Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The mol­ecules of the title compounds, C7H8N2OS, (1), C14H13FN2OS, (2), and C17H17FN2O3S, (3), crystallize in the space groups C2/m, C2/c and Ia, respectively. Compounds (1) and (2), an S-alkyl­ated derivative of (1), consist of only one symmetry-independent mol­ecule, while (3), an O-alkyl­ated derivative of (2), contains two independent mol­ecules in the asymmetric unit. The molecules of (1) sit on crystallographic mirror planes. In the supra­molecular structure of (1), a combination of N—H...O and N—H...S hydrogen bonds creates a mol­ecular strap with C(6) and R22(8) motifs, which is further stabilized by an S...S contact. In the packing of (2), a one-dimensional mol­ecular column is made up of two kinds of dimers. One dimer, with an R22(18) motif, is formed by a pair of C—H...O soft hydrogen bonds and the other, with an R22(8) motif, is produced via a pair of N—H...O hard hydrogen bonds. In the packing of (3), mol­ecules A and B form two different types of one-dimensional chain by inter­molecular C—H...N hydrogen bonds, and by C...N and O...S contacts, respectively. Two such kinds of chain are connected alternately via inter­chain C—H...O hydrogen bonds, giving a two-dimensional sheet. Finally, a three-dimensional supra­molecular structure is formed through weak intersheet C—H...F hydrogen bonds. The study of the mol­ecular and supra­molecular structures of thio­uracil derivatives is significant in the development of lipoprotein-associated phospho­lipase A2 inhibitors.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614006111/sf3223sup1.cif
Contains datablocks 1, 2, 3, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614006111/sf32231sup2.hkl
Contains datablock 1

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614006111/sf32231sup5.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614006111/sf32232sup3.hkl
Contains datablock 2

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614006111/sf32232sup6.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614006111/sf32233sup4.hkl
Contains datablock 3

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614006111/sf32233sup7.cml
Supplementary material

CCDC references: 992569; 992570; 992571

Introduction top

Thio­uracil and its derivatives have attracted considerable inter­est due to their important biological activities (Koppel et al., 1961; Furberg & Petersen, 1972). They have been widely utilized as tools to investigate biochemical system agents, some of which exhibit anti­cancer (Al-Safarjalani et al., 2005), anti­viral (Brunelle et al., 2007; Ding et al., 2006) and anti­bacterial (Al-Deeb et al., 2012; Al-Abdullah et al., 2011; Hawser et al., 2006) activities. The crystal structures of some thio­uracil derivatives have been described (El-Emam et al., 2012; Radi et al., 2009; Ji et al., 2007; Wang et al., 2007; Singh et al., 2006; Balalaie et al., 2006; Glidewell et al., 2003). Recently, 5,6-tri­methyl­ene­thio­uracil derivatives have shown potential lipoprotein-associated phospho­lipase A2 inhibitive activities. However, to the best of our knowledge, no crystal structures of 5,6-tri­methyl­ene­thio­uracil nor its derivatives have yet been described. Thus, we synthesized 5,6-tri­methyl­ene-2-sulfanyl­idene-1,2-di­hydro­pyrimidin-4(3H)-one (Blackie et al., 2003), (1), and its derivatives by selectively incorporating 4-fluoro­benzyl and meth­oxy­carbonyl­meth­oxy at the S- and O-positions, respectively, viz. 2-(4-fluoro­benzyl­sulfanyl)-5,6-tri­methyl­enepyrimidin-4(3H)-one, (2), and methyl 2-{[2-(4-fluoro­benzyl­sulfanyl)-5,6-tri­methyl­enepyrimidin-4-yl]­oxy}acetate, (3).

Experimental top

Synthesis and crystallization top

The synthesis of (1) followed a previously described method (Blackie et al., 2003) by reacting ethyl cyclo­pentane­carboxyl­ate with thio­urea mediated by sodium ethoxide in absolute ethanol to give a white solid (yield 65%, m.p. 526–528 K). Spectroscopic analysis: 1H NMR (DMSO-d6, 600 MHz, δ, p.p.m.): 1.94–1.99 (m, 2H), 2.49 (t, 2H), 2.69 (t, 2H), 12.20 (s, 1H), 12.58 (s, 1H). Single crystals of (1) suitable for X-ray diffraction analysis were obtained by slow vapour diffusion of pentane into a solution of (1) in EtOH–CH2Cl2 [Solvent ratio?] at 298 K.

The synthesis of (2) followed a previously described method (Mulholland et al., 2003) by selective S-alkyl­ation of (1) with 4-fluoro­benzyl chloride in the presence of NaOH in a solution of propan-2-ol and H2O [Solvent ratio?] to give a white solid (yield 88%, m.p. 483–485 K). Spectroscopic analysis: 1H NMR (DMSO-d6, 600 MHz, δ, p.p.m.): 1.93–1.98 (m, 2H), 2.58 (t, 2H), 2.76 (t, 2H), 4.38 (s, 2H), 7.14 (dd, 2H), 7.45 (dd, 2H), 12.54 (s, 1H). Single crystals of (2) suitable for X-ray diffraction analysis were obtained by slow vapour diffusion of pentane into a solution of (2) in EtOH–CH2Cl2 [Solvent ratio?] at 298 K.

For the synthesis of (3), methyl bromo­acetate (0.153 g, 1.00 mmol) was added to a suspension of (2) (0.276 g, 1.00 mmol) and anhydrous K2CO3 (0.414 g, 3.00 mmol) in dry aceto­nitrile (20 ml). The resulting mixture was stirred for 3 h at 353 K and then cooled to room temperature. After filtration, the filtrate was added to di­chloro­methane and washed with brine, and the organic layer was dried over anhydrous MgSO4. The solvent was evaporated in vacuo to give a white solid (yield 95%, m.p. 325–327 K). Spectroscopic analysis: 1H NMR (DMSO-d6, 600 MHz, δ, p.p.m.): 2.04–2.09 (m, 2H), 2.77 (t, 2H), 2.85 (t, 2H), 3.64 (s, 3H), 4.32 (s, 2H), 4.98 (s, 2H), 7.13 (dd, 2H), 7.42 (dd, 2H). Single crystals of (3) suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution of (3) in EtOAc at 298 K.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms attached to anisotropically refined atoms were placed in geometrically idealized positions and included as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic, C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl, and C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methyl­ene H atoms, and N—H = 0.86–0.92 Å and Uiso(H) = 1.2Ueq(N). Atom C5 of (1) and atom C4 of (2) are each disordered over two positions, both with refined site-occupancy factors of 0.50:0.50.

Results and discussion top

Compound (1) crystallizes in the space group C2/m with one molecule in the asymmetric unit (Fig. 1). The molecule adopts a conformation in which the N1/C1/N2/C2/C3/C7 ring is fully coplanar with its conjoint atoms C4 and C6, while the C5 methyl­ene group is disordered over two positions, with refined site-occupancy factors of 0.50. The thio­uracil ring exists in a thione form, with CO and CS bond lengths of 1.229 (3) and 1.671 (3) Å, respectively. The CS bond is shorter than the corresponding bond in the parent 2-thio­uracil [1.683 (3) Å; Tiekink, 1989]. In the crystal packing of (1), there are N—H···O and N—H···S hydrogen bonds (Hu et al., 2005; Long et al., 2005) (Table 2).

Compound (2), an S-alkyl­ated derivative of (1), crystallizes in the space group C2/c with one molecule in the asymmetric unit (Fig. 2). Similar to (1), the N1/C7/N2/C1/C2/C6 ring is almost coplanar with its conjoint atoms C3 and C5, with N2—C1—C2—C3 and C7—N1—C6—C5 torsion angles of -179.8 (2) and 179.3 (2)°, respectively. The C4 methyl­ene unit is also disordered over two positions, with refined site-occupancy factors of 0.50. The phenyl ring is nearly perpendicular to the N1/C7/N2/C1/C2/C6 ring, with a dihedral angle of 77.1 (7)°. The N1—C7 and N1—C6 bond lengths are typical for such types of double and single bonds. The extremely short N1—C7 [1.303 (3) Å] and N2—C7 [1.357 (3) Å] bonds illustrate the consequence of the electronic delocalization caused by the S atom, while the C2—C6 distance of 1.354 (3) Å is very long for a double bond of this type [mean value 1.326 (3) Å; standard reference?]. The C1—O1 distance of 1.245 (2) Å is longer than the corresponding value of 1.230 (4) Å of (1), which is typical for CO. In its crystal packing, there are hard N—H···O and soft C—H···O hydrogen bonds (Zhang et al., 2007) (Table 3).

Compound (3), an O-alkyl­ated derivative of (2) or an O- and S-bis-alkyl­ated derivative of (1), crystallizes in the space group Ia with two independent molecules, A and B, in the asymmetric unit (Fig. 3). For both molecules, the pyrimidine ring is coplanar only with their conjoint C atoms (C10 and C12 for molecule A, C27 and C29 for molecule B). However, atoms C11 for molecule A and C28 for molecule B deviate from the pyrimidine ring by 21.3 (2) and 23.2 (2)°, respectively. [These would normally be distances, not angles. Please check.] Remarkably, very different dihedral angles of 50.7 (9)° for molecule A and 89.6 (9)° for molecule B are found between the phenyl ring and the pyrimidine ring. The phenyl ring lies to one side of the pyrimidine ring, with N2—C8—S1—C7 and N3—C25—S2—C24 torsion angles of 14.4 (2) and -6.5 (3)° for molecules A and B, respectively. In the crystal packing, C—H···N and C—H···F hydrogen bonds are observed (Table 4).

In the supra­molecular structure of (1), an infinite one-dimensional chain is firstly formed by a combination of inter­molecular N1—H1···O1(x, y, z - 1) hydrogen bonds, locally creating a C(6) motif (Bernstein et al., 1995) at each link in the chain. Two adjacent such chains run in opposing directions and produce a molecular strap through a pair of centrosymmetrically related N2—H2···S1(-x + 1, y, -z + 1) hydrogen bonds between donors N2—H2 and acceptor S1 atoms of neighbouring molecules, locally generating an R22(8) motif (Fig. 4). In addition, an S···S contact (Ksiażek et al., 2009; Nagy et al., 2002) exists between adjacent R22(8) motifs, with an S1···S1 separation of 3.342 (3) Å, which is less than the sum of the van der Waals radii for two S atoms (S = 1.80 Å, Bondi, 1964). This S···S contact further stabilizes the molecular strap.

In the packing of (2), two supra­molecular dimers are observed (Fig. 5). One dimer is formed centrosymmetrically by two co-operative C10—H10···O1(-x + 1/2, -y + 1/2, -z + 1) hydrogen bonds, locally creating an R22(18) motif in which C10—H10 acts as hydrogen-bond donor and the acceptor is the carbonyl O atom. Additionally, a ππ contact (Singh et al., 2006) occurs between two parallel N1/C7/N2/C1/C2/C6 rings, with a Cg···Cg(-x + 1/2, -y + 1/2, -z + 1) distance of 3.814 (9) Å (Cg is the centroid of the N1/C7/N2/C1/C2/C6 ring). Next, each dimer is centrosymmetrically linked to its neighbours to produce a one-dimensional supra­molecular column through a combination of two N2—H2···O1(-x + 1/2, -y + 3/2, -z + 1) hydrogen bonds, locally creating an R22(8) motif. In this case, N2—H2 is the hydrogen-bond donor, while the carbonyl O atom again acts as acceptor. Aromatic π-stacking forces are an important factor in the stabilization of such a supra­molecular column.

In the crystal structure of (3), for molecule A, a one-dimensional comb-like chain is formed by a combination of inter­molecular C15—H15A···N1(x, y + 1, z) hydrogen bonds, locally generating a C(7) motif at each link in the chain (Fig. 6). However, for molecule B, a similar chain is produced not by inter­molecular hydrogen bonds but through co-operative C33···N4(x, y + 1, z) and O5···S2(x, y + 1, z) contacts (Nagy et al., 2002; Griffith et al., 1997) (Fig. 7), with distances of 3.186 (4) and 3.260 (2) Å, respectively, which are less than the sums of the van der Waals radii for the corresponding pairs of atoms (C = 1.70, N = 1.55, O = 1.52 and S = 1.80 Å; Bondi, 1964). Two kinds of such chains connect alternately in reverse directions by inter­chain C34ii—H34Cii···O2 and C3—H3···O5ii [symmetry code: (ii) x, -y + 1/2, z - 1/2] hydrogen bonds, creating a zigzag two-dimensional plane (Fig. 8). Finally, a three-dimensional supra­molecular structure is formed by weak inter­planar C12—H12A···F1(x - 1/2, y + 1/2, z - 1/2) hydrogen bonds.

Related literature top

For related literature, see: Al-Abdullah et al. (2011); Al-Deeb et al. (2012); Al-Safarjalani et al. (2005); Balalaie et al. (2006); Bernstein et al. (1995); Blackie et al. (2003); Bondi (1964); Brunelle et al. (2007); Ding et al. (2006); El-Emam et al. (2012); Furberg & Petersen (1972); Glidewell et al. (2003); Griffith et al. (1997); Hawser et al. (2006); Hu et al. (2005); Ji et al. (2007); Koppel et al. (1961); Ksiażek et al. (2009); Long et al. (2005); Mulholland et al. (2003); Nagy et al. (2002); Radi et al. (2009); Singh et al. (2006); Tiekink (1989); Wang et al. (2007); Zhang et al. (2007).

Computing details top

Data collection: SMART (Bruker, 1999) for (1), (2); CrysAlis PRO (Agilent, 2012) for (3). Cell refinement: SMART (Bruker, 1999) for (1), (2); CrysAlis PRO (Agilent, 2012) for (3). Data reduction: SAINT (Bruker, 1999) for (1), (2); CrysAlis PRO (Agilent, 2012) for (3). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (1), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The disordered entities (dashed lines) are shown. [Not as clear as in Fig. 2 - can they be made more distinct?]
[Figure 2] Fig. 2. The molecular structure of (2), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The disordered entities (hollow lines) are shown.
[Figure 3] Fig. 3. The molecular structure of the two independent molecules of (3), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. The hydrogen-bonded supramolecular strap of (1), showing the S···S contacts and N—H···O interactions (dashed lines), and the C(6) and R22(8) motifs. H atoms not involved in these motifs and the disordered entities have been omitted for clarity. [Symmetry codes: (i) x, y, z - 1; (ii) -x + 1, y, -z + 1; (iii) -x + 1, y, -z.]
[Figure 5] Fig. 5. The hydrogen-bonded supramolecular column of (2), showing the ππ contacts (turquoise dashed lines) and C—H···O interactions (green dashed lines), and the R22(8) and R22(18) motifs. H atoms not involved in these motifs and the disordered entities have been omitted for clarity. [Symmetry codes: (i) -x + 1/2, -y + 1/2, -z + 1; (ii) -x + 1/2, -y + 3/2, -z + 1; (iii) x, y + 1, z.]
[Figure 6] Fig. 6. The hydrogen-bonded supramolecular chain of molecule A of (3), showing the C(7) motif. Dashed lines indicate C—H···N interactions. H atoms not involved in this motif have been omitted for clarity. [Symmetry code: (i) x, y + 1, z.]
[Figure 7] Fig. 7. The supramolecular chain of molecule B of (3), assembled by C—H···N and O···S contacts (dashed lines). H atoms have been omitted for clarity. [Symmetry code: (i) x, y + 1, z.]
[Figure 8] Fig. 8. The transect of the hydrogen-bonded two-dimensional plane of (3). Dashed lines indicate C—H···O interactions. H atoms not involved in the motif have been omitted for clarity. [Symmetry codes: (ii) x, -y + 1/2, z - 1/2; (iv) x - 1/2, y + 1/2, z - 1/2.]
(1) 2-Sulfanylidene-1,2,3,4,6,7-hexahydro-5H-cyclopenta[d]pyrimidin-4-one top
Crystal data top
C7H8N2OSZ = 4
Mr = 168.21F(000) = 352
Monoclinic, C2/mDx = 1.468 Mg m3
a = 16.158 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.986 (6) ŵ = 0.36 mm1
c = 6.810 (6) ÅT = 293 K
β = 97.935 (13)°Block, colourless
V = 761.4 (12) Å30.50 × 0.32 × 0.30 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
810 independent reflections
Radiation source: fine-focus sealed tube550 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
ϕ and ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1916
Tmin = 0.870, Tmax = 0.897k = 86
2052 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0409P)2]
where P = (Fo2 + 2Fc2)/3
810 reflections(Δ/σ)max < 0.001
70 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C7H8N2OSV = 761.4 (12) Å3
Mr = 168.21Z = 4
Monoclinic, C2/mMo Kα radiation
a = 16.158 (15) ŵ = 0.36 mm1
b = 6.986 (6) ÅT = 293 K
c = 6.810 (6) Å0.50 × 0.32 × 0.30 mm
β = 97.935 (13)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
810 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
550 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.897Rint = 0.090
2052 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 0.96Δρmax = 0.21 e Å3
810 reflectionsΔρmin = 0.25 e Å3
70 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.36128 (17)0.00000.2918 (4)0.0437 (7)
C20.27896 (18)0.00000.5751 (4)0.0451 (7)
C30.20538 (17)0.00000.4320 (4)0.0426 (7)
C40.11486 (17)0.00000.4659 (5)0.0525 (8)
H4A0.10330.10250.55190.063*0.50
H4B0.09930.11960.51980.063*0.50
C60.12991 (18)0.00000.1049 (5)0.0618 (9)
H6A0.11970.11950.03630.074*0.50
H6B0.12630.10300.01080.074*0.50
C70.21200 (17)0.00000.2368 (4)0.0433 (7)
C50.0678 (3)0.028 (4)0.2531 (6)0.060 (4)0.50
H5A0.04080.15000.23710.072*0.50
H5B0.02610.07080.22890.072*0.50
N10.28795 (14)0.00000.1689 (3)0.0485 (7)
H10.28910.00000.04300.058*
N20.35355 (14)0.00000.4900 (3)0.0477 (7)
H20.39930.00000.57120.057*
O10.28256 (15)0.00000.7566 (3)0.0689 (7)
S10.45269 (5)0.00000.20321 (12)0.0657 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0347 (15)0.068 (2)0.0282 (15)0.0000.0042 (12)0.000
C20.0473 (17)0.0581 (19)0.0314 (16)0.0000.0104 (14)0.000
C30.0388 (15)0.0577 (19)0.0333 (16)0.0000.0114 (13)0.000
C40.0445 (17)0.063 (2)0.054 (2)0.0000.0215 (15)0.000
C60.0383 (17)0.097 (3)0.048 (2)0.0000.0009 (15)0.000
C70.0313 (14)0.0618 (19)0.0373 (17)0.0000.0065 (12)0.000
C50.0403 (18)0.073 (13)0.068 (3)0.008 (4)0.0080 (17)0.006 (4)
N10.0365 (13)0.0856 (18)0.0237 (13)0.0000.0056 (11)0.000
N20.0370 (13)0.0782 (18)0.0266 (13)0.0000.0002 (11)0.000
O10.0723 (16)0.1128 (19)0.0232 (12)0.0000.0126 (11)0.000
S10.0341 (5)0.1235 (9)0.0404 (6)0.0000.0088 (4)0.000
Geometric parameters (Å, º) top
C1—N11.353 (4)C6—C71.496 (4)
C1—N21.373 (4)C6—C51.531 (6)
C1—S11.671 (3)C6—C5i1.531 (6)
C2—O11.229 (3)C6—H6A0.9600
C2—N21.407 (3)C6—H6B0.9600
C2—C31.430 (4)C7—N11.370 (3)
C3—C71.348 (4)C5—C5i0.38 (6)
C3—C41.512 (4)C5—H5A0.9600
C4—C5i1.553 (6)C5—H5B0.9600
C4—C51.553 (6)N1—H10.8600
C4—H4A0.9600N2—H20.8600
C4—H4B0.9600
N1—C1—N2114.7 (2)C5i—C6—H6A97.3
N1—C1—S1121.2 (2)C7—C6—H6B111.6
N2—C1—S1124.1 (2)C5—C6—H6B111.1
O1—C2—N2119.3 (3)C5i—C6—H6B123.3
O1—C2—C3127.2 (3)H6A—C6—H6B109.7
N2—C2—C3113.5 (2)C3—C7—N1122.0 (3)
C7—C3—C2120.0 (2)C3—C7—C6114.1 (3)
C7—C3—C4111.1 (3)N1—C7—C6124.0 (3)
C2—C3—C4128.8 (3)C5i—C5—C682.8 (10)
C3—C4—C5i102.6 (2)C5i—C5—C482.9 (10)
C3—C4—C5102.6 (2)C6—C5—C4108.5 (5)
C5i—C4—C514 (2)C5i—C5—H5A153.1
C3—C4—H4A111.6C6—C5—H5A111.5
C5i—C4—H4A123.4C4—C5—H5A111.9
C5—C4—H4A111.4C5i—C5—H5B44.3
C3—C4—H4B111.6C6—C5—H5B107.8
C5i—C4—H4B97.4C4—C5—H5B108.2
C5—C4—H4B110.1H5A—C5—H5B108.7
H4A—C4—H4B109.4C1—N1—C7122.7 (2)
C7—C6—C5102.3 (3)C1—N1—H1118.7
C7—C6—C5i102.3 (3)C7—N1—H1118.7
C5—C6—C5i14 (2)C1—N2—C2127.2 (2)
C7—C6—H6A111.7C1—N2—H2116.4
C5—C6—H6A110.3C2—N2—H2116.4
O1—C2—C3—C7180.0C5i—C6—C7—N1172.6 (11)
N2—C2—C3—C70.0C7—C6—C5—C5i91.6 (2)
O1—C2—C3—C40.0C7—C6—C5—C411.6 (16)
N2—C2—C3—C4180.0C5i—C6—C5—C480.0 (14)
C7—C3—C4—C5i7.3 (11)C3—C4—C5—C5i91.6 (2)
C2—C3—C4—C5i172.7 (11)C3—C4—C5—C611.7 (16)
C7—C3—C4—C57.3 (11)C5i—C4—C5—C679.9 (14)
C2—C3—C4—C5172.7 (11)N2—C1—N1—C70.0
C2—C3—C7—N10.0S1—C1—N1—C7180.0
C4—C3—C7—N1180.0C3—C7—N1—C10.0
C2—C3—C7—C6180.0C6—C7—N1—C1180.0
C4—C3—C7—C60.0N1—C1—N2—C20.0
C5—C6—C7—C37.4 (11)S1—C1—N2—C2180.0
C5i—C6—C7—C37.4 (11)O1—C2—N2—C1180.0
C5—C6—C7—N1172.6 (11)C3—C2—N2—C10.0
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1ii0.861.942.797 (4)176
N2—H2···S1iii0.862.663.516 (4)175
Symmetry codes: (ii) x, y, z1; (iii) x+1, y, z+1.
(2) 2-[(4-Fluorobenzyl)sulfanyl]-3,4,6,7-tetrahydro-5H-cyclopenta[d]pyrimidin-4-one top
Crystal data top
C14H13FN2OSF(000) = 1152
Mr = 276.32Dx = 1.359 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 25.381 (7) ÅCell parameters from 1746 reflections
b = 5.8848 (18) Åθ = 2.3–23.6°
c = 19.738 (6) ŵ = 0.24 mm1
β = 113.626 (4)°T = 293 K
V = 2701.1 (14) Å3Block, colourless
Z = 80.15 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2371 independent reflections
Radiation source: fine-focus sealed tube1689 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 3022
Tmin = 0.971, Tmax = 0.976k = 56
6236 measured reflectionsl = 2123
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0528P)2 + 1.0457P]
where P = (Fo2 + 2Fc2)/3
2371 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.23 e Å3
10 restraintsΔρmin = 0.17 e Å3
Crystal data top
C14H13FN2OSV = 2701.1 (14) Å3
Mr = 276.32Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.381 (7) ŵ = 0.24 mm1
b = 5.8848 (18) ÅT = 293 K
c = 19.738 (6) Å0.15 × 0.10 × 0.10 mm
β = 113.626 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2371 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
1689 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.976Rint = 0.029
6236 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03910 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.03Δρmax = 0.23 e Å3
2371 reflectionsΔρmin = 0.17 e Å3
182 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.31801 (9)0.5332 (4)0.53415 (12)0.0441 (6)
C20.36216 (9)0.3693 (4)0.55138 (12)0.0460 (6)
C30.41660 (10)0.3517 (5)0.61971 (14)0.0621 (7)
H3A0.40860.31140.66230.075*
H3B0.43780.49380.62970.075*
C50.40815 (10)0.0446 (4)0.53084 (14)0.0605 (7)
H5A0.42490.02790.49480.073*
H5B0.39740.10420.54220.073*
C60.35732 (9)0.2002 (4)0.50272 (13)0.0468 (6)
C70.27228 (9)0.3250 (4)0.41989 (11)0.0416 (5)
C80.22252 (10)0.0762 (4)0.29126 (13)0.0559 (7)
H8A0.25110.10800.27140.067*
H8B0.23640.04820.32620.067*
C90.16623 (9)0.0126 (4)0.22965 (12)0.0474 (6)
C100.13309 (12)0.1554 (4)0.24030 (14)0.0649 (7)
H100.14540.22700.28610.078*
C110.08225 (12)0.2206 (5)0.18530 (15)0.0757 (9)
H110.06050.33710.19310.091*
C120.06413 (11)0.1129 (5)0.11954 (14)0.0628 (7)
C130.09479 (11)0.0557 (5)0.10627 (14)0.0695 (8)
H130.08140.12750.06050.083*
C140.14636 (11)0.1199 (5)0.16177 (14)0.0623 (7)
H140.16780.23610.15340.075*
F10.01371 (7)0.1792 (3)0.06450 (9)0.0978 (6)
N10.31233 (8)0.1712 (3)0.43524 (10)0.0470 (5)
N20.27354 (7)0.4991 (3)0.46552 (9)0.0430 (5)
H20.24430.59500.45260.052*
O10.31596 (7)0.6956 (3)0.57347 (8)0.0546 (5)
S10.21090 (3)0.32567 (10)0.33700 (3)0.0506 (2)
C4'0.4502 (6)0.162 (4)0.6010 (11)0.081 (5)0.41 (3)
H4'10.48230.22540.59260.098*0.41 (3)
H4'20.46500.05400.64140.098*0.41 (3)
C40.4373 (8)0.111 (2)0.6128 (5)0.081 (4)0.59 (3)
H4A0.42660.00550.64290.097*0.59 (3)
H4B0.47880.10880.62920.097*0.59 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0457 (14)0.0434 (14)0.0410 (13)0.0008 (11)0.0151 (11)0.0018 (11)
C20.0395 (13)0.0489 (14)0.0448 (13)0.0035 (11)0.0118 (10)0.0015 (11)
C30.0476 (15)0.0665 (18)0.0570 (15)0.0060 (13)0.0050 (12)0.0013 (13)
C50.0500 (15)0.0603 (17)0.0677 (17)0.0134 (12)0.0199 (13)0.0036 (13)
C60.0428 (14)0.0467 (14)0.0508 (13)0.0037 (11sf3223)0.0186 (11)0.0028 (11)
C70.0434 (13)0.0421 (13)0.0400 (12)0.0002 (11)0.0175 (10)0.0002 (10)
C80.0474 (14)0.0627 (16)0.0508 (14)0.0070 (12)0.0126 (12)0.0131 (12)
C90.0461 (13)0.0490 (14)0.0435 (13)0.0051 (11)0.0141 (11)0.0079 (11)
C100.0723 (19)0.0577 (17)0.0475 (14)0.0036 (14)0.0061 (13)0.0079 (12)
C110.072 (2)0.075 (2)0.0629 (18)0.0242 (15)0.0092 (15)0.0061 (15)
C120.0480 (16)0.0771 (19)0.0498 (15)0.0074 (14)0.0054 (12)0.0085 (14)
C130.0636 (18)0.093 (2)0.0424 (14)0.0084 (16)0.0109 (13)0.0088 (14)
C140.0578 (17)0.0744 (18)0.0512 (15)0.0148 (14)0.0182 (13)0.0009 (13)
F10.0675 (11)0.1311 (17)0.0658 (10)0.0294 (10)0.0037 (8)0.0089 (10)
N10.0416 (11)0.0488 (12)0.0474 (11)0.0038 (9)0.0146 (9)0.0031 (9)
N20.0415 (10)0.0440 (11)0.0376 (10)0.0069 (8)0.0096 (8)0.0003 (8)
O10.0576 (11)0.0524 (11)0.0419 (9)0.0086 (8)0.0076 (7)0.0075 (8)
S10.0478 (4)0.0534 (4)0.0427 (3)0.0064 (3)0.0099 (3)0.0059 (3)
C4'0.047 (6)0.081 (7)0.091 (6)0.018 (5)0.000 (5)0.014 (6)
C40.061 (5)0.079 (5)0.078 (4)0.023 (4)0.002 (3)0.001 (4)
Geometric parameters (Å, º) top
C1—O11.245 (3)C8—S11.808 (2)
C1—N21.387 (3)C8—H8A0.9700
C1—C21.413 (3)C8—H8B0.9700
C2—C61.354 (3)C9—C101.368 (3)
C2—C31.498 (3)C9—C141.381 (3)
C3—C41.535 (7)C10—C111.367 (3)
C3—C4'1.537 (9)C10—H100.9300
C3—H3A0.9700C11—C121.349 (4)
C3—H3B0.9700C11—H110.9300
C5—C61.496 (3)C12—C131.350 (4)
C5—C4'1.533 (9)C12—F11.362 (3)
C5—C41.536 (7)C13—C141.381 (3)
C5—H5A0.9700C13—H130.9300
C5—H5B0.9700C14—H140.9300
C6—N11.374 (3)N2—H20.8852
C7—N11.303 (3)C4'—H4'10.9700
C7—N21.356 (3)C4'—H4'20.9700
C7—S11.750 (2)C4—H4A0.9700
C8—C91.506 (3)C4—H4B0.9700
O1—C1—N2119.9 (2)H8A—C8—H8B108.4
O1—C1—C2126.9 (2)C10—C9—C14118.1 (2)
N2—C1—C2113.1 (2)C10—C9—C8119.9 (2)
C6—C2—C1119.5 (2)C14—C9—C8122.0 (2)
C6—C2—C3112.1 (2)C11—C10—C9121.6 (2)
C1—C2—C3128.3 (2)C11—C10—H10119.2
C2—C3—C4102.0 (4)C9—C10—H10119.2
C2—C3—C4'103.5 (5)C12—C11—C10118.8 (3)
C4—C3—C4'21.0 (11)C12—C11—H11120.6
C2—C3—H3A111.1C10—C11—H11120.6
C4—C3—H3A92.8C11—C12—C13122.1 (2)
C4'—C3—H3A111.1C11—C12—F1118.8 (3)
C2—C3—H3B111.1C13—C12—F1119.1 (2)
C4—C3—H3B129.2C12—C13—C14119.0 (3)
C4'—C3—H3B111.1C12—C13—H13120.5
H3A—C3—H3B109.0C14—C13—H13120.5
C6—C5—C4'104.1 (5)C9—C14—C13120.4 (3)
C6—C5—C4102.4 (4)C9—C14—H14119.8
C4'—C5—C421.0 (11)C13—C14—H14119.8
C6—C5—H5A110.9C7—N1—C6114.02 (19)
C4'—C5—H5A110.9C7—N2—C1123.47 (19)
C4—C5—H5A129.1C7—N2—H2119.7
C6—C5—H5B110.9C1—N2—H2116.8
C4'—C5—H5B110.9C7—S1—C8101.70 (11)
C4—C5—H5B92.8C5—C4'—C3107.0 (7)
H5A—C5—H5B108.9C5—C4'—H4'1110.3
C2—C6—N1125.7 (2)C3—C4'—H4'1110.3
C2—C6—C5111.5 (2)C5—C4'—H4'2110.3
N1—C6—C5122.8 (2)C3—C4'—H4'2110.3
N1—C7—N2124.2 (2)H4'1—C4'—H4'2108.6
N1—C7—S1122.58 (17)C3—C4—C5106.9 (5)
N2—C7—S1113.23 (16)C3—C4—H4A110.3
C9—C8—S1108.26 (16)C5—C4—H4A110.3
C9—C8—H8A110.0C3—C4—H4B110.3
S1—C8—H8A110.0C5—C4—H4B110.3
C9—C8—H8B110.0H4A—C4—H4B108.6
S1—C8—H8B110.0
O1—C1—C2—C6178.9 (2)F1—C12—C13—C14178.9 (3)
N2—C1—C2—C60.9 (3)C10—C9—C14—C130.9 (4)
O1—C1—C2—C30.5 (4)C8—C9—C14—C13179.4 (2)
N2—C1—C2—C3179.7 (2)C12—C13—C14—C90.2 (4)
C6—C2—C3—C413.1 (9)N2—C7—N1—C60.4 (3)
C1—C2—C3—C4166.3 (9)S1—C7—N1—C6179.58 (16)
C6—C2—C3—C4'8.3 (14)C2—C6—N1—C70.0 (3)
C1—C2—C3—C4'172.2 (13)C5—C6—N1—C7179.3 (2)
C1—C2—C6—N10.6 (4)N1—C7—N2—C10.1 (3)
C3—C2—C6—N1179.9 (2)S1—C7—N2—C1179.88 (16)
C1—C2—C6—C5180.0 (2)O1—C1—N2—C7179.2 (2)
C3—C2—C6—C50.5 (3)C2—C1—N2—C70.5 (3)
C4'—C5—C6—C27.6 (14)N1—C7—S1—C80.7 (2)
C4—C5—C6—C213.9 (9)N2—C7—S1—C8179.36 (16)
C4'—C5—C6—N1171.8 (13)C9—C8—S1—C7163.62 (17)
C4—C5—C6—N1166.7 (9)C6—C5—C4'—C312 (2)
S1—C8—C9—C1098.4 (2)C4—C5—C4'—C375.4 (16)
S1—C8—C9—C1481.3 (3)C2—C3—C4'—C513 (2)
C14—C9—C10—C111.4 (4)C4—C3—C4'—C575.8 (16)
C8—C9—C10—C11178.8 (3)C2—C3—C4—C521.2 (14)
C9—C10—C11—C121.2 (5)C4'—C3—C4—C575.3 (17)
C10—C11—C12—C130.5 (5)C6—C5—C4—C321.6 (14)
C10—C11—C12—F1179.4 (3)C4'—C5—C4—C375.6 (17)
C11—C12—C13—C140.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.932.553.381 (3)149
N2—H2···O1ii0.891.872.753 (2)178
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+3/2, z+1.
(3) Methyl 2-({2-[(4-fluorobenzyl)sulfanyl]-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-yl}oxy)acetate top
Crystal data top
C17H17FN2O3SF(000) = 1456
Mr = 348.39Dx = 1.430 Mg m3
Monoclinic, IaMo Kα radiation, λ = 0.71073 Å
a = 17.1673 (12) ÅCell parameters from 4673 reflections
b = 8.1187 (5) Åθ = 3.6–28.1°
c = 23.7393 (16) ŵ = 0.23 mm1
β = 102.045 (7)°T = 100 K
V = 3235.8 (4) Å3Block, colourless
Z = 80.27 × 0.10 × 0.09 mm
Data collection top
Agilent SuperNova Dual
diffractometer (Cu at zero) with Eos detector
4963 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4626 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.041
Detector resolution: 16.0793 pixels mm-1θmax = 25.0°, θmin = 3.1°
ω scansh = 2020
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
k = 99
Tmin = 0.941, Tmax = 0.980l = 2428
11191 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.035P)2 + 1.9371P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4963 reflectionsΔρmax = 0.22 e Å3
435 parametersΔρmin = 0.20 e Å3
2 restraintsAbsolute structure: Flack (1983), with 2105 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.10 (6)
Crystal data top
C17H17FN2O3SV = 3235.8 (4) Å3
Mr = 348.39Z = 8
Monoclinic, IaMo Kα radiation
a = 17.1673 (12) ŵ = 0.23 mm1
b = 8.1187 (5) ÅT = 100 K
c = 23.7393 (16) Å0.27 × 0.10 × 0.09 mm
β = 102.045 (7)°
Data collection top
Agilent SuperNova Dual
diffractometer (Cu at zero) with Eos detector
4963 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
4626 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.980Rint = 0.041
11191 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.086Δρmax = 0.22 e Å3
S = 1.05Δρmin = 0.20 e Å3
4963 reflectionsAbsolute structure: Flack (1983), with 2105 Friedel pairs
435 parametersAbsolute structure parameter: 0.10 (6)
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.21470 (19)0.1380 (4)0.20284 (14)0.0225 (7)
H10.20450.05880.22870.027*
C20.28026 (19)0.2388 (4)0.21629 (14)0.0222 (8)
C30.29961 (19)0.3535 (4)0.17877 (14)0.0220 (7)
H30.34600.41570.18830.026*
C40.24740 (18)0.3724 (4)0.12634 (14)0.0218 (7)
H40.25830.45120.10060.026*
C50.17961 (18)0.2774 (4)0.11113 (13)0.0182 (7)
C60.16405 (19)0.1582 (4)0.14935 (13)0.0218 (7)
H60.11940.09130.13910.026*
C70.1210 (2)0.3136 (4)0.05605 (13)0.0248 (8)
H7A0.13910.40810.03740.030*
H7B0.06980.34100.06480.030*
C80.03745 (18)0.2199 (4)0.05020 (13)0.0167 (7)
C90.05422 (17)0.1735 (4)0.13121 (13)0.0167 (7)
C100.10355 (18)0.0763 (4)0.17947 (13)0.0223 (7)
H10A0.12530.02150.16510.027*
H10B0.07230.04380.20730.027*
C110.17036 (19)0.1973 (4)0.20645 (15)0.0262 (8)
H11A0.21860.17410.19270.031*
H11B0.18190.18800.24810.031*
C120.13894 (18)0.3723 (4)0.18759 (13)0.0195 (7)
H12A0.11760.42610.21760.023*
H12B0.18060.44050.17780.023*
C130.07442 (18)0.3377 (4)0.13544 (13)0.0160 (7)
C140.03054 (17)0.4400 (4)0.09388 (13)0.0156 (7)
C150.00792 (19)0.7034 (4)0.05520 (13)0.0199 (7)
H15A0.00130.81850.06550.024*
H15B0.06250.67790.05710.024*
C160.00156 (18)0.6804 (4)0.00579 (14)0.0205 (7)
C170.0822 (2)0.5838 (5)0.06712 (16)0.0402 (10)
H17A0.03330.54590.09090.060*
H17B0.12290.50220.06640.060*
H17C0.09810.68490.08240.060*
C180.40573 (18)0.5883 (4)0.55432 (14)0.0238 (8)
H180.45760.55810.55300.029*
C190.3522 (2)0.6309 (4)0.50363 (14)0.0276 (8)
H190.36770.62920.46840.033*
C200.27613 (19)0.6754 (4)0.50697 (14)0.0252 (8)
C210.25058 (19)0.6796 (4)0.55778 (14)0.0234 (7)
H210.19860.70970.55870.028*
C220.30419 (18)0.6377 (4)0.60767 (14)0.0217 (7)
H220.28800.64080.64270.026*
C230.38193 (18)0.5909 (4)0.60669 (13)0.0181 (7)
C240.43988 (18)0.5524 (4)0.66213 (13)0.0199 (7)
H24A0.48280.48350.65480.024*
H24B0.41320.49530.68860.024*
C250.54640 (18)0.6922 (4)0.75604 (13)0.0170 (7)
C260.64246 (18)0.7711 (4)0.83052 (13)0.0169 (7)
C270.69764 (18)0.8875 (4)0.86910 (14)0.0223 (7)
H27A0.66920.95190.89270.027*
H27B0.72380.96140.84680.027*
C280.75793 (19)0.7705 (4)0.90623 (14)0.0228 (7)
H28A0.77290.81140.94540.027*
H28B0.80560.76100.89050.027*
C290.71609 (18)0.6010 (4)0.90521 (13)0.0181 (7)
H29A0.75270.51120.90320.022*
H29B0.69290.58630.93880.022*
C300.65276 (17)0.6128 (4)0.85085 (12)0.0149 (6)
C310.60214 (17)0.4957 (4)0.81968 (12)0.0155 (6)
C320.54546 (18)0.2293 (3)0.80889 (13)0.0172 (7)
H32A0.49370.27750.80870.021*
H32B0.54860.12660.83010.021*
C330.55050 (18)0.1914 (4)0.74823 (13)0.0181 (7)
C340.6332 (2)0.1560 (5)0.68240 (15)0.0320 (9)
H34A0.61880.04200.67670.048*
H34B0.68740.17080.67900.048*
H34C0.59890.22150.65380.048*
F10.32910 (12)0.2242 (2)0.26924 (8)0.0339 (5)
F20.22359 (12)0.7157 (3)0.45756 (8)0.0388 (6)
N10.00167 (15)0.1080 (3)0.08859 (11)0.0179 (6)
N20.02476 (14)0.3824 (3)0.05073 (10)0.0161 (5)
N30.54940 (14)0.5329 (3)0.77156 (10)0.0146 (5)
N40.58912 (15)0.8169 (3)0.78335 (11)0.0187 (6)
O10.04463 (12)0.6041 (2)0.09712 (8)0.0188 (5)
O20.04824 (13)0.7258 (3)0.04617 (9)0.0275 (6)
O30.07075 (12)0.6113 (3)0.00919 (9)0.0267 (5)
O40.60580 (12)0.3390 (2)0.83909 (8)0.0170 (5)
O50.49369 (12)0.1472 (3)0.71212 (9)0.0211 (5)
O60.62454 (12)0.2068 (3)0.73917 (9)0.0208 (5)
S10.10930 (4)0.13797 (9)0.00721 (3)0.02091 (18)
S20.47869 (5)0.75022 (9)0.69228 (3)0.01879 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0290 (18)0.0184 (17)0.0214 (17)0.0046 (14)0.0082 (14)0.0016 (13)
C20.0250 (18)0.0188 (17)0.0191 (17)0.0081 (14)0.0037 (14)0.0025 (13)
C30.0146 (15)0.0191 (17)0.031 (2)0.0012 (13)0.0014 (14)0.0007 (14)
C40.0221 (17)0.0190 (17)0.0256 (18)0.0047 (14)0.0081 (14)0.0061 (14)
C50.0173 (16)0.0194 (16)0.0184 (17)0.0065 (13)0.0048 (13)0.0053 (13)
C60.0185 (16)0.0238 (18)0.0231 (17)0.0003 (14)0.0046 (14)0.0036 (14)
C70.0297 (18)0.0188 (17)0.0236 (19)0.0051 (15)0.0002 (15)0.0016 (14)
C80.0161 (15)0.0147 (16)0.0195 (17)0.0025 (13)0.0040 (13)0.0008 (13)
C90.0150 (15)0.0191 (17)0.0171 (16)0.0002 (13)0.0060 (13)0.0008 (13)
C100.0240 (17)0.0175 (17)0.0241 (18)0.0020 (13)0.0019 (14)0.0012 (13)
C110.0219 (17)0.0218 (18)0.031 (2)0.0043 (15)0.0023 (15)0.0008 (16)
C120.0207 (16)0.0171 (16)0.0212 (18)0.0045 (14)0.0051 (14)0.0009 (13)
C130.0182 (16)0.0150 (16)0.0163 (16)0.0012 (13)0.0074 (13)0.0023 (13)
C140.0208 (16)0.0129 (16)0.0150 (16)0.0012 (13)0.0081 (13)0.0042 (12)
C150.0290 (18)0.0134 (16)0.0175 (17)0.0021 (13)0.0055 (14)0.0012 (12)
C160.0252 (18)0.0136 (16)0.0219 (18)0.0035 (14)0.0029 (15)0.0020 (14)
C170.045 (2)0.048 (3)0.037 (2)0.013 (2)0.0316 (19)0.0068 (18)
C180.0213 (17)0.0235 (18)0.0263 (19)0.0028 (14)0.0047 (15)0.0029 (14)
C190.039 (2)0.0278 (19)0.0170 (18)0.0081 (16)0.0071 (16)0.0040 (14)
C200.031 (2)0.0181 (18)0.0219 (19)0.0049 (15)0.0060 (16)0.0018 (14)
C210.0193 (16)0.0188 (16)0.0297 (19)0.0016 (14)0.0008 (14)0.0033 (14)
C220.0229 (17)0.0215 (18)0.0220 (18)0.0044 (14)0.0079 (14)0.0027 (13)
C230.0222 (16)0.0127 (16)0.0180 (17)0.0020 (13)0.0009 (13)0.0015 (12)
C240.0218 (16)0.0140 (16)0.0229 (17)0.0018 (13)0.0023 (14)0.0011 (13)
C250.0173 (16)0.0170 (16)0.0176 (16)0.0003 (14)0.0059 (13)0.0002 (13)
C260.0170 (16)0.0160 (16)0.0180 (17)0.0004 (13)0.0046 (13)0.0028 (13)
C270.0229 (17)0.0199 (17)0.0220 (17)0.0052 (14)0.0003 (14)0.0031 (14)
C280.0209 (17)0.0235 (18)0.0226 (18)0.0036 (14)0.0013 (14)0.0057 (14)
C290.0174 (15)0.0197 (17)0.0169 (16)0.0009 (13)0.0025 (13)0.0003 (13)
C300.0135 (15)0.0174 (16)0.0153 (16)0.0004 (12)0.0064 (13)0.0044 (12)
C310.0187 (15)0.0146 (15)0.0149 (15)0.0012 (13)0.0074 (13)0.0004 (12)
C320.0206 (16)0.0102 (15)0.0201 (16)0.0018 (13)0.0023 (13)0.0012 (12)
C330.0207 (17)0.0087 (15)0.0247 (18)0.0026 (13)0.0040 (15)0.0015 (13)
C340.0272 (18)0.044 (2)0.0274 (19)0.0014 (17)0.0107 (16)0.0130 (16)
F10.0445 (12)0.0253 (11)0.0238 (11)0.0005 (9)0.0116 (9)0.0018 (8)
F20.0481 (13)0.0299 (12)0.0280 (12)0.0036 (10)0.0160 (10)0.0066 (9)
N10.0192 (13)0.0149 (14)0.0186 (14)0.0012 (11)0.0019 (11)0.0039 (11)
N20.0201 (13)0.0142 (13)0.0143 (13)0.0002 (11)0.0047 (11)0.0011 (10)
N30.0169 (13)0.0093 (12)0.0180 (14)0.0010 (10)0.0041 (11)0.0014 (10)
N40.0182 (13)0.0165 (14)0.0208 (14)0.0024 (11)0.0024 (11)0.0016 (11)
O10.0276 (12)0.0118 (11)0.0159 (11)0.0033 (9)0.0017 (9)0.0001 (9)
O20.0311 (13)0.0297 (14)0.0198 (13)0.0088 (11)0.0011 (11)0.0001 (10)
O30.0230 (12)0.0318 (14)0.0267 (13)0.0027 (10)0.0086 (10)0.0040 (10)
O40.0211 (11)0.0131 (11)0.0152 (11)0.0030 (9)0.0001 (9)0.0001 (8)
O50.0169 (11)0.0220 (12)0.0231 (12)0.0023 (9)0.0010 (10)0.0033 (9)
O60.0177 (11)0.0249 (12)0.0191 (12)0.0001 (9)0.0023 (9)0.0045 (9)
S10.0237 (4)0.0163 (4)0.0203 (4)0.0049 (3)0.0010 (3)0.0016 (3)
S20.0204 (4)0.0142 (4)0.0195 (4)0.0002 (3)0.0010 (3)0.0001 (3)
Geometric parameters (Å, º) top
C1—C21.374 (5)C18—C231.387 (4)
C1—C61.391 (4)C18—C191.397 (4)
C1—H10.9300C18—H180.9300
C2—F11.363 (4)C19—C201.373 (5)
C2—C31.376 (5)C19—H190.9300
C3—C41.382 (4)C20—F21.362 (4)
C3—H30.9300C20—C211.367 (5)
C4—C51.380 (4)C21—C221.382 (4)
C4—H40.9300C21—H210.9300
C5—C61.390 (4)C22—C231.392 (4)
C5—C71.504 (4)C22—H220.9300
C6—H60.9300C23—C241.508 (4)
C7—S11.822 (3)C24—S21.826 (3)
C7—H7A0.9700C24—H24A0.9700
C7—H7B0.9700C24—H24B0.9700
C8—N21.337 (4)C25—N41.336 (4)
C8—N11.342 (4)C25—N31.343 (4)
C8—S11.766 (3)C25—S21.769 (3)
C9—N11.350 (4)C26—N41.343 (4)
C9—C131.376 (4)C26—C301.371 (4)
C9—C101.499 (4)C26—C271.506 (4)
C10—C111.544 (4)C27—C281.540 (4)
C10—H10A0.9700C27—H27A0.9700
C10—H10B0.9700C27—H27B0.9700
C11—C121.552 (4)C28—C291.550 (4)
C11—H11A0.9700C28—H28A0.9700
C11—H11B0.9700C28—H28B0.9700
C12—C131.505 (4)C29—C301.507 (4)
C12—H12A0.9700C29—H29A0.9700
C12—H12B0.9700C29—H29B0.9700
C13—C141.386 (4)C30—C311.392 (4)
C14—N21.328 (4)C31—N31.336 (4)
C14—O11.353 (3)C31—O41.350 (4)
C15—O11.442 (3)C32—O41.439 (3)
C15—C161.502 (4)C32—C331.493 (4)
C15—H15A0.9700C32—H32A0.9700
C15—H15B0.9700C32—H32B0.9700
C16—O21.202 (4)C33—O51.211 (3)
C16—O31.331 (4)C33—O61.339 (4)
C17—O31.447 (4)C34—O61.446 (4)
C17—H17A0.9600C34—H34A0.9600
C17—H17B0.9600C34—H34B0.9600
C17—H17C0.9600C34—H34C0.9600
C2—C1—C6117.9 (3)C18—C19—H19120.7
C2—C1—H1121.1F2—C20—C21118.5 (3)
C6—C1—H1121.1F2—C20—C19118.7 (3)
F1—C2—C1118.6 (3)C21—C20—C19122.8 (3)
F1—C2—C3118.1 (3)C20—C21—C22118.1 (3)
C1—C2—C3123.3 (3)C20—C21—H21121.0
C2—C3—C4117.3 (3)C22—C21—H21121.0
C2—C3—H3121.3C21—C22—C23121.5 (3)
C4—C3—H3121.3C21—C22—H22119.3
C5—C4—C3121.8 (3)C23—C22—H22119.3
C5—C4—H4119.1C18—C23—C22118.8 (3)
C3—C4—H4119.1C18—C23—C24121.0 (3)
C4—C5—C6119.0 (3)C22—C23—C24120.1 (3)
C4—C5—C7119.6 (3)C23—C24—S2106.3 (2)
C6—C5—C7121.3 (3)C23—C24—H24A110.5
C5—C6—C1120.6 (3)S2—C24—H24A110.5
C5—C6—H6119.7C23—C24—H24B110.5
C1—C6—H6119.7S2—C24—H24B110.5
C5—C7—S1111.4 (2)H24A—C24—H24B108.7
C5—C7—H7A109.3N4—C25—N3127.7 (3)
S1—C7—H7A109.3N4—C25—S2114.2 (2)
C5—C7—H7B109.3N3—C25—S2118.1 (2)
S1—C7—H7B109.3N4—C26—C30124.7 (3)
H7A—C7—H7B108.0N4—C26—C27124.5 (3)
N2—C8—N1127.7 (3)C30—C26—C27110.8 (3)
N2—C8—S1117.7 (2)C26—C27—C28102.9 (3)
N1—C8—S1114.6 (2)C26—C27—H27A111.2
N1—C9—C13124.4 (3)C28—C27—H27A111.2
N1—C9—C10124.4 (3)C26—C27—H27B111.2
C13—C9—C10111.1 (3)C28—C27—H27B111.2
C9—C10—C11103.6 (3)H27A—C27—H27B109.1
C9—C10—H10A111.0C27—C28—C29106.5 (2)
C11—C10—H10A111.0C27—C28—H28A110.4
C9—C10—H10B111.0C29—C28—H28A110.4
C11—C10—H10B111.0C27—C28—H28B110.4
H10A—C10—H10B109.0C29—C28—H28B110.4
C10—C11—C12106.2 (2)H28A—C28—H28B108.6
C10—C11—H11A110.5C30—C29—C28101.9 (2)
C12—C11—H11A110.5C30—C29—H29A111.4
C10—C11—H11B110.5C28—C29—H29A111.4
C12—C11—H11B110.5C30—C29—H29B111.4
H11A—C11—H11B108.7C28—C29—H29B111.4
C13—C12—C11102.6 (2)H29A—C29—H29B109.3
C13—C12—H12A111.2C26—C30—C31115.6 (3)
C11—C12—H12A111.2C26—C30—C29112.2 (3)
C13—C12—H12B111.2C31—C30—C29132.1 (3)
C11—C12—H12B111.2N3—C31—O4118.7 (3)
H12A—C12—H12B109.2N3—C31—C30122.5 (3)
C9—C13—C14115.9 (3)O4—C31—C30118.8 (3)
C9—C13—C12111.8 (3)O4—C32—C33115.3 (2)
C14—C13—C12132.1 (3)O4—C32—H32A108.4
N2—C14—O1118.8 (3)C33—C32—H32A108.4
N2—C14—C13122.2 (3)O4—C32—H32B108.4
O1—C14—C13119.0 (3)C33—C32—H32B108.4
O1—C15—C16114.7 (3)H32A—C32—H32B107.5
O1—C15—H15A108.6O5—C33—O6124.4 (3)
C16—C15—H15A108.6O5—C33—C32122.9 (3)
O1—C15—H15B108.6O6—C33—C32112.6 (3)
C16—C15—H15B108.6O6—C34—H34A109.5
H15A—C15—H15B107.6O6—C34—H34B109.5
O2—C16—O3125.2 (3)H34A—C34—H34B109.5
O2—C16—C15121.9 (3)O6—C34—H34C109.5
O3—C16—C15112.9 (3)H34A—C34—H34C109.5
O3—C17—H17A109.5H34B—C34—H34C109.5
O3—C17—H17B109.5C8—N1—C9113.3 (3)
H17A—C17—H17B109.5C14—N2—C8116.3 (3)
O3—C17—H17C109.5C31—N3—C25115.6 (3)
H17A—C17—H17C109.5C25—N4—C26113.9 (3)
H17B—C17—H17C109.5C14—O1—C15115.6 (2)
C23—C18—C19120.3 (3)C16—O3—C17115.0 (2)
C23—C18—H18119.9C31—O4—C32115.8 (2)
C19—C18—H18119.9C33—O6—C34114.1 (2)
C20—C19—C18118.6 (3)C8—S1—C799.34 (14)
C20—C19—H19120.7C25—S2—C24102.84 (14)
C6—C1—C2—F1178.0 (3)N4—C26—C30—C311.2 (4)
C6—C1—C2—C32.6 (5)C27—C26—C30—C31177.4 (3)
F1—C2—C3—C4176.9 (3)N4—C26—C30—C29178.9 (3)
C1—C2—C3—C43.6 (5)C27—C26—C30—C290.4 (4)
C2—C3—C4—C51.9 (5)C28—C29—C30—C2614.0 (3)
C3—C4—C5—C60.8 (5)C28—C29—C30—C31168.8 (3)
C3—C4—C5—C7174.3 (3)C26—C30—C31—N33.0 (4)
C4—C5—C6—C11.9 (5)C29—C30—C31—N3179.8 (3)
C7—C5—C6—C1173.1 (3)C26—C30—C31—O4176.2 (3)
C2—C1—C6—C50.3 (5)C29—C30—C31—O40.9 (5)
C4—C5—C7—S1119.5 (3)O4—C32—C33—O5156.1 (3)
C6—C5—C7—S165.6 (3)O4—C32—C33—O625.9 (4)
N1—C9—C10—C11166.4 (3)N2—C8—N1—C91.4 (4)
C13—C9—C10—C1112.5 (3)S1—C8—N1—C9178.5 (2)
C9—C10—C11—C1220.5 (3)C13—C9—N1—C80.9 (4)
C10—C11—C12—C1320.8 (3)C10—C9—N1—C8179.6 (3)
N1—C9—C13—C143.1 (4)O1—C14—N2—C8178.7 (3)
C10—C9—C13—C14178.0 (3)C13—C14—N2—C81.6 (4)
N1—C9—C13—C12179.8 (3)N1—C8—N2—C141.0 (5)
C10—C9—C13—C120.9 (4)S1—C8—N2—C14178.9 (2)
C11—C12—C13—C913.8 (3)O4—C31—N3—C25177.2 (3)
C11—C12—C13—C14169.8 (3)C30—C31—N3—C252.1 (4)
C9—C13—C14—N23.5 (4)N4—C25—N3—C310.8 (4)
C12—C13—C14—N2179.8 (3)S2—C25—N3—C31179.3 (2)
C9—C13—C14—O1176.8 (3)N3—C25—N4—C262.5 (5)
C12—C13—C14—O10.5 (5)S2—C25—N4—C26177.7 (2)
O1—C15—C16—O2163.6 (3)C30—C26—N4—C251.3 (4)
O1—C15—C16—O318.6 (4)C27—C26—N4—C25179.7 (3)
C23—C18—C19—C200.2 (5)N2—C14—O1—C155.3 (4)
C18—C19—C20—F2179.4 (3)C13—C14—O1—C15175.0 (3)
C18—C19—C20—C210.1 (5)C16—C15—O1—C1468.2 (3)
F2—C20—C21—C22179.7 (3)O2—C16—O3—C173.3 (4)
C19—C20—C21—C220.3 (5)C15—C16—O3—C17179.0 (3)
C20—C21—C22—C230.6 (5)N3—C31—O4—C326.6 (4)
C19—C18—C23—C220.4 (5)C30—C31—O4—C32172.7 (2)
C19—C18—C23—C24177.3 (3)C33—C32—O4—C3167.3 (3)
C21—C22—C23—C180.7 (5)O5—C33—O6—C343.6 (4)
C21—C22—C23—C24177.6 (3)C32—C33—O6—C34174.4 (3)
C18—C23—C24—S294.8 (3)N2—C8—S1—C714.5 (3)
C22—C23—C24—S282.1 (3)N1—C8—S1—C7165.5 (2)
N4—C26—C27—C28166.8 (3)C5—C7—S1—C8179.0 (2)
C30—C26—C27—C2814.7 (4)N4—C25—S2—C24173.6 (2)
C26—C27—C28—C2922.8 (3)N3—C25—S2—C246.5 (3)
C27—C28—C29—C3022.4 (3)C23—C24—S2—C25179.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···N1i0.972.423.375 (4)170
C3—H3···O5ii0.932.533.260 (4)135
C34—H34C···O2iii0.962.523.307 (4)139
C12—H12A···F1iv0.972.583.046 (4)109
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x1/2, y+1/2, z1/2.

Experimental details

(1)(2)(3)
Crystal data
Chemical formulaC7H8N2OSC14H13FN2OSC17H17FN2O3S
Mr168.21276.32348.39
Crystal system, space groupMonoclinic, C2/mMonoclinic, C2/cMonoclinic, Ia
Temperature (K)293293100
a, b, c (Å)16.158 (15), 6.986 (6), 6.810 (6)25.381 (7), 5.8848 (18), 19.738 (6)17.1673 (12), 8.1187 (5), 23.7393 (16)
β (°) 97.935 (13) 113.626 (4) 102.045 (7)
V3)761.4 (12)2701.1 (14)3235.8 (4)
Z488
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.360.240.23
Crystal size (mm)0.50 × 0.32 × 0.300.15 × 0.10 × 0.100.27 × 0.10 × 0.09
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Agilent SuperNova Dual
diffractometer (Cu at zero) with Eos detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Multi-scan
(SADABS; Bruker, 1999)
Multi-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.870, 0.8970.971, 0.9760.941, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
2052, 810, 550 6236, 2371, 1689 11191, 4963, 4626
Rint0.0900.0290.041
(sin θ/λ)max1)0.6160.5940.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.105, 0.96 0.039, 0.112, 1.03 0.036, 0.086, 1.05
No. of reflections81023714963
No. of parameters70182435
No. of restraints0102
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.250.23, 0.170.22, 0.20
Absolute structure??Flack (1983), with 2105 Friedel pairs
Absolute structure parameter??0.10 (6)

Computer programs: SMART (Bruker, 1999), CrysAlis PRO (Agilent, 2012), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) for (1) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.942.797 (4)175.7
N2—H2···S1ii0.862.663.516 (4)175.4
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) for (2) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.932.553.381 (3)148.9
N2—H2···O1ii0.891.872.753 (2)178.3
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) for (3) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···N1i0.972.423.375 (4)169.7
C3—H3···O5ii0.932.533.260 (4)135.3
C34—H34C···O2iii0.962.523.307 (4)139.0
C12—H12A···F1iv0.972.583.046 (4)109.4
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x1/2, y+1/2, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds