Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Hydrazinium saccharinate, N2H5+·C7H4NO3S-, crystallizes in a 1:1 ratio, while ethyl­ene­diaminium bis­(saccharinate), C2H10N22+·2C7H4NO3S-, and butane-1,4-diaminium bis­(sac­charin­ate), C4H14N22+·2C7H4NO3S-, form in a 1:2 cation-anion stoichiometry. The structures contain many strong hydrogen bonds of the N+-H...N-, N+-H...O, N-H...O and N-H...N types, with auxiliary C-H...O inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106016374/sf3006sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106016374/sf3006Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106016374/sf3006IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106016374/sf3006IIIsup4.hkl
Contains datablock III

CCDC references: 612462; 612463; 612464

Comment top

Saccharin is a moderately strong acid and its salts have been used as sweeteners for around 125 years (Fahlberg & List, 1887). In recent years, there has been increased interest in the reactivity and structural properties of metal saccharinates because of the potential use of saccharin as an antidote for metal poisoning in the human body (Yilmaz et al., 2004 or ??? 2005). The corresponding deprotonated saccharinate anion (sac) acts as a polyfunctional ligand owing to the presence of the imine N, carbonyl O and sulfonyl O atoms. We have recently reported the use of saccharin as a salt former in active pharmaceutical ingredient (API) formulation and development (Banerjee et al., 2005; Bhatt et al., 2005). In this paper, we describe the solid-state architecture of three different amine salts of saccharin, namely hydrazine saccharinate, (I), ethylenediaminium bis(saccharinate), (II), and butane-1,4-diaminium bis(saccharinate), (III). The amine and saccharin fragments are rich in hydrogen-bond donor and acceptor functionalities. Therefore, it is no surprise that the crystal structures contain many strong hydrogen bonds. Typically, one finds, N+—H···N, N+—H···O, N—H···O and N—H···N bonds, with auxiliary C–H···O interactions in some cases.

Compound (I) crystallizes from methanol in the centrosymmetric space group P1 with three hydrazinium cations and three saccharinate anions in the asymmetric unit. This structure contains four different types of hydrogen bonds. The molecular geometry and atom numbering of (I) are given in Fig. 1. In this structure the symmetry independent hydrazinium cations are connected to each other via N+—H···N hydrogen bonds and form a zigzag array that propagates along the a axis. The saccharinate anions are connected with this zigzag chain via various N+—H···O, N—H···O, N—H···N and N+—H···N interactions, giving rise to a complex hydrogen bonding network (Fig. 2).

Compound (II) likewise crystallizes in the centrosymmetric space group P1. However, in this case the asymmetric unit contains one ethylenediaminium cation and two saccharinate anions (Fig. 3). The ethylenediamine molecule adopts the gauche conformation, with a dihedral angle between the two best planes of 78°. In general, the ethylenediamine molecule adopts the more stable staggered conformation. Among 24 examples in the Cambridge Structural Database (Version 5.27 of November 2005; Allen, 2002), the less stable gauche conformation is seen only in seven cases. The crystal structure of the salt is characterized by an eight-membered supramolecular synthon consisting of N+—H···N hydrogen bonds, which propagates along the a axis via N+—H···OC hydrogen bonds (Fig. 4). These hydrogen-bonded layers are connected to each other via C–H···OS hydrogen bonds. Because there are many more hydrogen-bond acceptors than donors in the system, one CO acceptor of one of the symmetry-independent saccharinate anions remains unsatisfied in terms of hydrogen-bond formation.

Compound (III) crystallizes in the centrosymmetric space group P21/n. Unlike the ethylenediamine molecule, the butane-1,4-diaminium cation occupies a special position in the unit cell and the asymmetric unit contains one-half of a butane-1,4-diaminium cation and one saccharinate anion (Fig. 5). The saccharinate ions form a layered structure, which is characterized by a very stable four-point synthon formed via N+—H···OS hydrogen bonds. These synthons are connected to each other via another set of N+—H···OS hydrogen bonds and the pattern propagates along the ab plane (Fig. 6). In the crystal structure, the hydrophobic and hydrophilic regions remain separated.

Each of these salts possess a different crystal packing although the major intermolecular interactions are similar. The structures described in this paper show that even the smallest structural modification to a molecular component can lead to a completely different crystal structure. A major aim of crystal engineering is to understand the relationship between molecular structure and crystal structure and to control molecular packing through non-covalent interactions. However, our inability to guide the assembly of many molecules into pre-desired solid-state architectures reflects the delicate nature of the intermolecular interactions that affect molecular assembly. In this sense, prediction of organic crystal structures (Sarma & Desiraju 2002; Dey et al., 2005) remains a major scientific challenge.

Experimental top

Saccharin (100 mg) was dissolved in EtOAc (20 ml) and to the solution were added a few drops of the respective amines until the salt precipitated out. This was filtered off, and the residue was dissolved in methanol by warming in a water bath for ten minutes and then filtered. The filtrate was allowed to cool to room temperature. X-ray quality single crystals were obtained after two days.

Refinement top

H atoms on C atoms were refined using a riding model starting from idealized geometries [C—H = 0.93 and 0.99 Å, for aromatic and methylene H atoms, respectively, with Uiso(H) =1.2Ueq(H). The positions of all H atoms on N atoms were taken from a difference Fourier map and refined isotropically.

Computing details top

For all compounds, data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing of (I). Note the zigzag chain of hydrazinium cations and the orientations of the saccarinate anions along this helical chain.
[Figure 3] Fig. 3. A view of the molecular structure of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. The packing of (II). Note the N+—H···N tetramer synthon.
[Figure 5] Fig. 5. A view of the molecular structure of (III), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 6] Fig. 6. The packing of the (III). Note the symmetrical N+—H···O S tetramer synthon. These synthons are connected to each other via another set of N+—H···OS interactions.
(I) hydrazinium saccharinate top
Crystal data top
H5N2+·C7H4NO3SZ = 6
Mr = 215.23F(000) = 672
Triclinic, P1Dx = 1.578 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8647 (18) ÅCell parameters from 1508 reflections
b = 11.776 (3) Åθ = 2.7–23.9°
c = 15.904 (4) ŵ = 0.34 mm1
α = 70.095 (3)°T = 100 K
β = 87.137 (4)°Plate, colorless
γ = 78.855 (4)°0.34 × 0.29 × 0.28 mm
V = 1358.7 (6) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4779 independent reflections
Radiation source: fine-focus sealed tube3386 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
h = 99
Tmin = 0.888, Tmax = 0.910k = 1313
10154 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0524P)2]
where P = (Fo2 + 2Fc2)/3
4779 reflections(Δ/σ)max < 0.001
439 parametersΔρmax = 0.40 e Å3
1 restraintΔρmin = 0.36 e Å3
Crystal data top
H5N2+·C7H4NO3Sγ = 78.855 (4)°
Mr = 215.23V = 1358.7 (6) Å3
Triclinic, P1Z = 6
a = 7.8647 (18) ÅMo Kα radiation
b = 11.776 (3) ŵ = 0.34 mm1
c = 15.904 (4) ÅT = 100 K
α = 70.095 (3)°0.34 × 0.29 × 0.28 mm
β = 87.137 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4779 independent reflections
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
3386 reflections with I > 2σ(I)
Tmin = 0.888, Tmax = 0.910Rint = 0.052
10154 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0521 restraint
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.40 e Å3
4779 reflectionsΔρmin = 0.36 e Å3
439 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.43721 (11)0.51577 (7)0.37136 (6)0.0141 (2)
O10.5183 (3)0.1926 (2)0.38993 (15)0.0171 (6)
O20.2960 (3)0.5642 (2)0.41817 (15)0.0167 (6)
O30.5790 (3)0.5812 (2)0.35422 (16)0.0178 (6)
N10.5010 (4)0.3699 (2)0.42089 (19)0.0161 (7)
C10.4787 (4)0.3064 (3)0.3674 (2)0.0149 (8)
C20.3953 (4)0.3856 (3)0.2788 (2)0.0138 (8)
C30.3476 (4)0.3507 (3)0.2105 (2)0.0184 (8)
H30.37280.26690.21410.022*
C40.2616 (5)0.4410 (3)0.1360 (2)0.0202 (8)
H40.22710.41830.08850.024*
C50.2251 (5)0.5641 (3)0.1300 (2)0.0193 (8)
H50.16520.62420.07880.023*
C60.2757 (4)0.5994 (3)0.1984 (2)0.0167 (8)
H60.25230.68300.19510.020*
C70.3616 (4)0.5079 (3)0.2714 (2)0.0140 (8)
S21.01651 (11)0.15255 (7)0.33852 (6)0.0162 (2)
O40.9872 (3)0.4238 (2)0.40252 (16)0.0208 (6)
O51.1805 (3)0.1060 (2)0.30606 (16)0.0205 (6)
O60.9140 (3)0.0580 (2)0.37705 (17)0.0236 (6)
N21.0392 (4)0.2241 (2)0.40554 (19)0.0192 (7)
C80.9780 (4)0.3469 (3)0.3665 (2)0.0164 (8)
C90.8977 (4)0.3809 (3)0.2766 (2)0.0137 (8)
C100.8223 (4)0.4959 (3)0.2191 (2)0.0168 (8)
H100.81700.56740.23490.020*
C110.7549 (5)0.5037 (3)0.1380 (2)0.0212 (9)
H110.70430.58190.09740.025*
C120.7600 (5)0.3997 (3)0.1152 (2)0.0216 (9)
H120.70990.40750.05990.026*
C130.8364 (5)0.2847 (3)0.1712 (2)0.0220 (9)
H130.84280.21340.15510.026*
C140.9030 (4)0.2782 (3)0.2518 (2)0.0155 (8)
S30.82108 (11)0.91636 (8)0.15239 (6)0.0156 (2)
O70.3872 (3)0.8515 (2)0.21589 (16)0.0184 (6)
O80.9742 (3)0.8300 (2)0.19372 (16)0.0223 (6)
O90.8415 (3)1.0427 (2)0.11867 (16)0.0211 (6)
N30.6570 (4)0.8982 (2)0.21801 (18)0.0151 (7)
C150.5282 (5)0.8675 (3)0.1812 (2)0.0148 (8)
C160.5749 (4)0.8540 (3)0.0920 (2)0.0132 (8)
C170.4753 (5)0.8281 (3)0.0343 (2)0.0163 (8)
H170.36100.81420.04950.020*
C180.5460 (5)0.8229 (3)0.0464 (2)0.0179 (8)
H180.47950.80400.08640.021*
C190.7121 (5)0.8449 (3)0.0697 (2)0.0211 (9)
H190.75740.84130.12540.025*
C200.8126 (4)0.8722 (3)0.0126 (2)0.0155 (8)
H200.92650.88720.02780.019*
C210.7397 (4)0.8765 (3)0.0674 (2)0.0127 (8)
N40.2596 (4)0.8238 (3)0.4320 (2)0.0178 (7)
H4A0.306 (4)0.7463 (19)0.455 (2)0.027 (11)*
H4B0.183 (4)0.836 (4)0.472 (2)0.040 (13)*
N50.1543 (4)0.8380 (3)0.3556 (2)0.0149 (7)
H5A0.086 (4)0.911 (2)0.343 (2)0.017 (10)*
H5B0.085 (4)0.783 (3)0.365 (2)0.023 (11)*
H5C0.223 (4)0.839 (3)0.3088 (17)0.020 (10)*
N60.8035 (4)0.6511 (3)0.4494 (2)0.0166 (7)
H6A0.738 (4)0.721 (2)0.452 (2)0.031 (11)*
H6B0.732 (4)0.606 (3)0.442 (3)0.046 (14)*
H6C0.872 (4)0.620 (3)0.4985 (17)0.024 (11)*
N70.9106 (4)0.6846 (3)0.3721 (2)0.0168 (7)
H7A0.838 (4)0.723 (3)0.3252 (19)0.032 (12)*
H7B0.946 (4)0.619 (2)0.358 (2)0.027 (11)*
N80.5255 (4)0.9718 (3)0.3678 (2)0.0156 (7)
H8A0.514 (5)1.049 (2)0.366 (3)0.035 (12)*
H8B0.431 (3)0.939 (3)0.383 (2)0.014 (10)*
H8C0.557 (5)0.962 (3)0.3149 (16)0.031 (12)*
N90.6507 (4)0.8980 (3)0.4386 (2)0.0181 (7)
H9A0.723 (4)0.946 (3)0.439 (2)0.025 (11)*
H9B0.604 (5)0.891 (4)0.4906 (17)0.039 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0158 (5)0.0123 (4)0.0148 (5)0.0031 (4)0.0001 (4)0.0050 (4)
O10.0202 (14)0.0110 (13)0.0189 (14)0.0012 (10)0.0022 (11)0.0047 (11)
O20.0187 (13)0.0147 (12)0.0185 (14)0.0030 (10)0.0048 (11)0.0086 (11)
O30.0163 (13)0.0188 (13)0.0202 (14)0.0085 (11)0.0010 (11)0.0061 (11)
N10.0176 (16)0.0135 (15)0.0165 (17)0.0029 (13)0.0015 (13)0.0046 (13)
C10.0124 (19)0.0159 (19)0.018 (2)0.0041 (15)0.0065 (16)0.0073 (16)
C20.0123 (18)0.0146 (18)0.017 (2)0.0072 (15)0.0056 (15)0.0062 (15)
C30.018 (2)0.0164 (19)0.023 (2)0.0072 (16)0.0013 (17)0.0080 (17)
C40.027 (2)0.023 (2)0.015 (2)0.0118 (17)0.0030 (17)0.0093 (17)
C50.020 (2)0.023 (2)0.013 (2)0.0033 (16)0.0025 (16)0.0026 (16)
C60.0133 (19)0.0140 (18)0.022 (2)0.0017 (15)0.0019 (16)0.0056 (16)
C70.0095 (18)0.0185 (19)0.016 (2)0.0068 (15)0.0044 (15)0.0063 (16)
S20.0161 (5)0.0114 (5)0.0198 (5)0.0017 (4)0.0005 (4)0.0040 (4)
O40.0275 (15)0.0163 (13)0.0210 (15)0.0019 (11)0.0048 (12)0.0099 (12)
O50.0167 (14)0.0161 (13)0.0255 (15)0.0012 (11)0.0030 (12)0.0058 (11)
O60.0226 (15)0.0144 (13)0.0314 (16)0.0065 (11)0.0047 (12)0.0037 (12)
N20.0212 (17)0.0138 (16)0.0186 (17)0.0004 (13)0.0028 (14)0.0015 (13)
C80.0129 (19)0.0190 (19)0.018 (2)0.0050 (15)0.0054 (16)0.0063 (16)
C90.0115 (18)0.0149 (18)0.015 (2)0.0031 (15)0.0020 (15)0.0051 (15)
C100.0168 (19)0.0123 (18)0.020 (2)0.0006 (15)0.0032 (16)0.0053 (16)
C110.023 (2)0.0169 (19)0.015 (2)0.0032 (16)0.0007 (17)0.0018 (16)
C120.023 (2)0.025 (2)0.015 (2)0.0010 (17)0.0027 (17)0.0071 (17)
C130.022 (2)0.022 (2)0.027 (2)0.0046 (17)0.0000 (18)0.0151 (18)
C140.0101 (18)0.0155 (18)0.020 (2)0.0027 (15)0.0002 (16)0.0047 (16)
S30.0146 (5)0.0178 (5)0.0152 (5)0.0035 (4)0.0015 (4)0.0065 (4)
O70.0135 (14)0.0213 (14)0.0201 (14)0.0052 (11)0.0055 (11)0.0062 (11)
O80.0158 (14)0.0278 (15)0.0211 (14)0.0007 (11)0.0006 (11)0.0071 (12)
O90.0209 (14)0.0191 (14)0.0260 (15)0.0087 (11)0.0053 (12)0.0088 (12)
N30.0141 (16)0.0189 (16)0.0136 (16)0.0035 (13)0.0037 (13)0.0076 (13)
C150.018 (2)0.0064 (17)0.016 (2)0.0003 (15)0.0024 (16)0.0010 (15)
C160.0173 (19)0.0053 (16)0.0144 (19)0.0004 (14)0.0025 (15)0.0017 (14)
C170.0170 (19)0.0113 (18)0.019 (2)0.0032 (15)0.0008 (16)0.0032 (16)
C180.025 (2)0.0136 (18)0.015 (2)0.0013 (16)0.0036 (17)0.0049 (16)
C190.025 (2)0.022 (2)0.017 (2)0.0015 (17)0.0054 (17)0.0088 (17)
C200.0146 (19)0.0140 (18)0.017 (2)0.0021 (15)0.0041 (16)0.0052 (16)
C210.0166 (19)0.0108 (17)0.0112 (19)0.0056 (14)0.0011 (15)0.0028 (15)
N40.0210 (18)0.0148 (17)0.0146 (18)0.0003 (14)0.0007 (15)0.0027 (14)
N50.0142 (17)0.0143 (17)0.0162 (18)0.0040 (14)0.0027 (14)0.0047 (14)
N60.0161 (18)0.0188 (18)0.0136 (18)0.0032 (15)0.0009 (14)0.0041 (15)
N70.0182 (18)0.0155 (17)0.0159 (18)0.0037 (14)0.0057 (14)0.0049 (14)
N80.0167 (18)0.0127 (17)0.0179 (19)0.0020 (14)0.0005 (15)0.0060 (14)
N90.0196 (18)0.0174 (17)0.0182 (19)0.0056 (14)0.0003 (15)0.0058 (15)
Geometric parameters (Å, º) top
S1—O31.439 (2)S3—O81.437 (2)
S1—O21.441 (2)S3—N31.619 (3)
S1—N11.615 (3)S3—C211.758 (3)
S1—C71.762 (3)O7—C151.232 (4)
O1—C11.243 (4)N3—C151.358 (4)
N1—C11.347 (4)C15—C161.501 (5)
C1—C21.499 (5)C16—C171.379 (4)
C2—C31.376 (5)C16—C211.384 (5)
C2—C71.377 (4)C17—C181.390 (5)
C3—C41.391 (5)C17—H170.9500
C3—H30.9500C18—C191.388 (5)
C4—C51.393 (5)C18—H180.9500
C4—H40.9500C19—C201.385 (5)
C5—C61.388 (5)C19—H190.9500
C5—H50.9500C20—C211.382 (5)
C6—C71.383 (5)C20—H200.9500
C6—H60.9500N4—N51.449 (4)
S2—O51.444 (2)N4—H4A0.870 (18)
S2—O61.448 (2)N4—H4B0.88 (4)
S2—N21.602 (3)N5—H5A0.886 (18)
S2—C141.764 (3)N5—H5B0.894 (18)
O4—C81.239 (4)N5—H5C0.894 (18)
N2—C81.364 (4)N6—N71.440 (4)
C8—C91.486 (5)N6—H6A0.892 (18)
C9—C101.386 (4)N6—H6B0.878 (19)
C9—C141.388 (4)N6—H6C0.897 (18)
C10—C111.386 (5)N7—H7A0.894 (18)
C10—H100.9500N7—H7B0.870 (18)
C11—C121.385 (5)N8—N91.451 (4)
C11—H110.9500N8—H8A0.888 (18)
C12—C131.380 (5)N8—H8B0.887 (18)
C12—H120.9500N8—H8C0.903 (18)
C13—C141.381 (5)N9—H9A0.882 (18)
C13—H130.9500N9—H9B0.871 (19)
S3—O91.437 (2)
O3—S1—O2114.07 (14)O9—S3—O8114.76 (14)
O3—S1—N1112.04 (15)O9—S3—N3111.49 (14)
O2—S1—N1111.00 (14)O8—S3—N3111.03 (15)
O3—S1—C7110.76 (15)O9—S3—C21110.05 (15)
O2—S1—C7110.47 (15)O8—S3—C21110.99 (15)
N1—S1—C797.28 (15)N3—S3—C2197.18 (15)
C1—N1—S1111.0 (2)C15—N3—S3111.5 (2)
O1—C1—N1123.5 (3)O7—C15—N3124.9 (3)
O1—C1—C2122.8 (3)O7—C15—C16122.3 (3)
N1—C1—C2113.6 (3)N3—C15—C16112.8 (3)
C3—C2—C7120.0 (3)C17—C16—C21119.5 (3)
C3—C2—C1128.8 (3)C17—C16—C15128.9 (3)
C7—C2—C1111.1 (3)C21—C16—C15111.5 (3)
C2—C3—C4118.4 (3)C16—C17—C18118.5 (3)
C2—C3—H3120.8C16—C17—H17120.7
C4—C3—H3120.8C18—C17—H17120.7
C3—C4—C5121.1 (3)C19—C18—C17121.1 (3)
C3—C4—H4119.4C19—C18—H18119.4
C5—C4—H4119.4C17—C18—H18119.4
C6—C5—C4120.4 (3)C20—C19—C18120.8 (3)
C6—C5—H5119.8C20—C19—H19119.6
C4—C5—H5119.8C18—C19—H19119.6
C7—C6—C5117.3 (3)C21—C20—C19117.0 (3)
C7—C6—H6121.3C21—C20—H20121.5
C5—C6—H6121.3C19—C20—H20121.5
C2—C7—C6122.7 (3)C20—C21—C16123.0 (3)
C2—C7—S1106.8 (2)C20—C21—S3130.0 (3)
C6—C7—S1130.4 (3)C16—C21—S3107.0 (2)
O5—S2—O6112.37 (14)N5—N4—H4A107 (2)
O5—S2—N2112.20 (15)N5—N4—H4B104 (3)
O6—S2—N2111.86 (16)H4A—N4—H4B104 (3)
O5—S2—C14109.65 (15)N4—N5—H5A106 (2)
O6—S2—C14111.87 (15)N4—N5—H5B115 (2)
N2—S2—C1498.06 (15)H5A—N5—H5B106 (3)
C8—N2—S2110.3 (2)N4—N5—H5C109 (2)
O4—C8—N2123.4 (3)H5A—N5—H5C108 (3)
O4—C8—C9122.6 (3)H5B—N5—H5C112 (3)
N2—C8—C9113.9 (3)N7—N6—H6A107 (2)
C10—C9—C14119.5 (3)N7—N6—H6B110 (3)
C10—C9—C8129.1 (3)H6A—N6—H6B107 (4)
C14—C9—C8111.3 (3)N7—N6—H6C109 (2)
C9—C10—C11118.2 (3)H6A—N6—H6C107 (3)
C9—C10—H10120.9H6B—N6—H6C117 (4)
C11—C10—H10120.9N6—N7—H7A106 (2)
C12—C11—C10121.2 (3)N6—N7—H7B107 (2)
C12—C11—H11119.4H7A—N7—H7B95 (3)
C10—C11—H11119.4N9—N8—H8A107 (3)
C13—C12—C11121.3 (3)N9—N8—H8B105 (2)
C13—C12—H12119.4H8A—N8—H8B115 (3)
C11—C12—H12119.4N9—N8—H8C112 (2)
C14—C13—C12116.9 (3)H8A—N8—H8C113 (3)
C14—C13—H13121.6H8B—N8—H8C105 (3)
C12—C13—H13121.6N8—N9—H9A105 (2)
C13—C14—C9122.9 (3)N8—N9—H9B110 (3)
C13—C14—S2131.0 (3)H9A—N9—H9B99 (3)
C9—C14—S2106.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O20.87 (2)2.42 (3)3.097 (4)135 (3)
N4—H4A···N1i0.87 (2)2.40 (3)3.061 (4)133 (3)
N4—H4B···N2i0.88 (4)2.56 (2)3.381 (4)155 (3)
N5—H5A···O6ii0.89 (2)2.19 (2)3.008 (4)154 (3)
N5—H5C···O70.89 (2)1.90 (2)2.789 (4)172 (3)
N6—H6B···O30.88 (2)2.02 (3)2.787 (4)145 (4)
N6—H6C···O4iii0.90 (2)1.84 (2)2.728 (4)172 (3)
N7—H7A···N30.89 (2)2.43 (2)3.265 (4)156 (3)
N7—H7B···O40.87 (2)2.12 (3)2.886 (4)146 (3)
N8—H8A···O1iv0.89 (2)1.86 (2)2.730 (4)166 (4)
N8—H8C···N30.90 (2)2.00 (2)2.882 (4)165 (3)
N9—H9A···O6iv0.88 (2)2.17 (2)2.975 (4)152 (3)
N9—H9B···O1i0.87 (2)2.10 (2)2.924 (4)157 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+1, z; (iii) x+2, y+1, z+1; (iv) x, y+1, z.
(II) ethylenediaminium bis(saccharinate) top
Crystal data top
C2H10N22+·2C7H4NO3SZ = 2
Mr = 426.46F(000) = 444
Triclinic, P1Dx = 1.557 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1684 (19) ÅCell parameters from 1782 reflections
b = 9.964 (3) Åθ = 2.5–25.7°
c = 13.185 (4) ŵ = 0.34 mm1
α = 84.557 (4)°T = 100 K
β = 86.387 (4)°Block, colorless
γ = 76.149 (4)°0.15 × 0.11 × 0.06 mm
V = 909.4 (5) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3575 independent reflections
Radiation source: fine-focus sealed tube2479 reflections with I > 2σa(I)
Graphite monochromatorRint = 0.056
ϕ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
h = 88
Tmin = 0.949, Tmax = 0.979k = 1211
10467 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.071P)2]
where P = (Fo2 + 2Fc2)/3
3575 reflections(Δ/σ)max = 0.001
277 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C2H10N22+·2C7H4NO3Sγ = 76.149 (4)°
Mr = 426.46V = 909.4 (5) Å3
Triclinic, P1Z = 2
a = 7.1684 (19) ÅMo Kα radiation
b = 9.964 (3) ŵ = 0.34 mm1
c = 13.185 (4) ÅT = 100 K
α = 84.557 (4)°0.15 × 0.11 × 0.06 mm
β = 86.387 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3575 independent reflections
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
2479 reflections with I > 2σa(I)
Tmin = 0.949, Tmax = 0.979Rint = 0.056
10467 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.67 e Å3
3575 reflectionsΔρmin = 0.40 e Å3
277 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.00098 (11)0.55402 (8)0.63461 (6)0.0213 (2)
O10.7398 (3)0.9162 (2)0.60423 (16)0.0281 (5)
O21.1932 (3)0.5163 (2)0.58962 (17)0.0325 (6)
O30.9016 (3)0.4433 (2)0.64721 (17)0.0328 (6)
N10.8778 (3)0.6908 (3)0.57465 (18)0.0204 (6)
C10.8326 (4)0.8001 (3)0.6335 (2)0.0191 (7)
C20.9067 (4)0.7618 (3)0.7398 (2)0.0185 (7)
C30.8867 (4)0.8437 (3)0.8203 (2)0.0221 (7)
H30.82210.93890.81300.027*
C40.9638 (4)0.7831 (4)0.9126 (2)0.0264 (8)
H40.95190.83810.96880.032*
C51.0575 (4)0.6444 (4)0.9241 (2)0.0276 (8)
H51.10850.60550.98800.033*
C61.0780 (4)0.5613 (3)0.8433 (2)0.0243 (7)
H61.14090.46570.85060.029*
C71.0029 (4)0.6238 (3)0.7518 (2)0.0180 (6)
S20.24528 (11)1.07048 (8)0.80957 (5)0.0219 (2)
O40.2940 (3)0.8525 (2)0.59627 (15)0.0226 (5)
O50.0572 (3)1.1122 (2)0.85781 (16)0.0292 (6)
O60.3704 (3)1.1634 (2)0.81506 (16)0.0298 (5)
N20.2282 (3)1.0397 (3)0.69197 (17)0.0206 (6)
C80.3005 (4)0.9043 (3)0.6775 (2)0.0203 (7)
C90.3867 (4)0.8197 (3)0.7706 (2)0.0209 (7)
C100.4789 (4)0.6808 (3)0.7814 (3)0.0273 (8)
H100.49470.62500.72550.033*
C110.5483 (5)0.6245 (4)0.8769 (3)0.0341 (9)
H110.61370.52950.88570.041*
C120.5229 (5)0.7052 (4)0.9583 (3)0.0370 (9)
H120.57160.66471.02230.044*
C130.4271 (4)0.8454 (4)0.9487 (2)0.0305 (8)
H130.40690.90061.00510.037*
C140.3633 (4)0.8997 (3)0.8534 (2)0.0244 (7)
N30.5623 (4)0.7663 (3)0.4382 (2)0.0213 (6)
H3A0.490 (4)0.809 (3)0.486 (3)0.022 (9)*
H3B0.670 (5)0.709 (3)0.465 (2)0.018 (8)*
H3C0.595 (5)0.838 (4)0.398 (3)0.032 (10)*
N40.1159 (4)0.8237 (3)0.4154 (2)0.0207 (6)
H4A0.148 (5)0.869 (4)0.468 (3)0.053 (12)*
H4B0.008 (3)0.876 (3)0.387 (2)0.033 (10)*
H4C0.087 (5)0.745 (4)0.443 (3)0.034 (10)*
C150.4502 (4)0.6947 (3)0.3801 (2)0.0202 (7)
H15A0.41100.62050.42560.024*
H15B0.53310.65050.32380.024*
C160.2744 (4)0.7914 (3)0.3368 (2)0.0196 (7)
H16A0.30730.87860.30780.023*
H16B0.23040.74850.28080.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0256 (4)0.0187 (4)0.0188 (4)0.0024 (3)0.0020 (3)0.0041 (3)
O10.0402 (13)0.0183 (12)0.0222 (12)0.0003 (11)0.0066 (10)0.0025 (9)
O20.0275 (12)0.0357 (14)0.0300 (13)0.0044 (11)0.0025 (10)0.0137 (11)
O30.0503 (15)0.0220 (13)0.0304 (13)0.0147 (11)0.0091 (11)0.0022 (10)
N10.0253 (14)0.0192 (14)0.0173 (13)0.0051 (12)0.0019 (11)0.0042 (11)
C10.0177 (15)0.0243 (18)0.0165 (15)0.0076 (14)0.0002 (12)0.0003 (13)
C20.0174 (15)0.0232 (17)0.0164 (15)0.0084 (13)0.0043 (12)0.0041 (13)
C30.0216 (16)0.0258 (18)0.0205 (15)0.0089 (14)0.0056 (12)0.0052 (13)
C40.0268 (17)0.043 (2)0.0147 (15)0.0171 (16)0.0048 (13)0.0084 (14)
C50.0229 (17)0.047 (2)0.0153 (15)0.0142 (16)0.0041 (13)0.0046 (15)
C60.0205 (16)0.0295 (19)0.0223 (16)0.0066 (14)0.0013 (13)0.0031 (14)
C70.0175 (15)0.0212 (17)0.0164 (14)0.0076 (13)0.0014 (12)0.0014 (12)
S20.0235 (4)0.0303 (5)0.0132 (4)0.0085 (4)0.0013 (3)0.0043 (3)
O40.0261 (11)0.0265 (12)0.0160 (11)0.0072 (10)0.0015 (9)0.0045 (9)
O50.0288 (12)0.0379 (14)0.0223 (12)0.0088 (11)0.0067 (9)0.0122 (10)
O60.0353 (13)0.0377 (14)0.0222 (11)0.0190 (11)0.0005 (10)0.0053 (10)
N20.0239 (14)0.0253 (15)0.0113 (12)0.0043 (12)0.0010 (10)0.0008 (10)
C80.0168 (15)0.0306 (19)0.0145 (14)0.0088 (14)0.0018 (11)0.0006 (13)
C90.0159 (15)0.0292 (19)0.0182 (15)0.0087 (14)0.0010 (12)0.0050 (13)
C100.0187 (16)0.030 (2)0.0331 (19)0.0090 (15)0.0023 (13)0.0043 (15)
C110.0238 (18)0.035 (2)0.044 (2)0.0129 (16)0.0075 (16)0.0163 (17)
C120.0307 (19)0.055 (3)0.0278 (19)0.0228 (19)0.0130 (15)0.0233 (18)
C130.0262 (17)0.053 (2)0.0177 (16)0.0230 (17)0.0038 (13)0.0070 (15)
C140.0192 (16)0.035 (2)0.0215 (16)0.0128 (15)0.0011 (13)0.0030 (14)
N30.0178 (14)0.0283 (17)0.0171 (14)0.0047 (13)0.0023 (11)0.0017 (13)
N40.0192 (15)0.0250 (17)0.0189 (14)0.0066 (13)0.0006 (11)0.0026 (13)
C150.0206 (16)0.0192 (17)0.0211 (15)0.0049 (13)0.0008 (12)0.0038 (13)
C160.0195 (15)0.0202 (17)0.0184 (15)0.0036 (13)0.0024 (12)0.0029 (13)
Geometric parameters (Å, º) top
S1—O31.442 (2)C8—C91.500 (4)
S1—O21.443 (2)C9—C101.381 (4)
S1—N11.603 (3)C9—C141.390 (4)
S1—C71.755 (3)C10—C111.400 (5)
O1—C11.228 (4)C10—H100.9500
N1—C11.361 (4)C11—C121.379 (5)
C1—C21.513 (4)C11—H110.9500
C2—C31.379 (4)C12—C131.399 (5)
C2—C71.382 (4)C12—H120.9500
C3—C41.391 (4)C13—C141.380 (4)
C3—H30.9500C13—H130.9500
C4—C51.383 (5)N3—C151.483 (4)
C4—H40.9500N3—H3A0.87 (3)
C5—C61.390 (4)N3—H3B0.91 (3)
C5—H50.9500N3—H3C0.92 (4)
C6—C71.382 (4)N4—C161.487 (4)
C6—H60.9500N4—H4A0.92 (4)
S2—O51.438 (2)N4—H4B0.906 (18)
S2—O61.445 (2)N4—H4C0.90 (4)
S2—N21.626 (2)C15—C161.499 (4)
S2—C141.769 (3)C15—H15A0.9900
O4—C81.240 (3)C15—H15B0.9900
N2—C81.352 (4)C16—H16A0.9900
C8—O41.240 (3)C16—H16B0.9900
O3—S1—O2114.65 (14)C14—C9—C8111.1 (3)
O3—S1—N1112.23 (14)C9—C10—C11118.2 (3)
O2—S1—N1110.64 (14)C9—C10—H10120.9
O3—S1—C7109.92 (13)C11—C10—H10120.9
O2—S1—C7110.59 (14)C12—C11—C10120.8 (3)
N1—S1—C797.51 (13)C12—C11—H11119.6
C1—N1—S1111.9 (2)C10—C11—H11119.6
O1—C1—N1124.0 (3)C11—C12—C13121.5 (3)
O1—C1—C2123.7 (3)C11—C12—H12119.3
N1—C1—C2112.3 (3)C13—C12—H12119.3
C3—C2—C7120.0 (3)C14—C13—C12116.8 (3)
C3—C2—C1128.9 (3)C14—C13—H13121.6
C7—C2—C1111.1 (2)C12—C13—H13121.6
C2—C3—C4118.3 (3)C13—C14—C9122.4 (3)
C2—C3—H3120.9C13—C14—S2130.6 (3)
C4—C3—H3120.9C9—C14—S2107.0 (2)
C5—C4—C3121.2 (3)C15—N3—H3A110 (2)
C5—C4—H4119.4C15—N3—H3B113.8 (19)
C3—C4—H4119.4H3A—N3—H3B110 (3)
C4—C5—C6120.8 (3)C15—N3—H3C110 (2)
C4—C5—H5119.6H3A—N3—H3C102 (3)
C6—C5—H5119.6H3B—N3—H3C110 (3)
C7—C6—C5117.1 (3)C16—N4—H4A113 (2)
C7—C6—H6121.4C16—N4—H4B111 (2)
C5—C6—H6121.4H4A—N4—H4B110 (3)
C2—C7—C6122.6 (3)C16—N4—H4C110 (2)
C2—C7—S1107.2 (2)H4A—N4—H4C107 (3)
C6—C7—S1130.2 (2)H4B—N4—H4C107 (3)
O5—S2—O6115.66 (13)N3—C15—C16112.5 (2)
O5—S2—N2110.38 (13)N3—C15—H15A109.1
O6—S2—N2110.57 (13)C16—C15—H15A109.1
O5—S2—C14111.71 (14)N3—C15—H15B109.1
O6—S2—C14110.08 (14)C16—C15—H15B109.1
N2—S2—C1496.87 (14)H15A—C15—H15B107.8
C8—N2—S2111.4 (2)N4—C16—C15111.8 (2)
O4—C8—N2124.1 (3)N4—C16—H16A109.3
O4—C8—C9122.3 (3)C15—C16—H16A109.3
N2—C8—C9113.5 (3)N4—C16—H16B109.3
C10—C9—C14120.2 (3)C15—C16—H16B109.3
C10—C9—C8128.7 (3)H16A—C16—H16B107.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O40.87 (3)1.96 (3)2.797 (3)161 (3)
N3—H3B···N10.91 (3)2.10 (3)2.891 (4)144 (3)
N3—H3B···O2i0.91 (3)2.38 (3)2.981 (4)123 (2)
N3—H3C···N2ii0.92 (4)2.19 (4)3.061 (4)160 (3)
N4—H4A···O40.92 (4)2.02 (4)2.844 (3)147 (3)
N4—H4C···N1iii0.90 (4)2.33 (4)3.029 (4)135 (3)
N4—H4B···N2iv0.91 (2)2.00 (2)2.899 (4)169 (3)
N4—H4C···O3v0.90 (4)2.30 (4)2.892 (4)123 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x1, y, z; (iv) x, y+2, z+1; (v) x+1, y+1, z+1.
(III) butane-1,4-diaminium bis(saccharinate) top
Crystal data top
C4H14N22+·2C7H4NO3SF(000) = 476
Mr = 454.52Dx = 1.574 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4341 reflections
a = 9.0016 (11) Åθ = 2.6–28.1°
b = 11.2539 (13) ŵ = 0.33 mm1
c = 10.0269 (12) ÅT = 100 K
β = 109.196 (1)°Block, colorless
V = 959.3 (2) Å30.49 × 0.37 × 0.26 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1871 independent reflections
Radiation source: fine-focus sealed tube1780 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
h = 911
Tmin = 0.857, Tmax = 0.920k = 1013
5206 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.7096P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.003
1871 reflectionsΔρmax = 0.35 e Å3
149 parametersΔρmin = 0.45 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.036 (3)
Crystal data top
C4H14N22+·2C7H4NO3SV = 959.3 (2) Å3
Mr = 454.52Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.0016 (11) ŵ = 0.33 mm1
b = 11.2539 (13) ÅT = 100 K
c = 10.0269 (12) Å0.49 × 0.37 × 0.26 mm
β = 109.196 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1871 independent reflections
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
1780 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 0.920Rint = 0.017
5206 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.35 e Å3
1871 reflectionsΔρmin = 0.45 e Å3
149 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.77564 (15)0.50781 (13)0.18396 (14)0.0162 (3)
C90.92744 (17)0.52218 (14)0.01673 (15)0.0163 (3)
H9A0.93650.60890.03390.020*
H9B0.83200.50750.06560.020*
C80.91076 (18)0.45989 (14)0.14593 (16)0.0171 (3)
H8A0.89520.37370.12650.021*
H8B1.00890.47040.22680.021*
O30.47033 (12)0.38723 (10)0.06019 (11)0.0179 (3)
S10.48326 (4)0.26812 (3)0.11793 (4)0.01339 (15)
O20.64212 (12)0.23881 (10)0.20604 (11)0.0175 (3)
C70.34846 (17)0.25008 (13)0.20967 (15)0.0133 (3)
C20.24053 (17)0.16557 (13)0.13613 (14)0.0139 (3)
C10.28125 (17)0.12043 (13)0.01075 (15)0.0150 (3)
C30.11468 (17)0.13566 (14)0.18006 (15)0.0160 (3)
H30.03950.07810.13070.019*
C60.33885 (18)0.30757 (14)0.32847 (15)0.0161 (3)
H60.41460.36500.37740.019*
C40.10214 (18)0.19295 (14)0.29909 (16)0.0181 (3)
H40.01640.17430.33080.022*
C50.21249 (18)0.27709 (14)0.37284 (16)0.0183 (3)
H50.20140.31400.45420.022*
N10.41263 (15)0.17045 (12)0.00215 (13)0.0172 (3)
H2C0.789 (2)0.585 (2)0.205 (2)0.028 (5)*
H2B0.762 (2)0.4708 (19)0.265 (2)0.033 (6)*
O10.20080 (12)0.04441 (10)0.07077 (11)0.0179 (3)
H2A0.689 (2)0.4967 (18)0.115 (2)0.026 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0149 (6)0.0183 (7)0.0156 (6)0.0021 (5)0.0052 (5)0.0001 (5)
C90.0148 (7)0.0165 (7)0.0176 (7)0.0005 (6)0.0052 (6)0.0002 (6)
C80.0152 (7)0.0177 (8)0.0189 (7)0.0013 (6)0.0062 (6)0.0009 (6)
O30.0166 (5)0.0170 (6)0.0193 (5)0.0015 (4)0.0049 (4)0.0043 (4)
S10.0117 (2)0.0149 (2)0.0137 (2)0.00089 (13)0.00433 (15)0.00097 (13)
O20.0114 (5)0.0202 (6)0.0193 (6)0.0002 (4)0.0031 (4)0.0014 (4)
C70.0108 (7)0.0145 (7)0.0146 (7)0.0009 (5)0.0041 (6)0.0034 (5)
C20.0142 (7)0.0128 (7)0.0137 (7)0.0018 (5)0.0031 (5)0.0020 (5)
C10.0146 (7)0.0154 (7)0.0143 (7)0.0025 (6)0.0040 (6)0.0029 (6)
C30.0146 (7)0.0155 (7)0.0172 (7)0.0008 (6)0.0042 (6)0.0007 (6)
C60.0169 (7)0.0148 (7)0.0150 (7)0.0006 (6)0.0029 (6)0.0002 (6)
C40.0166 (7)0.0202 (8)0.0196 (7)0.0002 (6)0.0087 (6)0.0023 (6)
C50.0200 (8)0.0202 (8)0.0154 (7)0.0021 (6)0.0068 (6)0.0005 (6)
N10.0160 (6)0.0202 (7)0.0163 (6)0.0034 (5)0.0064 (5)0.0035 (5)
O10.0182 (5)0.0186 (6)0.0168 (5)0.0039 (4)0.0057 (4)0.0039 (4)
Geometric parameters (Å, º) top
N2—C81.4902 (19)C7—C61.383 (2)
N2—H2C0.89 (2)C7—C21.386 (2)
N2—H2B0.96 (2)C2—C31.385 (2)
N2—H2A0.87 (2)C2—C11.509 (2)
C9—C81.523 (2)C1—O11.2391 (18)
C9—H9A0.9900C1—N11.3538 (19)
C9—H9B0.9900C3—C41.393 (2)
C8—H8A0.9900C3—H30.9500
C8—H8B0.9900C6—C51.394 (2)
O3—S11.4495 (11)C6—H60.9500
S1—O21.4504 (11)C4—C51.395 (2)
S1—N11.5996 (13)C4—H40.9500
S1—C71.7589 (15)C5—H50.9500
C8—N2—H2C110.7 (13)C6—C7—C2123.21 (14)
C8—N2—H2B113.9 (13)C6—C7—S1130.22 (12)
H2C—N2—H2B105.4 (18)C2—C7—S1106.52 (11)
C8—N2—H2A110.1 (13)C3—C2—C7120.07 (13)
H2C—N2—H2A110.5 (19)C3—C2—C1129.15 (13)
H2B—N2—H2A106.1 (18)C7—C2—C1110.76 (13)
C8—C9—H9A109.3O1—C1—N1124.30 (13)
C8—C9—H9B109.3O1—C1—C2122.20 (13)
H9A—C9—H9B108.0N1—C1—C2113.51 (13)
N2—C8—C9111.60 (12)C2—C3—C4117.71 (14)
N2—C8—H8A109.3C7—C6—C5116.65 (14)
C9—C8—H8A109.3C7—C6—H6121.7
N2—C8—H8B109.3C5—C6—H6121.7
C9—C8—H8B109.3C3—C4—C5121.59 (14)
H8A—C8—H8B108.0C3—C4—H4119.2
O3—S1—O2112.78 (6)C5—C4—H4119.2
O3—S1—N1112.03 (7)C6—C5—C4120.76 (14)
O2—S1—N1111.74 (7)C6—C5—H5119.6
O3—S1—C7109.70 (7)C4—C5—H5119.6
O2—S1—C7111.51 (7)C1—N1—S1110.94 (10)
N1—S1—C798.19 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1i0.96 (2)1.91 (2)2.8173 (17)158.0 (19)
N2—H2C···O2ii0.89 (2)1.96 (2)2.8259 (18)166.0 (19)
N2—H2A···O3iii0.87 (2)2.28 (2)2.9540 (17)134.9 (18)
N2—H2A···O30.87 (2)2.23 (2)2.9482 (17)140.3 (17)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x+1, y+1, z.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaH5N2+·C7H4NO3SC2H10N22+·2C7H4NO3SC4H14N22+·2C7H4NO3S
Mr215.23426.46454.52
Crystal system, space groupTriclinic, P1Triclinic, P1Monoclinic, P21/n
Temperature (K)100100100
a, b, c (Å)7.8647 (18), 11.776 (3), 15.904 (4)7.1684 (19), 9.964 (3), 13.185 (4)9.0016 (11), 11.2539 (13), 10.0269 (12)
α, β, γ (°)70.095 (3), 87.137 (4), 78.855 (4)84.557 (4), 86.387 (4), 76.149 (4)90, 109.196 (1), 90
V3)1358.7 (6)909.4 (5)959.3 (2)
Z622
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.340.340.33
Crystal size (mm)0.34 × 0.29 × 0.280.15 × 0.11 × 0.060.49 × 0.37 × 0.26
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Siemens, 1996)
Multi-scan
(SADABS; Siemens, 1996)
Multi-scan
(SADABS; Siemens, 1996)
Tmin, Tmax0.888, 0.9100.949, 0.9790.857, 0.920
No. of measured, independent and
observed reflections
10154, 4779, 3386 [I > 2σ(I)]10467, 3575, 2479 [I > 2σa(I)]5206, 1871, 1780 [I > 2σ(I)]
Rint0.0520.0560.017
(sin θ/λ)max1)0.5950.6180.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.118, 1.00 0.052, 0.130, 0.99 0.032, 0.083, 1.04
No. of reflections477935751871
No. of parameters439277149
No. of restraints100
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.360.67, 0.400.35, 0.45

Computer programs: SMART (Bruker, 1997), SMART, SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001), SHELXTL.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O20.870 (18)2.42 (3)3.097 (4)135 (3)
N4—H4A···N1i0.870 (18)2.40 (3)3.061 (4)133 (3)
N4—H4B···N2i0.88 (4)2.56 (2)3.381 (4)155 (3)
N5—H5A···O6ii0.886 (18)2.19 (2)3.008 (4)154 (3)
N5—H5C···O70.894 (18)1.900 (19)2.789 (4)172 (3)
N6—H6B···O30.878 (19)2.02 (3)2.787 (4)145 (4)
N6—H6C···O4iii0.897 (18)1.84 (2)2.728 (4)172 (3)
N7—H7A···N30.894 (18)2.43 (2)3.265 (4)156 (3)
N7—H7B···O40.870 (18)2.12 (3)2.886 (4)146 (3)
N8—H8A···O1iv0.888 (18)1.86 (2)2.730 (4)166 (4)
N8—H8C···N30.903 (18)2.00 (2)2.882 (4)165 (3)
N9—H9A···O6iv0.882 (18)2.17 (2)2.975 (4)152 (3)
N9—H9B···O1i0.871 (19)2.10 (2)2.924 (4)157 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+1, z; (iii) x+2, y+1, z+1; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O40.87 (3)1.96 (3)2.797 (3)161 (3)
N3—H3B···N10.91 (3)2.10 (3)2.891 (4)144 (3)
N3—H3B···O2i0.91 (3)2.38 (3)2.981 (4)123 (2)
N3—H3C···N2ii0.92 (4)2.19 (4)3.061 (4)160 (3)
N4—H4A···O40.92 (4)2.02 (4)2.844 (3)147 (3)
N4—H4C···N1iii0.90 (4)2.33 (4)3.029 (4)135 (3)
N4—H4B···N2iv0.906 (18)2.00 (2)2.899 (4)169 (3)
N4—H4C···O3v0.90 (4)2.30 (4)2.892 (4)123 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x1, y, z; (iv) x, y+2, z+1; (v) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1i0.96 (2)1.91 (2)2.8173 (17)158.0 (19)
N2—H2C···O2ii0.89 (2)1.96 (2)2.8259 (18)166.0 (19)
N2—H2A···O3iii0.87 (2)2.28 (2)2.9540 (17)134.9 (18)
N2—H2A···O30.87 (2)2.23 (2)2.9482 (17)140.3 (17)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x+1, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds