Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the crystal structures of the title compounds, C17H16N2O4S, (I), and C12H14N2O4S, (II), the co-existence of both possible keto/enol (4-keto and 4-hydr­oxy) tautomers, with visible predominance of the 4-keto form, is observed. The tautomeric equilibrium is stabilized by strong intra­molecular O-H...O hydrogen bonding. The 13C NMR spectra recorded for (I) and (II), and theoretical calculations at the RHF SCF ab initio 6-31G** level, show the same tautomeric equilibrium in solution and the gaseous phase. The partially saturated thia­zine rings in the pyrido[3,2-e][1,2]thia­zine rings systems of (I) and (II) adopt a diplanar conformation. The mol­ecular packing in (I) is influenced by weak inter­molecular C-H...O hydrogen bonding and C-H...[pi] inter­actions. In the crystal structure of (II), the mol­ecules are linked by a combination of O-H...O hydrogen bonding and C-H...[pi] and [pi]-[pi] inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010803206X/sf3092sup1.cif
Contains datablocks global, II, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010803206X/sf3092Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010803206X/sf3092IIsup3.hkl
Contains datablock II

CCDC references: 710751; 710752

Comment top

In recent papers, we reported the synthesis of 3-acyl-4-oxo/hydroxy-2-substituted-pyrido[3,2-e]-1,2-thiazine 1,1-dioxides prepared for pharmaceutical reasons (Zawisza & Malinka, 1986; Malinka et al., 2002, 2004). For the β-dicarbonyl grouping incorporated into the structure of the thiazine ring, the 4-hydroxy tautomeric form (b) was assigned as predominant on the basis of the spectral data (IR, 1H NMR). On the other hand, 3-acyl-4-oxo/hydroxy-2-substituted-pyrido[3,2-e]-1,2-thiazine 1,1-dioxides show reactivity toward nucleophiles, such as primary aliphatic amines with formation of 4-oxo-enamines, whose structures were confirmed by X-ray analysis (Malinka et al., 2004). In order to determine the keto/enol (a) and (b) tautomeric equilibrium within a series of pyridothiazines, an X-ray crystal structure determination and theoretical calculations were undertaken using 3-[hydroxy(phenyl)methyl]-2,5,7-trimethyl-2,3- dihydropyrido[3,2-e][1,2]thiazin-4-one 1,1-dioxide, (I), and 3-(1-hydroxyethylidene)-2,5,7-trimethyl-2,3- dihydropyrido[3,2-e][1,2]thiazin-4-one 1,1-dioxide, (II) (Figs. 1 and 2, respectively), as model compounds.

Difference electron-density maps for (I) and (II) revealed the position of the H atom in the vicinity of atom O11, clearly indicating that both molecules exist as the O4-keto/O11-enol form, (a), with the hydroxy and carbonyl groups involved in a strong intramolecular O11—H11···O4 (Tables 2 and 4) resonance-assisted hydrogen bond (Gilli et al., 1989). Moreover, the O11—C11, O4—C4, C3—C4 and C3—C11 bond lengths in (I) (Table 1) and (II) (Table 3), nominally corresponding to hydroxy, carbonyl, single and double bonds, respectively, have values characteristic rather for the delocalization of π electrons in the O4/C4/C3/C11/O11 system. Notwithstanding, a residual electronic density in Fourier maps (Fig. 3) of 0.15 e Å-3 for (I) and 0.16 e Å-3 for (II) is observed at distances of 0.729, 0.889 and 1.884 Å in (I), and 0.710, 0.896 and 1.906 Å in (II), from atoms O4, H11 and O11, respectively. Thus, the possibility of desmotropism (Foces-Foces et al., 1997), i.e. the co-existence in the crystalline state of the O4-keto/O11-enol form, (a), and a small amount of the O4-enol/O11-keto form, (b), cannot be precluded. Because of the keto–enol tautomerism, the C—O bonds clearly differ in length from single and double bonds. The O11—C11 bonds are significantly shorter than expected for the Csp2—O(2) bond in enols [1.333 (17) Å], while the O4—C4 bonds are longer than expected for Csp2O(1) in ketones [1.210 (8) Å; Allen et al., 1987]. The C—O bonds in the similar structure of methyl 4-hydroxy-2-methyl-2H-1,2-benzothiazine-3-carboxylate 1,1-dioxide [a precursor in the synthesis of piroxicam, the nonsteroidal and anti-inflammatory agent (Golič & Leban, 1987)] are more differentiated, with C—O bond lengths of 1.352 (9) and 1.234 (9) Å for the hydroxy and carbonyl groups, respectively. In solution, the 13C NMR (DMSO) spectrum of (I) shows that both tautomers (a) and (b) are present, with the predominance of one of them indicated by the non-equivalent splitting of some signals. The splittings 176.00 and 176.13, 162.45 and 163.13, 151.40 and 151.72, 133.82 and 133.60, 132.43 and 132.78, 130.30 and 130.80, and 121.62 and 121.44 can be ascribed to seven C atoms (C3, C4, C10, C11, C31, C32 and C36) having different structural surroundings in molecules of tautomers (a) and (b). The 13C NMR (CDCl3) spectrum of (II) exhibits only one group of signals corresponding to one tautomer form in solution. The change of the 13C NMR spectrum of the keto–enol pair with changing solvent is observed, for example, for the keto–enol tautomerism in fluorinated β-diketones (Salman et al., 1990) and phenylpyruvic acids (Carpy et al., 2000). Theoretical calculations at the RHF SCF ab initio 6–31G** level (Bylaska et al., 2006; Kendall et al., 2000) show that form (a) of (I) and (II) obtained after energy minimization and geometry optimization in the gaseous phase are more energetically stable than form (b) with a small difference in the energy between the (b) and (a) forms of 1.195 and 1.537 kcal mol-1 for (I) and (II), respectively. Thus, the populations of the tautomers (a) and (b) in vacuum estimated using a nondegenerate Boltzman distribution are in the ratio 0.87:0.13 in (I) and 0.93:0.07 in (II). In solution [DMSO (ε = 46.7) for (I) and CHCl3 (ε = 4.81) for (II); COSMO model (Klamt & Schüürmann, 1993)], the energy differences between forms (b) and (a) are 0.150 kcal mol-1 for (I) and 0.847 kcal mol-1 for (II), indicating the predominance of form (a) over form (b), with population ratios of 0.88:0.12 and 0.81:0.19 for (I) and (II), respectively. The results of theoretical calculations for (I) and (II) do not include the co-existence of both possible keto–enol (a) and (b) forms in the gaseous phase and solution, indicating the O4keto/O11enol, (a), form as predominant and are in good agreement with X-ray and 13C NMR experimental data. The theoretical data showed also that the third possible O4keto/O11keto/CH2 tautomeric form of (I) and (II) is the most stable form. However, this tautomeric form is not present in the crystalline state, probably because of the impossibility of forming intra- or (and) intermolecular O—H···O hydrogen bonds to stabilize the crystal and molecular structures.

In the pyrido[3,2-e]-1,2-thiazine ring systems of (Ia) and (IIa), the aromatic pyridine rings are planar within 0.008 (1) and 0.006 (1) Å, respectively, while the partially saturated thiazine rings exist in a diplanar conformation with an asymmetry parameter ΔC2S1,N2 of 14.01 (15)° in (Ia) and 9.31 (13)° in (IIa) (Duax & Norton, 1975) and S1—C9—C10—C4 and N2—C3—C4—C10 torsion angles close to 0° (Tables 1 and 3). The substituent atoms O1 and C21 in both molecules occupy axial positions, and all other substituents occupy equatorial positions with respect to the plane of the thiazine ring. Atoms N2 have a flattened pyramidal configuration, the sum of the angles around N2 being 343.6° in (Ia) and 345.4° in (IIa); these values are intermediate between sp3- and sp2-hybridization as a result of the weak conjugation of the lone pair at N2 with the C10/C4/O4/C3/C11 π-electron system. The marked deviation from sp2-hybridization and four different substituents at atom N2 cause the chirality of the molecules (Ia) and (IIa). A similar effect is observed for four close analogues with the pyridothiazine ring system (Malinka et al., 2004; Karczmarzyk & Malinka, 2005, 2006), but there is only one case (5H-2,4-dimethyl-6-phenyl-8,9-dihydro-pyrido[3',2':5,6][1,2]thiazino[3,2-c][1,4]oxazin-5-one 11,11-dioxide) where this results in the separation of the enantiomers during the process of crystallization. The presence of bulky 2-methyl and 3-[hydroxy(phenyl)methyl], in (Ia), and 3-(1-hydroxyethylidene), in (IIa), substituents on adjacent positions of the thiazine ring is the cause of asymmetry in the O11—C11—C31 and C3—C11—C31 bond angles in (Ia) (Table 1) and the O11—C11—C12 and C3—C11—C12 angles in (IIa) (Table 3), and of the distortion of the molecule of (Ia) as a whole from a planar conformation, the C3—C11—C31—C32 torsion angle being -46.7 (2)°.

The molecular packing in the crystal structure of (Ia) (Fig. 4) is influenced by a weak intermolecular C—H···O hydrogen bond, specified as C(8) (Bernstein et al., 1995), linking molecules related by a 21 axis into molecular chains along the [100] direction (Table 2). Additionally, the C21—H212 bond of the methyl group is oriented towards the centroid Cg of the benzene ring of neighbouring molecule related by a b-glide plane. This interaction connects the hydrogen-bonded chains into sheets parallel to (001) plane.

The packing of molecules in the crystal structure of (IIa) (Fig. 5) is governed by a combination of an O—H···O hydrogen bond, specified as C(7), and a C—H···π(pyridine) interaction, linking the molecules related by n-glide planes into molecular chains parallel to the [101] direction (Table 3). Significant ππ interactions are observed in the packing. Pairs of pyridine rings belonging to inversion-related molecules partially overlap, with a centroid-to-centroid separation of 4.0364 (7) Å, a perpendicular distance of 3.738 Å and a slippage of 1.523 Å.

In conclusion, the crystal and molecular structures of (I) and (II), as well as their 13C NMR spectra and theoretical calculations in solution and the gaseous phase, confirm the co-existence of the O4-keto/O11-enol, (a), and O4-enol/O11-keto, (b), tautomeric forms, with a visible predominance of form (a). This tautomeric equilibrium is stabilized by the strong intramolecular O—H···O hydrogen bond. The above data should be taken into consideration when analysing the structure/bioactivity relationship within series of 3-acyl-4-oxopyrido[3,2-e]-1,2-thiazines tested pharmacologically previously and in the future.

Related literature top

For related literature, see: Bernstein et al. (1995); Bylaska et al. (2006); Duax & Norton (1975); Foces-Foces, Fontenas, Elguero & Sobrados (1997); Gilli et al. (1989); Karczmarzyk & Malinka (2005, 2006); Kendall et al. (2000); Klamt & Schüürmann (1993); Malinka et al. (2002, 2004); Zawisza & Malinka (1986).

Experimental top

The syntheses of (I) and (II) and their analytical data (IR, 1H NMR) were described by Zawisza & Malinka (1986). Crystals suitable for X-ray diffraction analysis were grown by slow evaporation of benzene and propan-1-ol solutions of (I) and (II), respectively. For (Ia), 13C NMR (DMSO): δ 185.71, 176.00, 162.45, 155.57, 151.40, 133.82, 132.43, 130.30, 129.16, 128.67, 128.37, 121.62, 117.37, 111.58, 24.61, 22.54, 22.41. For (Ib), 13C NMR (DMSO): δ 185.71, 176.13, 163.13, 155.57, 151.72, 133.60, 132.78, 130.80, 129.16, 128.67, 128.37, 121.44, 117.37, 111.58, 24.61, 22.54, 22.41. For (II), 13C NMR (CDCl3): δ 195.72, 172.21, 163.24, 153.22, 151.33, 130.33, 121.33, 118.24, 40.29, 24.43, 22.62, 21.93.

Refinement top

For both compounds, the O-bound H atom involved in the intramolecular hydrogen bond was located by difference Fourier synthesis and refined freely [O—H = 1.00 (2) and 1.05</span><span style=" font-weight:600;">(3) Å [1.04 in Table 4] for (Ia) and (IIa), respectively]. The remaining H atoms were positioned geometrically and treated as riding on their C atoms, with C—H distances of 0.93 Å (aromatic) and 0.96 Å (CH3). All H atoms were assigned Uiso(H) values of 1.5Ueq(O,C).

Computing details top

For both compounds, data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (Ia), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of (IIa), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. Difference Fourier maps calculated for the O4-keto and O11—H11-enol groups involved in the intramolecular hydrogen bond (a) in (Ia) and (b) in (IIa). Solid lines indicate positive values and dashed lines indicate negative values of difference electron density, with a contour level of 0.04 e Å-3.
[Figure 4] Fig. 4. The molecular packing of (Ia), viewed down the a axis. Dashed lines indicate intermolecular hydrogen bonds.
[Figure 5] Fig. 5. The molecular packing of (IIa), viewed down the a axis. Dashed lines indicate intermolecular hydrogen bonds.
(I) 3-[hydroxy(phenyl)methyl]-2,5,7-trimethyl-2,3- dihydropyrido[3,2-e][1,2]thiazin-4-one 1,1-dioxide top
Crystal data top
C17H16N2O4SDx = 1.390 Mg m3
Mr = 344.38Melting point: 538 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 569 reflections
a = 12.9699 (4) Åθ = 3.6–26.7°
b = 15.2714 (5) ŵ = 0.22 mm1
c = 16.6176 (6) ÅT = 293 K
V = 3291.42 (19) Å3Prism, yellow
Z = 80.44 × 0.26 × 0.18 mm
F(000) = 1440
Data collection top
Bruker SMART APEXII CCD
diffractometer
4042 independent reflections
Radiation source: fine-focus sealed tube3459 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 28.5°, θmin = 2.4°
Absorption correction: multi-scan
SADABS (Sheldrick, 2002)
h = 1717
Tmin = 0.873, Tmax = 0.961k = 2020
54023 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: difference Fourier map
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0736P)2 + 0.6788P]
where P = (Fo2 + 2Fc2)/3
4042 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C17H16N2O4SV = 3291.42 (19) Å3
Mr = 344.38Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.9699 (4) ŵ = 0.22 mm1
b = 15.2714 (5) ÅT = 293 K
c = 16.6176 (6) Å0.44 × 0.26 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4042 independent reflections
Absorption correction: multi-scan
SADABS (Sheldrick, 2002)
3459 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 0.961Rint = 0.020
54023 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.30 e Å3
4042 reflectionsΔρmin = 0.27 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Weighted least-squares planes through the starred atoms (Nardelli, Musatti, Domiano & Andreetti Ric.Sci.(1965),15(II—A),807). Equation of the plane: m1*X+m2*Y+m3*Z=d

Plane 1 m1 = -0.04931(0.00059) m2 = -0.46477(0.00055) m3 = -0.88406(0.00029) D = -3.77238(0.00620) Atom d s d/s (d/s)**2 C5 * -0.0017 0.0015 - 1.150 1.321 C6 * -0.0073 0.0016 - 4.480 20.071 C7 * 0.0064 0.0015 4.350 18.919 N8 * 0.0013 0.0013 1.019 1.038 C9 * -0.0077 0.0013 - 5.911 34.945 C10 * 0.0074 0.0013 5.633 31.727 C51 - 0.0336 0.0021 - 16.057 257.835 C71 0.0012 0.0021 0.605 0.366 C4 0.0686 0.0013 51.244 2625.968 O4 0.5480 0.0011 479.240 229671.313 C3 - 0.3652 0.0013 - 272.698 74363.984 C11 - 0.2880 0.0013 - 215.062 46251.840 O11 0.1320 0.0013 101.076 10216.332 ============ Sum((d/s)**2) for starred atoms 108.021 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarity

Plane 2 m1 = 0.30890(0.00165) m2 = -0.54715(0.00045) m3 = -0.77795(0.00045) D = -0.51516(0.01702) Atom d s d/s (d/s)**2 C10 * 0.0091 0.0013 7.072 50.012 C4 * -0.0050 0.0013 - 3.718 13.823 C3 * -0.0151 0.0013 - 11.359 129.032 C11 * 0.0058 0.0013 4.345 18.880 C31 * 0.0053 0.0014 3.707 13.741 O4 0.0363 0.0011 32.279 1041.921 O11 - 0.0237 0.0013 - 18.592 345.646 N2 - 0.1285 0.0011 - 114.268 13057.065 ============ Sum((d/s)**2) for starred atoms 225.488 Chi-squared at 95% for 2 degrees of freedom: 5.99 The group of atoms deviates significantly from planarity

Plane 3 m1 = -0.37594(0.00068) m2 = -0.77381(0.00046) m3 = -0.50978(0.00060) D = -5.59738(0.00762) Atom d s d/s (d/s)**2 C31 * -0.0004 0.0014 - 0.317 0.100 C32 * -0.0033 0.0016 - 2.107 4.438 C33 * 0.0058 0.0019 3.075 9.458 C34 * -0.0013 0.0020 - 0.681 0.464 C35 * -0.0055 0.0021 - 2.616 6.843 C36 * 0.0047 0.0018 2.683 7.198 ============ Sum((d/s)**2) for starred atoms 28.501 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarity

Dihedral angles formed by LSQ-planes Plane - plane angle (s.u.) angle (s.u.) 1 2 22.06 (0.09) 157.94 (0.09) 1 3 34.02 (0.05) 145.98 (0.05) 2 3 45.26 (0.09) 134.74 (0.09)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.90147 (2)0.14627 (2)0.15211 (2)0.04617 (14)
O10.90166 (9)0.07433 (8)0.09741 (8)0.0620 (3)
O20.99626 (8)0.17983 (9)0.18252 (9)0.0692 (4)
O40.57771 (8)0.13326 (7)0.12995 (7)0.0520 (3)
O110.58431 (8)0.00250 (8)0.22115 (8)0.0573 (3)
H110.5605 (18)0.0501 (15)0.1845 (14)0.086*
N20.82775 (8)0.12063 (7)0.22835 (7)0.0423 (3)
N80.88324 (9)0.29638 (8)0.07505 (8)0.0456 (3)
C30.72532 (9)0.09644 (9)0.20347 (8)0.0400 (3)
C40.66930 (10)0.15125 (9)0.14990 (8)0.0396 (3)
C50.66565 (10)0.30153 (9)0.08224 (9)0.0435 (3)
C60.72348 (12)0.36821 (10)0.04789 (10)0.0497 (3)
H610.68980.41680.02680.075*
C70.83051 (11)0.36423 (9)0.04422 (9)0.0471 (3)
C90.82803 (9)0.23323 (8)0.10858 (8)0.0392 (3)
C100.72027 (9)0.22941 (8)0.11409 (8)0.0381 (3)
C110.68057 (10)0.02178 (9)0.23624 (8)0.0426 (3)
C210.83152 (14)0.17880 (14)0.29862 (11)0.0671 (5)
H2110.79750.15120.34320.101*
H2120.79750.23290.28610.101*
H2130.90210.19030.31250.101*
C510.55019 (12)0.31080 (12)0.08496 (13)0.0644 (5)
H5110.52580.29580.13770.097*
H5120.51960.27230.04600.097*
H5130.53150.37020.07280.097*
C710.89297 (13)0.43562 (11)0.00736 (13)0.0649 (5)
H7110.84980.47060.02690.097*
H7120.94780.41060.02380.097*
H7130.92150.47180.04910.097*
C310.73422 (10)0.03846 (9)0.29184 (9)0.0442 (3)
C320.83367 (12)0.06822 (10)0.27645 (10)0.0512 (3)
H3210.86870.04930.23080.077*
C330.88037 (14)0.12620 (12)0.32938 (12)0.0624 (4)
H3310.94650.14680.31880.094*
C340.82922 (16)0.15327 (12)0.39742 (13)0.0701 (5)
H3410.86110.19170.43300.105*
C350.73077 (17)0.12362 (14)0.41322 (12)0.0723 (5)
H3510.69670.14190.45950.109*
C360.68259 (13)0.06673 (12)0.36038 (10)0.0573 (4)
H3610.61590.04750.37070.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02923 (19)0.0430 (2)0.0663 (3)0.00095 (12)0.00116 (13)0.01049 (15)
O10.0605 (7)0.0488 (6)0.0767 (8)0.0108 (5)0.0169 (5)0.0025 (5)
O20.0314 (5)0.0680 (8)0.1082 (10)0.0118 (5)0.0123 (6)0.0298 (7)
O40.0338 (5)0.0560 (6)0.0663 (7)0.0090 (4)0.0107 (4)0.0099 (5)
O110.0378 (5)0.0579 (6)0.0761 (7)0.0142 (4)0.0068 (5)0.0151 (6)
N20.0329 (5)0.0436 (6)0.0505 (6)0.0066 (4)0.0063 (4)0.0053 (5)
N80.0389 (6)0.0420 (6)0.0558 (7)0.0049 (5)0.0048 (5)0.0047 (5)
C30.0306 (6)0.0422 (7)0.0471 (7)0.0054 (5)0.0028 (5)0.0034 (5)
C40.0306 (6)0.0412 (7)0.0470 (7)0.0040 (5)0.0005 (5)0.0003 (5)
C50.0368 (6)0.0426 (7)0.0511 (7)0.0031 (5)0.0012 (5)0.0009 (6)
C60.0509 (8)0.0391 (7)0.0590 (9)0.0043 (6)0.0012 (6)0.0065 (6)
C70.0490 (8)0.0394 (7)0.0530 (8)0.0040 (5)0.0051 (6)0.0034 (6)
C90.0339 (6)0.0371 (6)0.0466 (7)0.0023 (5)0.0006 (5)0.0020 (5)
C100.0338 (6)0.0379 (6)0.0426 (6)0.0014 (5)0.0000 (5)0.0009 (5)
C110.0351 (6)0.0437 (7)0.0489 (7)0.0062 (5)0.0012 (5)0.0025 (5)
C210.0600 (10)0.0786 (12)0.0627 (10)0.0106 (9)0.0133 (8)0.0104 (9)
C510.0392 (8)0.0599 (10)0.0942 (13)0.0112 (7)0.0020 (8)0.0156 (9)
C710.0632 (10)0.0498 (9)0.0816 (12)0.0102 (7)0.0114 (8)0.0155 (8)
C310.0424 (7)0.0403 (7)0.0499 (7)0.0090 (5)0.0009 (5)0.0055 (5)
C320.0486 (8)0.0449 (7)0.0603 (8)0.0008 (6)0.0040 (6)0.0067 (6)
C330.0560 (9)0.0485 (8)0.0826 (12)0.0018 (7)0.0094 (8)0.0108 (8)
C340.0737 (12)0.0603 (10)0.0762 (12)0.0102 (8)0.0212 (9)0.0241 (9)
C350.0809 (13)0.0779 (12)0.0583 (10)0.0197 (10)0.0015 (9)0.0235 (9)
C360.0504 (8)0.0630 (10)0.0585 (9)0.0108 (7)0.0061 (7)0.0123 (7)
Geometric parameters (Å, º) top
S1—O21.4247 (11)C11—C311.4777 (19)
S1—O11.4260 (13)C21—H2110.9600
S1—N21.6347 (12)C21—H2120.9600
S1—C91.7872 (13)C21—H2130.9600
O4—C41.2636 (16)C51—H5110.9600
O11—C111.3070 (16)C51—H5120.9600
O11—H111.00 (2)C51—H5130.9600
N2—C31.4395 (15)C71—H7110.9600
N2—C211.468 (2)C71—H7120.9600
N8—C91.3243 (16)C71—H7130.9600
N8—C71.3429 (19)C31—C321.391 (2)
C3—C111.3906 (18)C31—C361.390 (2)
C3—C41.4216 (18)C32—C331.387 (2)
C4—C101.4885 (18)C32—H3210.9300
C5—C61.388 (2)C33—C341.374 (3)
C5—C101.4124 (18)C33—H3310.9300
C5—C511.505 (2)C34—C351.380 (3)
C6—C71.391 (2)C34—H3410.9300
C6—H610.9300C35—C361.384 (3)
C7—C711.490 (2)C35—H3510.9300
C9—C101.4018 (17)C36—H3610.9300
O2—S1—O1120.12 (8)N2—C21—H212109.5
O2—S1—N2108.42 (7)H211—C21—H212109.5
O1—S1—N2108.09 (6)N2—C21—H213109.5
O2—S1—C9109.65 (7)H211—C21—H213109.5
O1—S1—C9108.38 (7)H212—C21—H213109.5
N2—S1—C9100.36 (6)C5—C51—H511109.5
C11—O11—H11104.4 (13)C5—C51—H512109.5
C3—N2—C21114.49 (12)H511—C51—H512109.5
C3—N2—S1112.25 (9)C5—C51—H513109.5
C21—N2—S1116.87 (10)H511—C51—H513109.5
C9—N8—C7116.56 (12)H512—C51—H513109.5
C11—C3—C4120.98 (12)C7—C71—H711109.5
C11—C3—N2118.89 (12)C7—C71—H712109.5
C4—C3—N2120.03 (11)H711—C71—H712109.5
O4—C4—C3121.12 (12)C7—C71—H713109.5
O4—C4—C10119.14 (12)H711—C71—H713109.5
C3—C4—C10119.70 (11)H712—C71—H713109.5
C6—C5—C10117.09 (12)C32—C31—C36119.72 (14)
C6—C5—C51118.76 (13)C32—C31—C11121.66 (13)
C10—C5—C51124.14 (13)C36—C31—C11118.61 (13)
C5—C6—C7121.69 (13)C33—C32—C31119.78 (15)
C5—C6—H61119.2C33—C32—H321120.1
C7—C6—H61119.2C31—C32—H321120.1
N8—C7—C6121.69 (13)C34—C33—C32120.19 (18)
N8—C7—C71116.39 (13)C34—C33—H331119.9
C6—C7—C71121.91 (14)C32—C33—H331119.9
N8—C9—C10126.65 (12)C33—C34—C35120.29 (17)
N8—C9—S1115.05 (10)C33—C34—H341119.9
C10—C9—S1118.30 (9)C35—C34—H341119.9
C9—C10—C5116.31 (12)C34—C35—C36120.19 (17)
C9—C10—C4120.15 (11)C34—C35—H351119.9
C5—C10—C4123.52 (12)C36—C35—H351119.9
O11—C11—C3120.55 (13)C35—C36—C31119.82 (17)
O11—C11—C31115.44 (12)C35—C36—H361120.1
C3—C11—C31123.97 (12)C31—C36—H361120.1
N2—C21—H211109.5
O2—S1—N2—C3172.68 (10)N8—C9—C10—C51.7 (2)
O1—S1—N2—C355.62 (11)S1—C9—C10—C5177.10 (10)
C9—S1—N2—C357.77 (10)N8—C9—C10—C4176.68 (13)
O2—S1—N2—C2137.50 (13)S1—C9—C10—C44.56 (17)
O1—S1—N2—C21169.20 (12)C6—C5—C10—C90.79 (19)
C9—S1—N2—C2177.41 (12)C51—C5—C10—C9177.91 (14)
C21—N2—C3—C1189.88 (16)C6—C5—C10—C4177.49 (13)
S1—N2—C3—C11133.82 (12)C51—C5—C10—C43.8 (2)
C21—N2—C3—C486.45 (17)O4—C4—C10—C9155.02 (13)
S1—N2—C3—C449.84 (15)C3—C4—C10—C922.68 (19)
C11—C3—C4—O40.7 (2)O4—C4—C10—C523.2 (2)
N2—C3—C4—O4176.97 (13)C3—C4—C10—C5159.11 (13)
C11—C3—C4—C10178.36 (12)C4—C3—C11—O113.0 (2)
N2—C3—C4—C105.38 (19)N2—C3—C11—O11173.31 (13)
C10—C5—C6—C70.5 (2)C4—C3—C11—C31179.62 (13)
C51—C5—C6—C7179.29 (16)N2—C3—C11—C314.1 (2)
C9—N8—C7—C60.5 (2)O11—C11—C31—C32135.82 (15)
C9—N8—C7—C71179.34 (14)C3—C11—C31—C3246.7 (2)
C5—C6—C7—N81.2 (2)O11—C11—C31—C3643.1 (2)
C5—C6—C7—C71179.96 (16)C3—C11—C31—C36134.37 (16)
C7—N8—C9—C101.0 (2)C36—C31—C32—C330.3 (2)
C7—N8—C9—S1177.78 (11)C11—C31—C32—C33178.63 (15)
O2—S1—C9—N832.24 (13)C31—C32—C33—C340.9 (3)
O1—S1—C9—N8100.62 (11)C32—C33—C34—C350.6 (3)
N2—S1—C9—N8146.21 (10)C33—C34—C35—C360.3 (3)
O2—S1—C9—C10146.66 (12)C34—C35—C36—C310.9 (3)
O1—S1—C9—C1080.48 (12)C32—C31—C36—C350.6 (2)
N2—S1—C9—C1032.69 (12)C11—C31—C36—C35179.57 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O41.00 (2)1.58 (2)2.5083 (17)154 (2)
C71—H712···O4i0.962.533.472 (2)167
C21—H212···CgAii0.962.973.817 (2)148
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y1/2, z.
(II) 3-(1-hydroxyethylidene)-2,5,7-trimethyl-2,3- dihydropyrido[3,2-e][1,2]thiazin-4-one 1,1-dioxide top
Crystal data top
C12H14N2O4SF(000) = 592
Mr = 282.31Dx = 1.441 Mg m3
Monoclinic, P21/nMelting point = 430–431 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.9023 (2) ÅCell parameters from 655 reflections
b = 14.3095 (3) Åθ = 2.4–32.0°
c = 10.6151 (2) ŵ = 0.26 mm1
β = 105.817 (2)°T = 293 K
V = 1301.03 (5) Å3Prism, yellow
Z = 40.42 × 0.35 × 0.26 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3097 independent reflections
Radiation source: fine-focus sealed tube2924 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω scansθmax = 27.9°, θmin = 2.5°
Absorption correction: multi-scan
SADABS (Sheldrick, 2002)
h = 1111
Tmin = 0.846, Tmax = 0.935k = 1818
18200 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0767P)2 + 0.3499P]
where P = (Fo2 + 2Fc2)/3
3097 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C12H14N2O4SV = 1301.03 (5) Å3
Mr = 282.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.9023 (2) ŵ = 0.26 mm1
b = 14.3095 (3) ÅT = 293 K
c = 10.6151 (2) Å0.42 × 0.35 × 0.26 mm
β = 105.817 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3097 independent reflections
Absorption correction: multi-scan
SADABS (Sheldrick, 2002)
2924 reflections with I > 2σ(I)
Tmin = 0.846, Tmax = 0.935Rint = 0.015
18200 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.34 e Å3
3097 reflectionsΔρmin = 0.24 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Weighted least-squares planes through the starred atoms (Nardelli, Musatti, Domiano & Andreetti Ric.Sci.(1965),15(II—A),807). Equation of the plane: m1*X+m2*Y+m3*Z=d

Plane 1 m1 = -0.25629(0.00053) m2 = -0.42318(0.00047) m3 = -0.86904(0.00024) D = -3.00937(0.00213) Atom d s d/s (d/s)**2 N8 * -0.0002 0.0011 - 0.217 0.047 C9 * -0.0042 0.0011 - 3.720 13.836 C10 * 0.0062 0.0011 5.432 29.506 C5 * -0.0056 0.0013 - 4.221 17.815 C6 * 0.0000 0.0015 - 0.027 0.001 C7 * 0.0038 0.0014 2.674 7.149 C51 - 0.0655 0.0018 - 36.703 1347.108 C71 - 0.0385 0.0020 - 19.389 375.921 ============ Sum((d/s)**2) for starred atoms 68.353 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarity

Plane 2 m1 = -0.60682(0.00053) m2 = -0.41944(0.00050) m3 = -0.67516(0.00055) D = -4.42883(0.00289) Atom d s d/s (d/s)**2 C3 * -0.0085 0.0013 - 6.678 44.594 C11 * 0.0129 0.0015 8.359 69.869 O11 * -0.0052 0.0014 - 3.782 14.302 H11 * 0.0195 0.0254 0.769 0.591 O4 * -0.0001 0.0011 - 0.095 0.009 C4 * 0.0040 0.0012 3.262 10.638 ============ Sum((d/s)**2) for starred atoms 140.004 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarity

Dihedral angles formed by LSQ-planes Plane - plane angle (s.u.) angle (s.u.) 1 2 23.11 (0.04) 156.89 (0.04)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.28260 (3)0.14502 (2)0.18428 (3)0.03286 (12)
O10.17725 (12)0.13514 (8)0.05708 (11)0.0469 (3)
O20.22927 (14)0.12979 (8)0.29738 (12)0.0502 (3)
O40.60624 (13)0.21362 (7)0.02493 (10)0.0442 (3)
O110.47345 (16)0.37005 (9)0.06704 (13)0.0577 (3)
H110.540 (3)0.3110 (18)0.073 (2)0.086*
N20.36000 (13)0.24909 (8)0.19434 (10)0.0336 (2)
N80.44934 (13)0.00838 (8)0.25020 (11)0.0370 (2)
C30.43629 (15)0.26669 (8)0.09335 (12)0.0324 (3)
C40.53793 (14)0.19841 (8)0.06382 (12)0.0320 (2)
C50.69129 (14)0.04840 (9)0.14072 (13)0.0358 (3)
C60.69227 (16)0.03689 (10)0.20326 (15)0.0417 (3)
H610.77590.07720.20970.063*
C70.57315 (16)0.06414 (9)0.25649 (14)0.0398 (3)
C90.44785 (13)0.07307 (8)0.19047 (11)0.0302 (2)
C100.56086 (13)0.10681 (8)0.13238 (11)0.0301 (2)
C110.40557 (18)0.35039 (9)0.02374 (15)0.0420 (3)
C120.2961 (2)0.42230 (12)0.0472 (2)0.0625 (5)
H1210.26410.40600.12370.094*
H1220.20610.42540.02710.094*
H1230.34730.48200.06020.094*
C210.4427 (2)0.28239 (13)0.32623 (16)0.0569 (4)
H2110.38770.26230.38760.085*
H2120.44770.34940.32610.085*
H2130.54660.25720.35100.085*
C510.82791 (18)0.07409 (11)0.09064 (18)0.0505 (4)
H5110.85710.13780.11340.076*
H5120.79980.06720.00280.076*
H5130.91430.03370.12930.076*
C710.5784 (2)0.15489 (12)0.3278 (2)0.0588 (4)
H7110.61420.14400.42040.088*
H7120.64850.19700.30200.088*
H7130.47570.18180.30670.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02783 (18)0.03321 (19)0.0408 (2)0.00030 (10)0.01487 (13)0.00388 (10)
O10.0319 (5)0.0484 (6)0.0548 (6)0.0000 (4)0.0022 (4)0.0001 (4)
O20.0535 (6)0.0484 (6)0.0625 (7)0.0035 (5)0.0390 (6)0.0113 (5)
O40.0543 (6)0.0411 (5)0.0486 (6)0.0025 (4)0.0331 (5)0.0043 (4)
O110.0777 (8)0.0456 (6)0.0656 (7)0.0125 (6)0.0466 (7)0.0198 (5)
N20.0395 (5)0.0310 (5)0.0353 (5)0.0019 (4)0.0185 (4)0.0014 (4)
N80.0353 (5)0.0346 (5)0.0417 (6)0.0004 (4)0.0114 (4)0.0079 (4)
C30.0366 (6)0.0296 (6)0.0351 (6)0.0015 (4)0.0167 (5)0.0003 (4)
C40.0337 (6)0.0308 (6)0.0340 (6)0.0036 (4)0.0137 (4)0.0007 (4)
C50.0302 (6)0.0344 (6)0.0447 (7)0.0013 (5)0.0137 (5)0.0047 (5)
C60.0348 (6)0.0352 (6)0.0548 (8)0.0056 (5)0.0118 (5)0.0010 (6)
C70.0392 (7)0.0334 (6)0.0451 (7)0.0027 (5)0.0086 (5)0.0053 (5)
C90.0274 (5)0.0307 (5)0.0330 (5)0.0005 (4)0.0092 (4)0.0014 (4)
C100.0287 (5)0.0298 (6)0.0331 (5)0.0018 (4)0.0103 (4)0.0011 (4)
C110.0501 (8)0.0347 (7)0.0478 (7)0.0023 (5)0.0248 (6)0.0048 (5)
C120.0797 (12)0.0398 (8)0.0830 (12)0.0190 (8)0.0476 (10)0.0167 (8)
C210.0755 (11)0.0585 (9)0.0409 (8)0.0167 (8)0.0231 (7)0.0144 (7)
C510.0385 (7)0.0428 (8)0.0794 (11)0.0001 (6)0.0318 (7)0.0031 (7)
C710.0622 (10)0.0431 (8)0.0713 (11)0.0090 (7)0.0186 (8)0.0227 (8)
Geometric parameters (Å, º) top
S1—O21.4230 (10)C6—C71.387 (2)
S1—O11.4256 (11)C6—H610.9300
S1—N21.6320 (11)C7—C711.4974 (19)
S1—C91.7821 (12)C9—C101.4013 (16)
O4—C41.2717 (14)C11—C121.484 (2)
O11—C111.3001 (17)C12—H1210.9600
O11—H111.05 (3)C12—H1220.9600
N2—C31.4389 (15)C12—H1230.9600
N2—C211.4722 (18)C21—H2110.9600
N8—C91.3251 (16)C21—H2120.9600
N8—C71.3476 (17)C21—H2130.9600
C3—C111.3948 (18)C51—H5110.9600
C3—C41.4234 (16)C51—H5120.9600
C4—C101.4861 (16)C51—H5130.9600
C5—C61.3882 (19)C71—H7110.9600
C5—C101.4138 (17)C71—H7120.9600
C5—C511.4997 (18)C71—H7130.9600
O2—S1—O1119.95 (7)C9—C10—C4120.01 (10)
O2—S1—N2108.46 (6)C5—C10—C4123.57 (11)
O1—S1—N2108.03 (6)O11—C11—C3120.99 (13)
O2—S1—C9110.01 (6)O11—C11—C12115.69 (13)
O1—S1—C9107.52 (6)C3—C11—C12123.31 (13)
N2—S1—C9101.25 (5)C11—C12—H121109.5
C11—O11—H11105.0 (13)C11—C12—H122109.5
C3—N2—C21115.89 (11)H121—C12—H122109.5
C3—N2—S1112.80 (8)C11—C12—H123109.5
C21—N2—S1116.76 (10)H121—C12—H123109.5
C9—N8—C7116.48 (11)H122—C12—H123109.5
C11—C3—C4121.15 (11)N2—C21—H211109.5
C11—C3—N2118.74 (11)N2—C21—H212109.5
C4—C3—N2120.09 (10)H211—C21—H212109.5
O4—C4—C3120.45 (11)N2—C21—H213109.5
O4—C4—C10118.96 (11)H211—C21—H213109.5
C3—C4—C10120.55 (10)H212—C21—H213109.5
C6—C5—C10116.59 (11)C5—C51—H511109.5
C6—C5—C51119.01 (12)C5—C51—H512109.5
C10—C5—C51124.36 (12)H511—C51—H512109.5
C7—C6—C5122.43 (12)C5—C51—H513109.5
C7—C6—H61118.8H511—C51—H513109.5
C5—C6—H61118.8H512—C51—H513109.5
N8—C7—C6121.30 (12)C7—C71—H711109.5
N8—C7—C71116.79 (13)C7—C71—H712109.5
C6—C7—C71121.88 (13)H711—C71—H712109.5
N8—C9—C10126.79 (11)C7—C71—H713109.5
N8—C9—S1115.23 (9)H711—C71—H713109.5
C10—C9—S1117.98 (9)H712—C71—H713109.5
C9—C10—C5116.40 (11)
O2—S1—N2—C3172.20 (9)O2—S1—C9—N831.82 (12)
O1—S1—N2—C356.34 (10)O1—S1—C9—N8100.41 (10)
C9—S1—N2—C356.46 (10)N2—S1—C9—N8146.41 (9)
O2—S1—N2—C2134.25 (13)O2—S1—C9—C10148.58 (10)
O1—S1—N2—C21165.71 (11)O1—S1—C9—C1079.19 (11)
C9—S1—N2—C2181.49 (12)N2—S1—C9—C1034.00 (11)
C21—N2—C3—C1189.34 (17)N8—C9—C10—C51.27 (19)
S1—N2—C3—C11132.32 (12)S1—C9—C10—C5179.18 (9)
C21—N2—C3—C492.18 (16)N8—C9—C10—C4177.25 (12)
S1—N2—C3—C446.15 (15)S1—C9—C10—C42.29 (15)
C11—C3—C4—O41.8 (2)C6—C5—C10—C91.20 (18)
N2—C3—C4—O4179.72 (12)C51—C5—C10—C9176.84 (13)
C11—C3—C4—C10175.67 (12)C6—C5—C10—C4177.27 (12)
N2—C3—C4—C102.76 (18)C51—C5—C10—C44.7 (2)
C10—C5—C6—C70.6 (2)O4—C4—C10—C9155.33 (12)
C51—C5—C6—C7177.55 (14)C3—C4—C10—C922.23 (17)
C9—N8—C7—C60.2 (2)O4—C4—C10—C523.09 (18)
C9—N8—C7—C71177.99 (14)C3—C4—C10—C5159.36 (12)
C5—C6—C7—N80.1 (2)C4—C3—C11—O112.6 (2)
C5—C6—C7—C71177.83 (15)N2—C3—C11—O11178.97 (14)
C7—N8—C9—C100.55 (19)C4—C3—C11—C12177.65 (16)
C7—N8—C9—S1179.89 (10)N2—C3—C11—C120.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O41.04 (3)1.55 (3)2.5139 (17)152 (2)
O11—H11···O2i1.04 (3)2.59 (3)3.0074 (19)103.3 (16)
C12—H122···CgBii0.962.973.820 (2)149
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x3/2, y1/2, z3/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC17H16N2O4SC12H14N2O4S
Mr344.38282.31
Crystal system, space groupOrthorhombic, PbcaMonoclinic, P21/n
Temperature (K)293293
a, b, c (Å)12.9699 (4), 15.2714 (5), 16.6176 (6)8.9023 (2), 14.3095 (3), 10.6151 (2)
α, β, γ (°)90, 90, 9090, 105.817 (2), 90
V3)3291.42 (19)1301.03 (5)
Z84
Radiation typeMo KαMo Kα
µ (mm1)0.220.26
Crystal size (mm)0.44 × 0.26 × 0.180.42 × 0.35 × 0.26
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Bruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
SADABS (Sheldrick, 2002)
Multi-scan
SADABS (Sheldrick, 2002)
Tmin, Tmax0.873, 0.9610.846, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
54023, 4042, 3459 18200, 3097, 2924
Rint0.0200.015
(sin θ/λ)max1)0.6710.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.129, 1.08 0.034, 0.113, 1.00
No. of reflections40423097
No. of parameters220175
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.270.34, 0.24

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SIR92 (Altomare et al., 1993), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) for (I) top
O4—C41.2636 (16)C3—C111.3906 (18)
O11—C111.3070 (16)C3—C41.4216 (18)
O11—C11—C31115.44 (12)C3—C11—C31123.97 (12)
N2—C3—C4—C105.38 (19)C3—C11—C31—C3246.7 (2)
S1—C9—C10—C44.56 (17)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O41.00 (2)1.58 (2)2.5083 (17)154 (2)
C71—H712···O4i0.962.533.472 (2)167
C21—H212···CgAii0.962.973.817 (2)148
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y1/2, z.
Selected geometric parameters (Å, º) for (II) top
O4—C41.2717 (14)C3—C111.3948 (18)
O11—C111.3001 (17)C3—C41.4234 (16)
O11—C11—C12115.69 (13)C3—C11—C12123.31 (13)
N2—C3—C4—C102.76 (18)S1—C9—C10—C42.29 (15)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O41.04 (3)1.55 (3)2.5139 (17)152 (2)
O11—H11···O2i1.04 (3)2.59 (3)3.0074 (19)103.3 (16)
C12—H122···CgBii0.962.973.820 (2)149
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x3/2, y1/2, z3/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds