Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
β-FeSi2 flat islands have been fabricated on ultra-thin oxidized Si(111) surfaces by Fe deposition on Si nanodots. The microstructure and interdiffusion behaviour of the β-FeSi2/Si(111) system at the atomic level were studied by using spherical aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and energy dispersive X-ray spectroscopy. The formed β-FeSi2 flat islands had a disc shape with an average size of 30–150 nm width and 10–20 nm height, and were epitaxically grown on high-quality single-phase Si with a crystallographic relationship (110)β-FeSi2/(111)Si and [001]β-FeSi2/[1\bar 10]Si. Moreover, the heterojunction between the β-FeSi2(110) flat islands and the Si(111) substrate was an atomically and chemically abrupt interface without any irregularities. It is believed that these results are caused by the use of ultra-thin SiO2 films in our fabrication method, which is likely to be beneficial particularly for fabricating practical nanoscaled devices.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds