17 and C19–C24, are defined as rings A, B, C and D, respectively. As in (I), the unit complex in (II) is composed of two AgI atoms, one DPA ligand and two NA ligands, forming the binuclear complex. However, in (II), two types of slightly distorted square-pyramidal geometries are present. The Ag1 atom is coordinated by pyridyl atom N1 from DPA, carboxyl atoms O1 and O6 from two NAs and atom Ag2 in the basal plane (r.m.s. deviation of fitted atoms = 0.1804 Å), and the apical site of the pyramid is occupied by Ag2i [symmetry code: (i) 2 − x, −y, 1 − z]. However, the Ag2 atom is not coordinated by N. The Ag2 atom is coordinated by carboxyl atoms O2 and O5 from two NAs, atom O5ii from NA of an adjacent binuclear unit [symmetry code: (ii) 3 − x, −y, 1 − z] and atom Ag1 in the basal plane (r.m.s. deviation of fitted atoms = 0.1328 Å), and atom Ag1i occupies the apical site of the pyramid. There is an intramolecular N2—H22···O6 hydrogen bond (Fig. 4, Table 5).

The Ag1—Ag2 distance in the coordination basal plane (Table 4) indicates an apparent Ag—Ag metal bond. The axial Ag1—Ag2i (= Ag2—Ag1i) distance of the pyramids (Table 4) is shorter than the sum of the van der Waals radii of two AgI atoms (3.44 Å), and longer than the Ag—Ag metal bond. This may suggest that they are related by what has been referred to as argentophilicity (Kaltsoyannis, 1997; Tang et al., 2004). Argentophilic interactions crosslink two binuclear units along the axial direction of the pyramids, and Ag2—O5ii and O5—Ag2ii crosslink adjacent binclear units along the a axis. Consequently, the overall structure of (II) is formed into an infinite polymer chain complex along the a axis (Fig. 5). The A and B rings of DPA are tilted from each other by 16.7 (2)°, and two NAs are twisted at C11—C12 and C18—C19 by 29.6 (2) and by 10.5 (3)°, respectively, to avoid steric hindrance caused by polymerization. In the polymer chain of (II), crystallographic inversion centres are located at (1, 0, 1/2) and (1/2, 0, 1/2). Crystal packing is stablized by C—H···O interactions between polymer chains (Table 5). Weak ππ stacking interactions are observed between several adjacent six-membered rings, including rings C and D, an interaction which is along the axial direction of the coordination pyramid (Fig. 6, Table 6).

In the present study, two types of ligands are chosen, namely TA with the electron-donating methyl group and NA with the electron-attracting nitro group. Coordination geometries in both compounds are very similar, with AgI—O bond lengths ranging from 2.180 (3) to 2.214 (3) Å. In previously reported crystal structures of dimeric or polymeric AgI complexes containing benzoic acid or its derivatives as ligands, AgI—O bond lengths range from 2.175 to 2.302 Å (Usubaliev et al., 1981; Hedrich & Hartl, 1983; Smith et al., 1988; Movsumov et al., 1990; Mak et al., 1993; Smith et al., 1994; Ülkü et al., 1996; Jian et al., 2004; You et al., 2004; Wang & Okabe, 2005), which are comparable with those of the present complexes. This suggests that the coordination strengths of AgI—O bonds are unaffected by the properties of methyl and nitro substituents at the para position of benzoic acid.

Experimental top

All procedures were carried out at room temperature. For the synthesis of compound (I), AgNO3 (2.5 mg, 0.015 mmol) dissolved in H2O (0.1 ml) was added to di-2-pyridylamine (5 mg, 0.032 mmol) dissolved in dimethylformamide (DMF) (1 ml) and the mixture was stirred for 10 min. p-Toluic acid (3.9 mg, 0.029 mmol) dissolved in DMF (1 ml) was added to this solution and the mixture was stirred for 30 min. After evaporation for 10 d at room temperature, colourless platelet crystals were formed. For the synthesis of compound (II), AgNO3 (1.25 mg, 0.008 mmol) dissolved in H2O (0.1 ml) was added to di-2-pyridylamine (2.5 mg, 0.016 mmol) dissolved in MeOH–H2O (90% v/v, 3 ml) and the mixture was stirred for 10 min. p-Nitrobenzoic acid (2.4 mg, 0.014 mmol) dissolved in DMF (1 ml) was added to this solution, and the mixture was stirred for 30 min. After evaporation for 5 d, colourless platelet crystals crystallized from the mixture.

Refinement top

For both compounds, all H atoms were located in difference Fourier maps and were then placed in ideal positions and treated as riding, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N) for secondary amino H atoms, and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms. For compound (I), the methyl H atoms were additionally allowed to rotate about the parent C—C bond. In compound (I), the highest maximum residual electron density is 0.62 Å from Ag1 and the deepest hole is 1.03 Å from Ag1. In compound (II), the corresponding values are 0.93 Å from Ag1 and 0.83 Å from Ag1, respectively.

Computing details top

For both compounds, data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2005) and CRYSTALS (Betteridge et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: CrystalStructure.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Unlabelled atoms are related to labelled atoms by the symmetry operation (i) for NA and (ii) for DPA. Dashed lines indicate the bifurcated hydrogen bond. [Symmetry codes: (i) 1 − x, 1 − y, 2 − z; (ii) 1 − x, y, 3/2 − z.]
[Figure 2] Fig. 2. A view of the core structure of (I), comprised of DPA, Ag1 and chelating atoms, showing the polymer chain along the c axis. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The crystal packing of the core structure of (I). Dashed lines indicate the partial ππ stacking interactions between the pyridine rings of DPA. H atoms have been omitted for clarity.
[Figure 4] Fig. 4. The molecular structure of (II), showing the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed line indicates the intramolecular hydrogen bond. [Symmetry codes: (i) 2 − x, −y, 1 − z; (ii) 3 − x, −y, 1 − z.]
[Figure 5] Fig. 5. The crystal packing of the core structure of (II), comprised of Ag1, Ag2 and the chelating atoms, showing the polymer chain along the a axis. [Symmetry code: (i) ? Please complete]
[Figure 6] Fig. 6. The crystal packing of (II). Dashed lines indicate weak ππ stacking interactions. H atoms have been omitted for clarity.
(I) catena-Poly[[bis(µ2-4-methylbenzoato-κ2O:O')disilver(I)(Ag—Ag)]- µ2-di-2-pyridylamine-κ2N2:N2'] top
Crystal data top
[Ag2(C8H7O2)2(C10H9N3)]F(000) = 1304.00
Mr = 657.21Dx = 1.859 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -C 2ycCell parameters from 7596 reflections
a = 24.76 (2) Åθ = 3.3–27.5°
b = 8.59 (1) ŵ = 1.71 mm1
c = 11.55 (1) ÅT = 296 K
β = 107.11 (3)°Platelet, colourless
V = 2348 (4) Å30.20 × 0.10 × 0.03 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1585 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.048
ω scansθmax = 27.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 3231
Tmin = 0.639, Tmax = 0.949k = 1111
11540 measured reflectionsl = 1414
2679 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0282P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.058(Δ/σ)max = 0.001
S = 0.80Δρmax = 0.54 e Å3
2679 reflectionsΔρmin = 0.79 e Å3
160 parameters
Crystal data top
[Ag2(C8H7O2)2(C10H9N3)]V = 2348 (4) Å3
Mr = 657.21Z = 4
Monoclinic, C2/cMo Kα radiation
a = 24.76 (2) ŵ = 1.71 mm1
b = 8.59 (1) ÅT = 296 K
c = 11.55 (1) Å0.20 × 0.10 × 0.03 mm
β = 107.11 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2679 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1585 reflections with F2 > 2σ(F2)
Tmin = 0.639, Tmax = 0.949Rint = 0.048
11540 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031160 parameters
wR(F2) = 0.058H-atom parameters constrained
S = 0.80Δρmax = 0.54 e Å3
2679 reflectionsΔρmin = 0.79 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.518213 (11)0.64184 (3)0.96130 (2)0.04886 (10)
O10.44762 (9)0.6062 (3)0.79853 (19)0.0485 (7)
O20.41382 (9)0.4011 (3)0.8695 (2)0.0596 (8)
N10.54997 (10)0.9039 (3)0.9499 (2)0.0301 (6)
N20.50000.9312 (4)0.75000.0333 (8)
H220.50000.83110.75000.040*
C10.58397 (12)0.9606 (4)1.0539 (3)0.0350 (8)
H10.59540.89361.11980.042*
C20.60309 (12)1.1115 (4)1.0692 (3)0.0385 (8)
H20.62531.14731.14400.046*
C30.58802 (12)1.2083 (4)0.9688 (3)0.0366 (8)
H30.60091.31060.97510.044*
C40.55416 (12)1.1535 (4)0.8603 (3)0.0332 (7)
H40.54451.21680.79190.040*
C50.53449 (11)1.0006 (4)0.8544 (2)0.0291 (7)
C60.41071 (12)0.5059 (4)0.7938 (3)0.0332 (7)
C70.35821 (12)0.5123 (4)0.6887 (3)0.0362 (8)
C80.35269 (14)0.6147 (4)0.5951 (3)0.0529 (11)
H80.38170.68460.59820.063*
C90.30546 (16)0.6164 (5)0.4972 (3)0.0680 (13)
H90.30360.68710.43520.082*
C100.26115 (14)0.5189 (5)0.4871 (3)0.0561 (10)
C110.26599 (15)0.4167 (6)0.5823 (3)0.0818 (16)
H110.23630.34930.58020.098*
C120.31385 (15)0.4131 (5)0.6799 (3)0.0742 (15)
H120.31620.34150.74150.089*
C130.20958 (15)0.5182 (6)0.3768 (3)0.0842 (15)
H13A0.20280.62160.34410.126*
H13B0.17730.48350.39960.126*
H13C0.21590.44930.31670.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.04508 (15)0.03957 (16)0.04576 (15)0.01121 (15)0.01171 (11)0.01155 (17)
O10.0429 (13)0.0501 (19)0.0411 (12)0.0140 (12)0.0055 (11)0.0081 (12)
O20.0542 (15)0.0517 (19)0.0512 (14)0.0193 (12)0.0182 (12)0.0260 (14)
N10.0299 (13)0.0321 (16)0.0243 (13)0.0002 (11)0.0015 (11)0.0017 (11)
N20.044 (2)0.023 (2)0.0231 (18)0.0000.0040 (17)0.000
C10.0337 (16)0.041 (2)0.0246 (16)0.0001 (15)0.0012 (14)0.0045 (15)
C20.0383 (17)0.044 (2)0.0249 (16)0.0049 (15)0.0041 (14)0.0029 (15)
C30.0363 (17)0.0345 (19)0.0366 (19)0.0059 (15)0.0068 (16)0.0028 (16)
C40.0374 (16)0.0318 (19)0.0284 (15)0.0007 (15)0.0065 (13)0.0030 (16)
C50.0282 (15)0.0329 (19)0.0247 (16)0.0032 (14)0.0052 (13)0.0010 (14)
C60.0356 (17)0.0294 (19)0.0309 (17)0.0033 (15)0.0042 (15)0.0013 (15)
C70.0352 (17)0.040 (2)0.0309 (16)0.0007 (15)0.0054 (14)0.0026 (16)
C80.043 (2)0.062 (3)0.045 (2)0.0141 (18)0.0005 (17)0.021 (2)
C90.065 (2)0.079 (4)0.043 (2)0.021 (2)0.0104 (19)0.031 (2)
C100.044 (2)0.074 (3)0.0380 (19)0.008 (2)0.0071 (16)0.014 (2)
C110.049 (2)0.126 (5)0.054 (2)0.039 (3)0.011 (2)0.035 (3)
C120.054 (2)0.104 (4)0.047 (2)0.031 (2)0.0125 (19)0.037 (2)
C130.062 (3)0.110 (4)0.056 (3)0.016 (3)0.021 (2)0.025 (3)
Geometric parameters (Å, º) top
Ag1—O12.179 (3)C4—C51.396 (4)
Ag1—O2i2.203 (3)C4—H40.9300
Ag1—N12.401 (4)C6—C71.496 (4)
Ag1—Ag1i2.833 (3)C7—C81.369 (4)
O1—C61.245 (4)C7—C121.370 (5)
O2—C61.242 (4)C8—C91.367 (5)
O2—Ag1i2.203 (3)C8—H80.9300
N1—C11.339 (4)C9—C101.358 (5)
N1—C51.344 (4)C9—H90.9300
N2—C51.390 (3)C10—C111.385 (5)
N2—C5ii1.390 (3)C10—C131.515 (5)
N2—H220.8600C11—C121.375 (5)
C1—C21.374 (5)C11—H110.9300
C1—H10.9300C12—H120.9300
C2—C31.386 (4)C13—H13A0.9600
C2—H20.9300C13—H13B0.9600
C3—C41.371 (4)C13—H13C0.9600
C3—H30.9300
O1—Ag1—O2i162.05 (9)N2—C5—C4124.2 (3)
O1—Ag1—N1106.07 (9)O2—C6—O1125.3 (3)
O2i—Ag1—N191.64 (9)O2—C6—C7117.2 (3)
O1—Ag1—Ag1i84.41 (8)O1—C6—C7117.5 (3)
O2i—Ag1—Ag1i78.87 (7)C8—C7—C12116.7 (3)
N1—Ag1—Ag1i164.49 (6)C8—C7—C6121.7 (3)
C6—O1—Ag1121.8 (2)C12—C7—C6121.6 (3)
C6—O2—Ag1i128.3 (2)C9—C8—C7121.5 (3)
C1—N1—C5117.6 (3)C9—C8—H8119.3
C1—N1—Ag1114.9 (2)C7—C8—H8119.3
C5—N1—Ag1127.3 (2)C10—C9—C8122.5 (3)
C5—N2—C5ii129.2 (4)C10—C9—H9118.7
C5—N2—H22115.4C8—C9—H9118.7
C5ii—N2—H22115.4C9—C10—C11116.3 (3)
N1—C1—C2124.1 (3)C9—C10—C13122.3 (3)
N1—C1—H1117.9C11—C10—C13121.3 (3)
C2—C1—H1117.9C12—C11—C10121.2 (3)
C1—C2—C3117.5 (3)C12—C11—H11119.4
C1—C2—H2121.3C10—C11—H11119.4
C3—C2—H2121.3C7—C12—C11121.7 (3)
C4—C3—C2120.0 (3)C7—C12—H12119.2
C4—C3—H3120.0C11—C12—H12119.2
C2—C3—H3120.0C10—C13—H13A109.5
C3—C4—C5118.6 (3)C10—C13—H13B109.5
C3—C4—H4120.7H13A—C13—H13B109.5
C5—C4—H4120.7C10—C13—H13C109.5
N1—C5—N2113.7 (3)H13A—C13—H13C109.5
N1—C5—C4122.0 (3)H13B—C13—H13C109.5
O2i—Ag1—O1—C633.3 (4)C3—C4—C5—N13.3 (4)
N1—Ag1—O1—C6156.4 (2)C3—C4—C5—N2179.9 (2)
Ag1i—Ag1—O1—C612.0 (2)Ag1i—O2—C6—O12.3 (5)
O1—Ag1—N1—C1164.85 (19)Ag1i—O2—C6—C7177.42 (19)
O2i—Ag1—N1—C118.1 (2)Ag1—O1—C6—O212.1 (5)
Ag1i—Ag1—N1—C133.6 (4)Ag1—O1—C6—C7167.69 (18)
O1—Ag1—N1—C510.5 (2)O2—C6—C7—C8174.3 (3)
O2i—Ag1—N1—C5166.6 (2)O1—C6—C7—C85.9 (5)
Ag1i—Ag1—N1—C5141.71 (19)O2—C6—C7—C124.0 (5)
C5—N1—C1—C21.2 (4)O1—C6—C7—C12175.8 (3)
Ag1—N1—C1—C2174.6 (2)C12—C7—C8—C90.7 (6)
N1—C1—C2—C32.9 (5)C6—C7—C8—C9177.7 (3)
C1—C2—C3—C41.5 (5)C7—C8—C9—C100.7 (7)
C2—C3—C4—C51.4 (4)C8—C9—C10—C110.4 (7)
C1—N1—C5—N2179.0 (2)C8—C9—C10—C13178.2 (4)
Ag1—N1—C5—N25.8 (3)C9—C10—C11—C121.4 (7)
C1—N1—C5—C42.1 (4)C13—C10—C11—C12177.2 (4)
Ag1—N1—C5—C4177.26 (19)C8—C7—C12—C110.4 (6)
C5ii—N2—C5—N1162.7 (2)C6—C7—C12—C11178.8 (4)
C5ii—N2—C5—C420.4 (2)C10—C11—C12—C71.5 (7)
Symmetry codes: (i) x+3/2, y+3/2, z+2; (ii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H22···O10.862.483.197 (5)141
(II) catena-poly[[(di-2-pyridylamine-κN2)(µ2-4-nitrobenzoato- κ2O:O')disilver(I)(Ag—Ag)]-µ3-4-nitrobenzoato-κ3O:O':O'] top
Crystal data top
[Ag2(C7H4NO4)2(C10H9N3)]Z = 2
Mr = 719.17F(000) = 708.00
Triclinic, P1Dx = 2.051 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.7107 Å
a = 7.259 (8) ÅCell parameters from 9330 reflections
b = 11.07 (1) Åθ = 3.0–27.5°
c = 15.38 (2) ŵ = 1.75 mm1
α = 82.66 (5)°T = 296 K
β = 84.84 (4)°Platelet, colourless
γ = 72.01 (4)°0.40 × 0.20 × 0.03 mm
V = 1164 (2) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4093 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.024
ω scansθmax = 27.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.582, Tmax = 0.957k = 1414
11341 measured reflectionsl = 1919
5281 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0469P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088(Δ/σ)max = 0.001
S = 1.01Δρmax = 1.06 e Å3
5281 reflectionsΔρmin = 0.79 e Å3
351 parameters
Crystal data top
[Ag2(C7H4NO4)2(C10H9N3)]γ = 72.01 (4)°
Mr = 719.17V = 1164 (2) Å3
Triclinic, P1Z = 2
a = 7.259 (8) ÅMo Kα radiation
b = 11.07 (1) ŵ = 1.75 mm1
c = 15.38 (2) ÅT = 296 K
α = 82.66 (5)°0.40 × 0.20 × 0.03 mm
β = 84.84 (4)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5281 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4093 reflections with F2 > 2σ(F2)
Tmin = 0.582, Tmax = 0.957Rint = 0.024
11341 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033351 parameters
wR(F2) = 0.088H-atom parameters constrained
S = 1.01Δρmax = 1.06 e Å3
5281 reflectionsΔρmin = 0.79 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.89741 (3)0.13823 (3)0.554037 (15)0.05584 (10)
Ag21.29267 (3)0.01184 (2)0.571841 (14)0.05205 (10)
O10.9050 (3)0.0677 (2)0.69404 (13)0.0540 (6)
O21.1912 (3)0.0817 (2)0.70066 (13)0.0490 (5)
O30.9345 (4)0.2598 (3)1.13020 (16)0.0863 (9)
O40.6844 (3)0.0964 (2)1.12742 (15)0.0676 (7)
O51.3265 (3)0.08205 (19)0.43793 (12)0.0427 (5)
O61.0217 (3)0.2092 (2)0.43068 (13)0.0493 (5)
O71.2401 (5)0.4777 (3)0.02400 (18)0.1043 (11)
O81.4476 (5)0.3001 (3)0.00161 (17)0.0917 (10)
N10.5595 (3)0.2341 (2)0.55414 (16)0.0407 (5)
N20.5637 (3)0.3535 (2)0.42195 (15)0.0426 (6)
H220.68310.30720.41940.051*
N30.3472 (3)0.5375 (2)0.35207 (15)0.0433 (6)
N40.8296 (4)0.1641 (2)1.09215 (16)0.0472 (6)
N51.3312 (4)0.3697 (3)0.04937 (17)0.0574 (7)
C10.4695 (4)0.2001 (3)0.62935 (19)0.0441 (7)
H10.54130.13560.66870.053*
C20.2773 (4)0.2561 (3)0.65051 (19)0.0475 (7)
H20.21810.22960.70240.057*
C30.1754 (4)0.3527 (3)0.5923 (2)0.0525 (8)
H30.04440.39270.60470.063*
C40.2648 (4)0.3914 (3)0.51573 (18)0.0459 (7)
H40.19690.45820.47670.055*
C50.4599 (4)0.3274 (3)0.49845 (17)0.0359 (6)
C60.3089 (5)0.6192 (3)0.2792 (2)0.0499 (7)
H60.19600.68780.28040.060*
C70.4238 (5)0.6094 (3)0.20266 (19)0.0508 (7)
H70.38990.66920.15400.061*
C80.5900 (5)0.5084 (3)0.2009 (2)0.0523 (8)
H80.67200.49830.15050.063*
C90.6341 (4)0.4227 (3)0.27350 (19)0.0478 (7)
H90.74560.35300.27310.057*
C100.5095 (4)0.4410 (3)0.34868 (17)0.0370 (6)
C111.0307 (4)0.0220 (3)0.73313 (17)0.0353 (6)
C120.9801 (3)0.0591 (2)0.82785 (16)0.0333 (5)
C131.0915 (4)0.1698 (3)0.87320 (17)0.0389 (6)
H131.20110.22110.84510.047*
C141.0430 (4)0.2057 (3)0.95956 (18)0.0414 (6)
H141.11780.28070.98950.050*
C150.8808 (4)0.1273 (3)1.00021 (16)0.0364 (6)
C160.7681 (4)0.0156 (3)0.95759 (18)0.0391 (6)
H160.66070.03660.98650.047*
C170.8176 (4)0.0174 (3)0.87074 (18)0.0395 (6)
H170.74120.09180.84080.047*
C181.1931 (4)0.1674 (3)0.40032 (17)0.0364 (6)
C191.2366 (4)0.2240 (2)0.30983 (16)0.0345 (6)
C201.1290 (4)0.3465 (3)0.27887 (18)0.0416 (6)
H201.03580.39570.31610.050*
C211.1584 (4)0.3964 (3)0.19341 (19)0.0448 (7)
H211.08600.47840.17250.054*
C221.2983 (4)0.3209 (3)0.14011 (17)0.0392 (6)
C231.4094 (4)0.1991 (3)0.16914 (18)0.0393 (6)
H231.50280.15020.13180.047*
C241.3787 (4)0.1519 (3)0.25430 (17)0.0376 (6)
H241.45380.07060.27520.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.04425 (14)0.07217 (19)0.03662 (14)0.00622 (12)0.00068 (11)0.01681 (12)
Ag20.04241 (14)0.06940 (18)0.03360 (13)0.01001 (12)0.00176 (10)0.01413 (11)
O10.0465 (11)0.0597 (13)0.0356 (11)0.0048 (10)0.0002 (9)0.0152 (10)
O20.0386 (10)0.0592 (13)0.0342 (10)0.0013 (9)0.0040 (9)0.0116 (9)
O30.0890 (18)0.0873 (19)0.0415 (13)0.0163 (16)0.0103 (13)0.0261 (13)
O40.0669 (14)0.0758 (16)0.0398 (12)0.0013 (13)0.0188 (12)0.0025 (12)
O50.0412 (10)0.0494 (11)0.0282 (10)0.0041 (9)0.0001 (8)0.0043 (9)
O60.0367 (10)0.0661 (14)0.0341 (10)0.0069 (10)0.0007 (9)0.0126 (10)
O70.149 (3)0.0691 (18)0.0549 (16)0.008 (2)0.0075 (19)0.0292 (14)
O80.110 (2)0.094 (2)0.0452 (14)0.0104 (18)0.0256 (16)0.0150 (14)
N10.0362 (11)0.0413 (12)0.0380 (12)0.0072 (10)0.0027 (10)0.0089 (10)
N20.0337 (11)0.0474 (13)0.0353 (12)0.0022 (10)0.0001 (10)0.0112 (11)
N30.0466 (13)0.0377 (12)0.0371 (13)0.0041 (11)0.0018 (11)0.0045 (10)
N40.0499 (14)0.0528 (15)0.0324 (12)0.0106 (12)0.0008 (11)0.0051 (12)
N50.0720 (18)0.0611 (17)0.0359 (14)0.0224 (15)0.0010 (14)0.0108 (13)
C10.0430 (15)0.0439 (15)0.0397 (15)0.0103 (13)0.0074 (13)0.0131 (13)
C20.0492 (16)0.0518 (17)0.0342 (15)0.0098 (14)0.0022 (13)0.0050 (13)
C30.0441 (15)0.0563 (18)0.0413 (16)0.0019 (14)0.0055 (14)0.0042 (14)
C40.0363 (13)0.0521 (17)0.0353 (15)0.0031 (13)0.0047 (12)0.0077 (13)
C50.0360 (13)0.0389 (14)0.0313 (13)0.0091 (11)0.0026 (11)0.0026 (11)
C60.0559 (17)0.0386 (15)0.0449 (17)0.0030 (14)0.0041 (15)0.0060 (13)
C70.0666 (19)0.0436 (16)0.0354 (15)0.0117 (15)0.0037 (15)0.0093 (13)
C80.0564 (18)0.060 (2)0.0344 (15)0.0141 (16)0.0061 (14)0.0020 (14)
C90.0428 (15)0.0527 (18)0.0385 (15)0.0045 (14)0.0013 (13)0.0031 (14)
C100.0388 (13)0.0373 (14)0.0340 (14)0.0124 (12)0.0054 (12)0.0044 (11)
C110.0354 (13)0.0387 (14)0.0299 (13)0.0109 (11)0.0031 (11)0.0031 (11)
C120.0320 (12)0.0380 (14)0.0285 (12)0.0109 (11)0.0031 (10)0.0028 (11)
C130.0350 (13)0.0413 (15)0.0331 (14)0.0028 (12)0.0000 (11)0.0003 (12)
C140.0405 (14)0.0390 (15)0.0355 (14)0.0023 (12)0.0023 (12)0.0060 (12)
C150.0403 (13)0.0420 (14)0.0252 (12)0.0116 (12)0.0001 (11)0.0006 (11)
C160.0363 (13)0.0399 (14)0.0346 (14)0.0035 (12)0.0023 (12)0.0027 (12)
C170.0378 (13)0.0385 (14)0.0358 (14)0.0042 (12)0.0067 (12)0.0054 (12)
C180.0404 (14)0.0409 (14)0.0279 (13)0.0135 (12)0.0034 (11)0.0010 (11)
C190.0368 (13)0.0383 (14)0.0284 (13)0.0125 (11)0.0030 (11)0.0010 (11)
C200.0418 (14)0.0437 (15)0.0347 (14)0.0079 (12)0.0000 (12)0.0014 (12)
C210.0501 (16)0.0377 (15)0.0419 (16)0.0088 (13)0.0080 (13)0.0055 (13)
C220.0472 (15)0.0432 (15)0.0278 (13)0.0181 (13)0.0016 (12)0.0051 (12)
C230.0366 (13)0.0437 (15)0.0340 (14)0.0094 (12)0.0028 (12)0.0011 (12)
C240.0368 (13)0.0401 (14)0.0328 (13)0.0094 (12)0.0021 (11)0.0025 (12)
Geometric parameters (Å, º) top
Ag1—O62.187 (3)C4—H40.9300
Ag1—O12.194 (3)C6—C71.376 (4)
Ag1—N12.353 (3)C6—H60.9300
Ag1—Ag22.855 (3)C7—C81.370 (5)
Ag1—Ag2i3.158 (2)C7—H70.9300
Ag2—O22.183 (3)C8—C91.362 (4)
Ag2—O52.214 (3)C8—H80.9300
Ag2—O5ii2.626 (4)C9—C101.398 (4)
O1—C111.252 (3)C9—H90.9300
O2—C111.244 (3)C11—C121.507 (4)
O3—N41.212 (4)C12—C131.384 (4)
O4—N41.217 (3)C12—C171.389 (4)
O5—C181.249 (3)C13—C141.383 (4)
O6—C181.256 (3)C13—H130.9300
O7—N51.207 (4)C14—C151.381 (4)
O8—N51.216 (3)C14—H140.9300
N1—C51.322 (4)C15—C161.375 (4)
N1—C11.346 (4)C16—C171.385 (4)
N2—C51.387 (4)C16—H160.9300
N2—C101.389 (4)C17—H170.9300
N2—H220.8600C18—C191.500 (4)
N3—C101.326 (4)C19—C201.386 (4)
N3—C61.339 (4)C19—C241.392 (4)
N4—C151.468 (4)C20—C211.384 (4)
N5—C221.457 (4)C20—H200.9300
C1—C21.368 (4)C21—C221.379 (4)
C1—H10.9300C21—H210.9300
C2—C31.370 (5)C22—C231.381 (4)
C2—H20.9300C23—C241.372 (4)
C3—C41.378 (4)C23—H230.9300
C3—H30.9300C24—H240.9300
C4—C51.392 (4)
O6—Ag1—O1153.23 (9)C8—C7—C6117.5 (3)
O6—Ag1—N1107.18 (10)C8—C7—H7121.3
O1—Ag1—N195.94 (9)C6—C7—H7121.3
O6—Ag1—Ag281.16 (9)C9—C8—C7119.4 (3)
O1—Ag1—Ag277.11 (7)C9—C8—H8120.3
N1—Ag1—Ag2170.57 (6)C7—C8—H8120.3
O6—Ag1—Ag2i83.11 (10)C8—C9—C10119.1 (3)
O1—Ag1—Ag2i118.55 (9)C8—C9—H9120.4
N1—Ag1—Ag2i68.95 (9)C10—C9—H9120.4
Ag2—Ag1—Ag2i108.55 (7)N3—C10—N2120.3 (2)
O2—Ag2—O5167.26 (8)N3—C10—C9122.7 (3)
O2—Ag2—Ag184.96 (8)N2—C10—C9117.0 (2)
O5—Ag2—Ag182.33 (8)O2—C11—O1125.8 (3)
O2—Ag2—Ag1i101.48 (10)O2—C11—C12118.2 (3)
O5—Ag2—Ag1i73.65 (10)O1—C11—C12116.1 (2)
Ag1—Ag2—Ag1i71.45 (7)C13—C12—C17118.9 (3)
O2—Ag2—O5ii109.31 (9)C13—C12—C11121.1 (2)
O5—Ag2—O5ii83.30 (9)C17—C12—C11120.0 (3)
Ag1—Ag2—O5ii161.49 (5)C14—C13—C12121.3 (2)
C11—O1—Ag1129.04 (18)C14—C13—H13119.4
C11—O2—Ag2119.62 (19)C12—C13—H13119.4
C18—O5—Ag2123.78 (18)C15—C14—C13118.3 (3)
C18—O6—Ag1126.5 (2)C15—C14—H14120.8
C5—N1—C1119.0 (2)C13—C14—H14120.8
C5—N1—Ag1128.15 (19)C16—C15—C14122.0 (3)
C1—N1—Ag1111.83 (19)C16—C15—N4119.4 (2)
C5—N2—C10131.6 (2)C14—C15—N4118.6 (3)
C5—N2—H22114.2C15—C16—C17118.7 (2)
C10—N2—H22114.2C15—C16—H16120.7
C10—N3—C6116.3 (2)C17—C16—H16120.7
O3—N4—O4122.6 (3)C16—C17—C12120.8 (3)
O3—N4—C15118.8 (2)C16—C17—H17119.6
O4—N4—C15118.5 (3)C12—C17—H17119.6
O7—N5—O8122.3 (3)O5—C18—O6125.8 (3)
O7—N5—C22118.7 (3)O5—C18—C19118.3 (2)
O8—N5—C22119.0 (3)O6—C18—C19115.9 (3)
N1—C1—C2123.0 (3)C20—C19—C24119.1 (3)
N1—C1—H1118.5C20—C19—C18120.4 (2)
C2—C1—H1118.5C24—C19—C18120.4 (3)
C1—C2—C3117.5 (3)C21—C20—C19120.9 (2)
C1—C2—H2121.2C21—C20—H20119.5
C3—C2—H2121.2C19—C20—H20119.5
C2—C3—C4120.7 (3)C22—C21—C20118.0 (3)
C2—C3—H3119.6C22—C21—H21121.0
C4—C3—H3119.6C20—C21—H21121.0
C3—C4—C5118.0 (3)C21—C22—C23122.5 (3)
C3—C4—H4121.0C21—C22—N5119.5 (3)
C5—C4—H4121.0C23—C22—N5118.0 (2)
N1—C5—N2114.8 (2)C24—C23—C22118.5 (2)
N1—C5—C4121.7 (3)C24—C23—H23120.8
N2—C5—C4123.5 (3)C22—C23—H23120.8
N3—C6—C7125.0 (3)C23—C24—C19120.9 (3)
N3—C6—H6117.5C23—C24—H24119.6
C7—C6—H6117.5C19—C24—H24119.6
O6—Ag1—Ag2—O2176.48 (8)C5—N2—C10—N316.2 (5)
O1—Ag1—Ag2—O212.22 (9)C5—N2—C10—C9164.7 (3)
Ag2i—Ag1—Ag2—O2103.90 (10)C8—C9—C10—N31.1 (5)
O6—Ag1—Ag2—O54.36 (8)C8—C9—C10—N2178.0 (3)
O1—Ag1—Ag2—O5168.62 (8)Ag2—O2—C11—O110.3 (4)
Ag2i—Ag1—Ag2—O575.26 (10)Ag2—O2—C11—C12169.59 (17)
O6—Ag1—Ag2—Ag1i79.62 (11)Ag1—O1—C11—O28.5 (4)
O1—Ag1—Ag2—Ag1i116.12 (10)Ag1—O1—C11—C12171.60 (17)
Ag2i—Ag1—Ag2—Ag1i0.0O2—C11—C12—C1311.4 (4)
O6—Ag1—O1—C1152.7 (4)O1—C11—C12—C13168.8 (3)
N1—Ag1—O1—C11157.3 (3)O2—C11—C12—C17169.6 (3)
Ag2—Ag1—O1—C1116.2 (2)O1—C11—C12—C1710.3 (4)
Ag2i—Ag1—O1—C1188.1 (3)C17—C12—C13—C140.6 (4)
O5—Ag2—O2—C1120.2 (5)C11—C12—C13—C14178.5 (2)
Ag1—Ag2—O2—C1116.5 (2)C12—C13—C14—C150.7 (4)
Ag1i—Ag2—O2—C1186.3 (2)C13—C14—C15—C160.2 (4)
O2—Ag2—O5—C189.2 (5)C13—C14—C15—N4179.4 (2)
Ag1—Ag2—O5—C185.4 (2)O3—N4—C15—C16176.9 (3)
Ag1i—Ag2—O5—C1878.2 (2)O4—N4—C15—C162.3 (4)
O1—Ag1—O6—C1842.3 (3)O3—N4—C15—C142.3 (4)
N1—Ag1—O6—C18169.1 (2)O4—N4—C15—C14178.5 (3)
Ag2—Ag1—O6—C186.4 (2)C14—C15—C16—C171.2 (4)
Ag2i—Ag1—O6—C18103.7 (2)N4—C15—C16—C17179.7 (2)
O6—Ag1—N1—C59.4 (3)C15—C16—C17—C121.3 (4)
O1—Ag1—N1—C5157.0 (2)C13—C12—C17—C160.4 (4)
Ag2i—Ag1—N1—C584.7 (2)C11—C12—C17—C16179.5 (2)
O6—Ag1—N1—C1177.63 (19)Ag2—O5—C18—O62.4 (4)
O1—Ag1—N1—C111.3 (2)Ag2—O5—C18—C19179.29 (16)
Ag2i—Ag1—N1—C1107.1 (2)Ag1—O6—C18—O54.4 (4)
C5—N1—C1—C21.4 (4)Ag1—O6—C18—C19173.95 (17)
Ag1—N1—C1—C2170.8 (2)O5—C18—C19—C20154.6 (3)
N1—C1—C2—C31.3 (5)O6—C18—C19—C2027.0 (4)
C1—C2—C3—C40.1 (5)O5—C18—C19—C2428.8 (4)
C2—C3—C4—C51.4 (5)O6—C18—C19—C24149.7 (3)
C1—N1—C5—N2178.5 (2)C24—C19—C20—C211.4 (4)
Ag1—N1—C5—N213.9 (4)C18—C19—C20—C21175.4 (3)
C1—N1—C5—C40.1 (4)C19—C20—C21—C220.2 (4)
Ag1—N1—C5—C4167.45 (19)C20—C21—C22—C230.5 (4)
C10—N2—C5—N1178.6 (3)C20—C21—C22—N5179.1 (3)
C10—N2—C5—C40.0 (5)O7—N5—C22—C213.0 (5)
C3—C4—C5—N11.4 (4)O8—N5—C22—C21176.2 (3)
C3—C4—C5—N2177.0 (3)O7—N5—C22—C23177.4 (3)
C10—N3—C6—C70.3 (5)O8—N5—C22—C233.4 (4)
N3—C6—C7—C80.0 (5)C21—C22—C23—C240.0 (4)
C6—C7—C8—C90.2 (5)N5—C22—C23—C24179.6 (3)
C7—C8—C9—C100.8 (5)C22—C23—C24—C191.2 (4)
C6—N3—C10—N2178.2 (3)C20—C19—C24—C231.8 (4)
C6—N3—C10—C90.9 (4)C18—C19—C24—C23174.9 (2)
Symmetry codes: (i) x+2, y, z+1; (ii) x+3, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H22···O60.862.373.220 (5)168
C6—H6···O1iii0.932.653.394 (5)138
C7—H7···O8iv0.932.603.316 (5)134
C14—H14···O7v0.932.553.404 (6)154
C23—H23···O4vi0.932.653.372 (5)135
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x+2, y+1, z; (v) x, y1, z+1; (vi) x+1, y, z1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Ag2(C8H7O2)2(C10H9N3)][Ag2(C7H4NO4)2(C10H9N3)]
Mr657.21719.17
Crystal system, space groupMonoclinic, C2/cTriclinic, P1
Temperature (K)296296
a, b, c (Å)24.76 (2), 8.59 (1), 11.55 (1)7.259 (8), 11.07 (1), 15.38 (2)
α, β, γ (°)90, 107.11 (3), 9082.66 (5), 84.84 (4), 72.01 (4)
V3)2348 (4)1164 (2)
Z42
Radiation typeMo KαMo Kα
µ (mm1)1.711.75
Crystal size (mm)0.20 × 0.10 × 0.030.40 × 0.20 × 0.03
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Rigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Multi-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.639, 0.9490.582, 0.957
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
11540, 2679, 1585 11341, 5281, 4093
Rint0.0480.024
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.058, 0.80 0.033, 0.088, 1.01
No. of reflections26795281
No. of parameters160351
No. of restraints??
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.791.06, 0.79

Computer programs: RAPID-AUTO (Rigaku, 1998), RAPID-AUTO, CrystalStructure (Rigaku/MSC, 2005) and CRYSTALS (Betteridge et al., 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003), CrystalStructure.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H22···O10.862.483.197 (5)141.1
ππ stacking interactions (Å, °) in the crystal packing of (I). Cg represents the centroid of C1–C5/N. top
CgICgJCg···CgInterplanar angleCgI-perpCgJ-perpSlippage
CgCgiv3.919 (5)0.003.3523.3522.030
Symmetry code (iv): 1 − x, 2 − y, 2 − z.
Selected geometric parameters (Å, º) for (II) top
Ag1—O62.187 (3)Ag1—Ag2i3.158 (2)
Ag1—O12.194 (3)Ag2—O22.183 (3)
Ag1—N12.353 (3)Ag2—O52.214 (3)
Ag1—Ag22.855 (3)Ag2—O5ii2.626 (4)
O6—Ag1—O1153.23 (9)O2—Ag2—O5167.26 (8)
O6—Ag1—N1107.18 (10)O2—Ag2—Ag184.96 (8)
O1—Ag1—N195.94 (9)O5—Ag2—Ag182.33 (8)
O6—Ag1—Ag281.16 (9)O2—Ag2—Ag1i101.48 (10)
O1—Ag1—Ag277.11 (7)O5—Ag2—Ag1i73.65 (10)
N1—Ag1—Ag2170.57 (6)Ag1—Ag2—Ag1i71.45 (7)
O6—Ag1—Ag2i83.11 (10)O2—Ag2—O5ii109.31 (9)
O1—Ag1—Ag2i118.55 (9)O5—Ag2—O5ii83.30 (9)
N1—Ag1—Ag2i68.95 (9)Ag1—Ag2—O5ii161.49 (5)
Ag2—Ag1—Ag2i108.55 (7)
Symmetry codes: (i) x+2, y, z+1; (ii) x+3, y, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N2—H22···O60.862.373.220 (5)168.3
C6—H6···O1iii0.932.653.394 (5)137.7
C7—H7···O8iv0.932.603.316 (5)134.0
C14—H14···O7v0.932.553.404 (6)153.6
C23—H23···O4vi0.932.653.372 (5)135.4
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x+2, y+1, z; (v) x, y1, z+1; (vi) x+1, y, z1.
ππ stacking interactions (Å, °) in the crystal packing of (II). CgA, CgB, CgC and CgD represent the centroids of rings C1–C5/N1 (A), C6–C10/N3 (B), C12–C17 (C) and C19–C24 (D), respectively. top
CgICgJCg···CgInterplanar angleCgI-perpCgJ-perpSlippage
CgACgBiii3.750 (5)16.733.5203.6711.065
CgBCgDvii3.697 (5)12.753.3943.6171.176
CgCCgCviii3.914 (5)0.003.4793.4791.792
CgCCgDi3.746 (5)8.963.4323.5521.356
Symmetry codes (vii): x − 1, y, z; (viii): 2 − x, −y, 2 − z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds