Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614005245/sf3224sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229614005245/sf3224Isup2.hkl |
CCDC reference: 990518
There are many reasons for the continuing interest in the synthesis and study of multinuclear 3d molecular metal clusters (Koumousi et al., 2013). In particular, clusters containing MnIII, FeIII, CoII and NiII usually show fascinating structures and attractive magnetic properties, containing high-spin (S) ground-state values and single-molecule magnetic (SMM) behaviour (Aromi & Brechin, 2006). Owing to their strong coordination ability (Milions et al., 2006; Chaudhuri, 2003; Kukushkin & Pombeiro, 1999) and multiple coordination modes, oxime ligands, as old and evergreen ligands, can easily coordinate to metal cations to form complexes with five- or six-membered rings, as well as mono-, di- and multinuclear complexes with interesting structures. These complexes have potential applications in organic chemistry, coordination chemistry and materials and biological science, due to their special chemical properties, biological activities and magnetic properties (Koumousi et al., 2012; Hołyńska et al., 2013; Esteban et al., 2012). Therefore, studies of oxime coordination complexes are significant. Given these considerations, we were interested in the syntheses and properties of oxime coordination complexes and reported a novel enneanuclear manganese coordination complex, [Mn9O4(Me-sao)6(MeO)3(O2CMe)3(OH)(MeOH)2].2.5DMF (Me-saoH2 = 2-hydroxyphenylethanoneoxime and DMF is dimethylformamide), which contains 9-MC-3 and 15-MC-6 (MC denotes a metallacrown) onset-stacked MCs and shows SMM properties (Wang et al., 2011). As part of our continuing investigation of oxime coordination complexes, we have now synthesized a new cobalt complex, [Co2IICo2III(mosao)2(Hmosao)2(N3)4(EtOH)2].2EtOH, (I), which is a novel example of a mixed-valence Co4 cluster coordinated by oxime ligands, from the reaction of Co(OAc)2.4H2O (OAc is acetate) with the polydentate 3-methoxysalicylaldoxime (H2mosao) ligand in ethanol solution through the solvent evaporation method.
All analytical grade chemicals were obtained commercially and used without further purification. H2mosao was synthesized as described in the literature (Xu et al. 2004). Complex (I) was prepared by the solvent evaporation method. H2mosao (0.0334 g, 0.2 mmol) and Co(OAc)2.4H2O (OAc is acetate; 0.0498 g, 0.2 mmol) were dissolved in ethanol (20 ml). The solution was then stirred for 0.5 h and NaN3 (0.0130 g, 0.2 mmol) was added. After stirring for 6 h, the solution was filtered and the filtrate was left undisturbed to give black crystals of (I) (yield 0.0266 g, 42.6% based on Co). Analysis, calculated for C40H54Co4N16O16 (%): H 4.35, C 38.41, N 17.92; found: H 4.42, C 38.37, N 17.88.
Crystal data, data collection and structure refinement details are summarized in Table 1. The H atoms of the H2mosao and hydroxy groups were located in difference Fourier maps but were allowed to ride in the refinement, with aryl C—H = 0.93 Å and O—H = 0.85 Å, and Uiso(H) = 1.2Ueq(C,O), and with methyl C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C). The remaining H atoms were positioned in geometrically idealized positions and constrained to ride on their parent atoms, with methylene C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C), and with methyl C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C).
As shown in Fig. 1, in complex (I) the asymmetric unit contains two crystallographically independent cobalt cations (Co1 and Co2), one mosao2- ligand, one Hmosao- ligand, two N3- anions, one coordinated ethanol molecule and one free ethanol molecule. Atom Co1 is present in a distorted six-coordinated octahedral coordination environment, where the equatorial plane is occupied by two phenolate O atoms (O2 and O5), and by two oxime N atoms (N1 and N8) from one mosao2- ligand and one Hmosao- ligand. The axial positions are occupied by two N atoms (N2 and N5) from two N3- anions. Atom Co2 also adopts a distorted octahedral geometry and exhibits an NO5 environment, utilizing two O atoms (O5 and O6) from one Hmosao- ligand, two O atoms [O1 and O1i; symmetry code: (i) -x + 1, -y + 1, -z + 1] from two mosao2- ligands, one N atom (N2i) from an N3- anion and one O atom (O7) from an ethanol molecule. The mosao2- ligand bridges three Co centres (Co1, Co2 and Co2i) through phenolate and oxime O atoms, adopting a [κ2,κ1,κ1;µ3-mosao]2- coordination mode (shown in Fig. 2a). The Hmosao- ligand bridges two Co centres (Co1 and Co2) through phenolate O, oxime N and methoxy O atoms, adopting a [κ2,κ2;µ2-Hmosao]- coordination mode (shown in Fig. 2b). There are two kinds of N3- anion, one of which bridges Co1 and Co2i through one N atom, adopting a µ2-coordination mode, while the other coordinates to Co1 as a monodentate terminal ligand. Thus, atoms Co1 and Co2 and their symmetry-related counterparts (Co1i and Co2i) are connected by two mosao2- ligands, two Hmosao- ligands and two µ2-N3- anions to form a tetranuclear [Co4N4O4] cluster.
The Co—O and Co—N bond lengths for atom Co1 (Table 2) average 1.927 Å, which is close to the previously reported bond lengths for CoIII cations (Ferguson et al., 2007; Chibotaru et al., 2008), indicating that Co1 is in a 3+ valence state. The Co—O and Co—N bond lengths for Co2 (Table 2) average 2.074 Å, which is close to the previously reported bond lengths for CoII cations (Ferguson et al., 2007; Chibotaru et al., 2008), suggesting that Co2 has a 2+ valence state. In order to confirm these valence-state attributions, bond-valence sum (BVS) calculations (Brown & Altermatt, 1985; Thorp, 1992) were performed for these two Co centres. The BVS calculation for Co1 (3.38) indicates a 3+ valence state, whereas that for Co2 (2.09) agrees with a 2+ valence state. As the complex is neutral, it follows from the charge balance that two H2mosao ligands should be mono-deprotonated (i.e. Hmosao-) and the other two should be doubly deprotonated (i.e. mosao2-), leading to the formula [CoII2CoIII2(mosao)2(Hmosao)2(N3)4(EtOH)2].2EtOH. To confirm the above conclusion further, BVS calculations were performed for the O atoms of the hydroxy groups of the H2mosao ligands, which revealed minor deviations from the expected values of 2 valence units (v.u.) for atoms O1 (1.68), O2 (1.85) and O5 (2.05) and 1 v.u. for atom O4 (0.94). Thus, uncoordinated atom O4 is protonated, which is similar to previously reported results (Guo et al., 2011).
Among the previously reported cobalt complexes, most Co4 clusters are based on carbonyl ligands (Fliedel et al. 2010; De Silva et al. 2001; Darensbourg et al. 1986). However, oxime ligands usually coordinate to cobalt to form mononuclear complexes (Karabocek et al., 2012; Dutta & Gupta, 2011) and examples of multinuclear complexes are relatively scarce (Stamatatos et al. 2005, 2007). In addition, Co cations exist in a single oxidation state (CoII or CoIII) in most cobalt complexes based on oxime ligands (Liu et al. 2003; Wei et al., 2011). Complex (I) is a novel example of mixed-valence Co4 cluster coordinated by oxime ligands.
Complex (I) shows a two-dimensional supramolecular network formed by weak C—H···N and C—H···O interactions. As shown in Fig. 3, adjacent clusters are connected to each other by weak C—H···N interactions and extend along the a axis to give a supramolecular chain, with C···N3ii = 3.567 (12) Å [symmetry code: (ii) x - 1, y, z]. Adjacent supramolecular chains are further linked by weak C—H···O interactions and expand along the c axis to yield a two-dimensional supramolecular network. The C8···O4iii distance is 3.231 (12) Å [symmetry code: (iii) -x, -y, -z]. In addition, there are two kinds of hydrogen bond (O8—H8···N5 and O7—H7A···O8) between the Co4 cluster and the free ethanol molecule (Fig. 4). The O8···N5 and O7···O8 distances are 2.969 (10) and 2.619 (10) Å, respectively. Full geometric details of the hydrogen bonds are given in Table 3.
On the basis of the structure of (I), the only unpaired electrons will be on the CoII centres, as the CoIII ions are low-spin (t2g6, S = 0). Therefore, from a magnetic viewpoint, the complex is effectively dinuclear (Stamatatos et al., 2005). Direct-current magnetic susceptibility measurements were performed on polycrystalline samples of (I) in the temperature range 2–300 K in an applied field of 0.1 T. As shown in Fig. 5, the value of χMT at 300 K is equal to 6.00 cm3 mol-1 K (3.00 cm3 mol-1 K per CoII), which is within the usual range for octahedral CoII in the 4T1g state (Murrie, 2010; Lloret et al., 2008). Upon lowering the temperature, χMT remains nearly constant until approximately 160 K. Below 160 K, a slight increase up to a maximum of 6.29 cm3 mol-1 K at 48 K and a drop to 3.19 cm3 mol-1 K at 2 K are observed. The increase in χMT reveals prevailing ferromagnetic interactions between the CoII centres. The 1/χM = f(T) curve fits well the Curie–Weiss law at high temperature (50–300 K), with C = 5.92 cm3 mol-1 K and θ = 2.93 K (Fig. 5, inset). The positive θ value also indicates ferromagnetic interactions between the two CoII centres. The final decrease is caused by zero-field splitting effects and/or weak intermolecular antiferromagnetic interactions.
In summary, a new tetranuclear mixed-valence cobalt complex, (I), has been synthesized through the solvent evaporation method. The complex contains two CoII cations and two CoIII cations. The four Co cations all display distorted six-coordinated octahedral coordination environments and are bridged by two [κ2,κ1,κ1;µ3-mosao]2- ligands, two [κ2,κ2;µ2-Hmosao]- ligands and two µ2-N3- anions to form a tetranuclear [Co4N4O4] cluster. Adjacent clusters are connected through weak C—H···N and C—H···O interactions, resulting in a two-dimensional supramolecular network parallel to the ac plane.
For related literature, see:Aromi & Brechin (2006); Brown & Altermatt (1985); Chaudhuri (2003); Chibotaru et al. (2008); Darensbourg et al. (1986); De Silva et al. (2001); Dutta & Gupta (2011); Esteban et al. (2012); Ferguson et al. (2007); Fliedel et al. (2010); Hołyńska et al. (2013); Karabocek et al. (2012); Koumousi et al. (2012, 2013); Kukushkin & Pombeiro (1999); Liu et al. (2003); Milions et al. (2006); Thorp (1992); Stamatatos et al. (2005, 2007); Wang et al. (2011); Wei et al. (2011); Xu et al. (2004).
Data collection: SMART (Bruker, 2004); cell refinement: SMART (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
[Co4(C8H7NO3)2(C8H8NO3)2(N3)4(C2H6O)2]·2C2H6O | Z = 1 |
Mr = 1250.71 | F(000) = 642 |
Triclinic, P1 | Dx = 1.627 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.605 (7) Å | Cell parameters from 931 reflections |
b = 10.749 (7) Å | θ = 2.2–21.7° |
c = 13.010 (9) Å | µ = 1.36 mm−1 |
α = 91.524 (11)° | T = 298 K |
β = 107.539 (10)° | Block, black |
γ = 93.855 (10)° | 0.21 × 0.12 × 0.07 mm |
V = 1276.3 (15) Å3 |
Bruker SMART CCD area-detector diffractometer | 4419 independent reflections |
Radiation source: fine-focus sealed tube | 2144 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.058 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −11→11 |
Tmin = 0.763, Tmax = 0.911 | k = −7→12 |
6405 measured reflections | l = −15→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.063 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.158 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.98 | w = 1/[σ2(Fo2) + (0.0539P)2] where P = (Fo2 + 2Fc2)/3 |
4419 reflections | (Δ/σ)max = 0.003 |
353 parameters | Δρmax = 0.57 e Å−3 |
3 restraints | Δρmin = −0.62 e Å−3 |
[Co4(C8H7NO3)2(C8H8NO3)2(N3)4(C2H6O)2]·2C2H6O | γ = 93.855 (10)° |
Mr = 1250.71 | V = 1276.3 (15) Å3 |
Triclinic, P1 | Z = 1 |
a = 9.605 (7) Å | Mo Kα radiation |
b = 10.749 (7) Å | µ = 1.36 mm−1 |
c = 13.010 (9) Å | T = 298 K |
α = 91.524 (11)° | 0.21 × 0.12 × 0.07 mm |
β = 107.539 (10)° |
Bruker SMART CCD area-detector diffractometer | 4419 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 2144 reflections with I > 2σ(I) |
Tmin = 0.763, Tmax = 0.911 | Rint = 0.058 |
6405 measured reflections |
R[F2 > 2σ(F2)] = 0.063 | 3 restraints |
wR(F2) = 0.158 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.98 | Δρmax = 0.57 e Å−3 |
4419 reflections | Δρmin = −0.62 e Å−3 |
353 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.31990 (11) | 0.37207 (9) | 0.28225 (8) | 0.0316 (3) | |
Co2 | 0.48291 (11) | 0.62148 (9) | 0.44723 (8) | 0.0316 (3) | |
N1 | 0.2476 (7) | 0.4263 (5) | 0.3953 (5) | 0.0329 (16) | |
N2 | 0.4660 (7) | 0.2903 (6) | 0.3983 (5) | 0.0377 (17) | |
N3 | 0.4717 (7) | 0.1788 (7) | 0.3861 (5) | 0.0386 (17) | |
N4 | 0.4791 (9) | 0.0735 (7) | 0.3738 (6) | 0.066 (2) | |
N5 | 0.1814 (8) | 0.4664 (6) | 0.1783 (5) | 0.047 (2) | |
N6 | 0.0900 (8) | 0.4107 (6) | 0.1048 (6) | 0.0504 (19) | |
N7 | −0.0010 (10) | 0.3587 (8) | 0.0354 (6) | 0.088 (3) | |
N8 | 0.3885 (7) | 0.3070 (6) | 0.1684 (5) | 0.0410 (18) | |
O1 | 0.3453 (5) | 0.4931 (4) | 0.4826 (4) | 0.0331 (13) | |
O2 | 0.1930 (5) | 0.2284 (4) | 0.2579 (4) | 0.0372 (13) | |
O3 | 0.0106 (6) | 0.0481 (5) | 0.1475 (4) | 0.0573 (17) | |
O4 | 0.3189 (7) | 0.1964 (6) | 0.1148 (5) | 0.0611 (18) | |
H4A | 0.260 (8) | 0.185 (8) | 0.150 (6) | 0.073* | |
O5 | 0.4567 (5) | 0.5176 (4) | 0.3076 (4) | 0.0320 (12) | |
O6 | 0.6325 (6) | 0.7183 (4) | 0.3801 (4) | 0.0426 (14) | |
O7 | 0.3360 (7) | 0.7451 (6) | 0.3747 (4) | 0.0501 (15) | |
H7A | 0.326 (9) | 0.744 (8) | 0.3083 (16) | 0.060* | |
O8 | 0.2758 (11) | 0.7325 (7) | 0.1642 (6) | 0.111 (3) | |
H8 | 0.207 (9) | 0.676 (9) | 0.148 (10) | 0.133* | |
C1 | 0.0143 (9) | 0.3062 (7) | 0.3314 (6) | 0.040 (2) | |
C2 | 0.0575 (9) | 0.2228 (7) | 0.2650 (6) | 0.038 (2) | |
C3 | −0.0446 (9) | 0.1256 (7) | 0.2075 (6) | 0.040 (2) | |
C4 | −0.1835 (10) | 0.1149 (8) | 0.2144 (7) | 0.058 (3) | |
H4 | −0.2500 | 0.0507 | 0.1759 | 0.070* | |
C5 | −0.2263 (10) | 0.2015 (9) | 0.2802 (8) | 0.067 (3) | |
H5 | −0.3213 | 0.1942 | 0.2846 | 0.080* | |
C6 | −0.1282 (9) | 0.2971 (8) | 0.3384 (7) | 0.054 (3) | |
H6 | −0.1567 | 0.3543 | 0.3815 | 0.065* | |
C7 | 0.1210 (6) | 0.3976 (5) | 0.4027 (5) | 0.037 (2) | |
H7 | 0.0943 | 0.4377 | 0.4574 | 0.044* | |
C8 | −0.0795 (6) | −0.0604 (5) | 0.0950 (5) | 0.073 (3) | |
H8A | −0.1100 | −0.1076 | 0.1472 | 0.110* | |
H8B | −0.0248 | −0.1110 | 0.0617 | 0.110* | |
H8C | −0.1641 | −0.0356 | 0.0409 | 0.110* | |
C9 | 0.5779 (9) | 0.4673 (8) | 0.1744 (6) | 0.047 (2) | |
C10 | 0.5617 (8) | 0.5414 (7) | 0.2598 (6) | 0.038 (2) | |
C11 | 0.6599 (9) | 0.6477 (7) | 0.2967 (6) | 0.041 (2) | |
C12 | 0.7683 (10) | 0.6792 (8) | 0.2536 (7) | 0.063 (3) | |
H12 | 0.8325 | 0.7493 | 0.2807 | 0.076* | |
C13 | 0.7832 (11) | 0.6055 (8) | 0.1676 (8) | 0.072 (3) | |
H13 | 0.8563 | 0.6269 | 0.1364 | 0.087* | |
C14 | 0.6895 (10) | 0.5023 (9) | 0.1303 (8) | 0.067 (3) | |
H14 | 0.7001 | 0.4535 | 0.0734 | 0.080* | |
C15 | 0.4884 (9) | 0.3535 (8) | 0.1312 (7) | 0.048 (2) | |
H15 | 0.5044 | 0.3116 | 0.0728 | 0.058* | |
C16 | 0.7177 (10) | 0.8318 (7) | 0.4188 (7) | 0.068 (3) | |
H16A | 0.8192 | 0.8160 | 0.4454 | 0.101* | |
H16B | 0.6878 | 0.8684 | 0.4761 | 0.101* | |
H16C | 0.7039 | 0.8881 | 0.3611 | 0.101* | |
C17 | 0.1994 (11) | 0.7570 (10) | 0.3958 (9) | 0.080 (3) | |
H17A | 0.2064 | 0.7264 | 0.4665 | 0.097* | |
H17B | 0.1233 | 0.7049 | 0.3430 | 0.097* | |
C18 | 0.1577 (12) | 0.8835 (10) | 0.3922 (10) | 0.101 (4) | |
H18A | 0.2369 | 0.9372 | 0.4386 | 0.151* | |
H18B | 0.0727 | 0.8875 | 0.4161 | 0.151* | |
H18C | 0.1357 | 0.9101 | 0.3196 | 0.151* | |
C19 | 0.3144 (17) | 0.7972 (17) | 0.0928 (11) | 0.170 (8) | |
H19A | 0.2296 | 0.8400 | 0.0546 | 0.204* | |
H19B | 0.3299 | 0.7372 | 0.0411 | 0.204* | |
C20 | 0.4329 (14) | 0.8852 (11) | 0.1172 (10) | 0.115 (5) | |
H20A | 0.4475 | 0.9233 | 0.1876 | 0.173* | |
H20B | 0.4145 | 0.9480 | 0.0647 | 0.173* | |
H20C | 0.5191 | 0.8454 | 0.1163 | 0.173* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0354 (7) | 0.0309 (7) | 0.0251 (6) | −0.0074 (5) | 0.0065 (5) | −0.0047 (5) |
Co2 | 0.0381 (7) | 0.0288 (7) | 0.0242 (6) | −0.0073 (5) | 0.0064 (5) | −0.0034 (5) |
N1 | 0.032 (4) | 0.034 (4) | 0.029 (4) | −0.008 (3) | 0.007 (3) | −0.005 (3) |
N2 | 0.043 (4) | 0.026 (4) | 0.041 (4) | 0.001 (3) | 0.010 (3) | −0.006 (3) |
N3 | 0.050 (5) | 0.032 (4) | 0.036 (4) | 0.002 (4) | 0.017 (3) | 0.002 (4) |
N4 | 0.084 (6) | 0.040 (5) | 0.070 (6) | 0.009 (5) | 0.020 (5) | −0.008 (4) |
N5 | 0.055 (5) | 0.043 (5) | 0.033 (4) | −0.010 (4) | 0.001 (4) | −0.012 (3) |
N6 | 0.054 (5) | 0.042 (5) | 0.052 (5) | 0.002 (4) | 0.010 (4) | 0.014 (4) |
N7 | 0.094 (7) | 0.074 (7) | 0.060 (6) | −0.025 (5) | −0.024 (5) | 0.008 (5) |
N8 | 0.051 (5) | 0.033 (4) | 0.034 (4) | −0.014 (3) | 0.011 (4) | −0.014 (3) |
O1 | 0.041 (3) | 0.030 (3) | 0.023 (3) | −0.011 (2) | 0.005 (2) | −0.003 (2) |
O2 | 0.033 (3) | 0.038 (3) | 0.037 (3) | −0.013 (3) | 0.010 (3) | −0.008 (2) |
O3 | 0.066 (4) | 0.051 (4) | 0.048 (4) | −0.029 (3) | 0.015 (3) | −0.017 (3) |
O4 | 0.075 (5) | 0.050 (4) | 0.060 (4) | −0.021 (3) | 0.032 (4) | −0.034 (3) |
O5 | 0.034 (3) | 0.028 (3) | 0.034 (3) | −0.005 (2) | 0.013 (3) | −0.002 (2) |
O6 | 0.052 (4) | 0.035 (3) | 0.040 (3) | −0.015 (3) | 0.018 (3) | −0.010 (3) |
O7 | 0.050 (4) | 0.053 (4) | 0.048 (4) | 0.002 (3) | 0.016 (3) | 0.004 (3) |
O8 | 0.168 (9) | 0.084 (7) | 0.047 (5) | −0.028 (5) | −0.011 (5) | 0.010 (4) |
C1 | 0.036 (5) | 0.040 (5) | 0.043 (5) | −0.012 (4) | 0.013 (4) | −0.006 (4) |
C2 | 0.034 (5) | 0.046 (5) | 0.031 (5) | −0.006 (4) | 0.006 (4) | 0.002 (4) |
C3 | 0.047 (6) | 0.049 (6) | 0.021 (4) | −0.020 (4) | 0.010 (4) | −0.004 (4) |
C4 | 0.050 (6) | 0.057 (6) | 0.058 (6) | −0.034 (5) | 0.012 (5) | −0.008 (5) |
C5 | 0.045 (6) | 0.081 (8) | 0.066 (7) | −0.018 (5) | 0.012 (5) | −0.012 (6) |
C6 | 0.048 (6) | 0.062 (6) | 0.052 (6) | −0.007 (5) | 0.017 (5) | −0.014 (5) |
C7 | 0.038 (5) | 0.036 (5) | 0.036 (5) | −0.009 (4) | 0.013 (4) | −0.002 (4) |
C8 | 0.087 (8) | 0.061 (7) | 0.066 (7) | −0.036 (6) | 0.028 (6) | −0.023 (5) |
C9 | 0.058 (6) | 0.048 (6) | 0.040 (5) | −0.015 (5) | 0.029 (5) | −0.011 (4) |
C10 | 0.040 (5) | 0.038 (5) | 0.034 (5) | −0.007 (4) | 0.011 (4) | −0.002 (4) |
C11 | 0.050 (6) | 0.037 (5) | 0.036 (5) | −0.008 (4) | 0.018 (4) | −0.003 (4) |
C12 | 0.066 (7) | 0.060 (7) | 0.068 (7) | −0.027 (5) | 0.035 (6) | −0.013 (5) |
C13 | 0.082 (8) | 0.060 (7) | 0.088 (8) | −0.032 (6) | 0.056 (7) | −0.015 (6) |
C14 | 0.074 (7) | 0.058 (7) | 0.081 (8) | −0.016 (5) | 0.049 (6) | −0.011 (5) |
C15 | 0.053 (6) | 0.054 (6) | 0.045 (6) | −0.006 (5) | 0.029 (5) | −0.009 (4) |
C16 | 0.084 (8) | 0.041 (6) | 0.076 (7) | −0.029 (5) | 0.030 (6) | −0.014 (5) |
C17 | 0.071 (8) | 0.077 (9) | 0.102 (9) | 0.016 (6) | 0.037 (7) | 0.014 (7) |
C18 | 0.082 (9) | 0.069 (9) | 0.156 (13) | 0.017 (7) | 0.040 (9) | 0.004 (8) |
C19 | 0.154 (15) | 0.25 (2) | 0.074 (10) | −0.112 (14) | 0.012 (10) | 0.025 (11) |
C20 | 0.116 (12) | 0.096 (10) | 0.115 (11) | −0.014 (9) | 0.012 (9) | 0.023 (8) |
Co1—O2 | 1.860 (5) | C2—C3 | 1.411 (10) |
Co1—N1 | 1.900 (6) | C3—C4 | 1.362 (11) |
Co1—N8 | 1.927 (6) | C4—C5 | 1.411 (11) |
Co1—O5 | 1.928 (5) | C4—H4 | 0.9300 |
Co1—N5 | 1.948 (7) | C5—C6 | 1.384 (11) |
Co1—N2 | 1.995 (7) | C5—H5 | 0.9300 |
Co2—O1 | 2.005 (5) | C6—H6 | 0.9300 |
Co2—O7 | 2.041 (6) | C7—H7 | 0.9300 |
Co2—O5 | 2.047 (5) | C8—H8A | 0.9600 |
Co2—N2i | 2.103 (6) | C8—H8B | 0.9600 |
Co2—O1i | 2.121 (5) | C8—H8C | 0.9600 |
Co2—O6 | 2.124 (5) | C9—C14 | 1.397 (10) |
Co2—Co2i | 2.975 (3) | C9—C10 | 1.403 (10) |
N1—C7 | 1.267 (7) | C9—C15 | 1.443 (10) |
N1—O1 | 1.382 (6) | C10—C11 | 1.406 (10) |
N2—N3 | 1.212 (8) | C11—C12 | 1.354 (10) |
N2—Co2i | 2.103 (6) | C12—C13 | 1.402 (11) |
N3—N4 | 1.148 (8) | C12—H12 | 0.9300 |
N5—N6 | 1.199 (8) | C13—C14 | 1.360 (11) |
N6—N7 | 1.151 (9) | C13—H13 | 0.9300 |
N8—C15 | 1.278 (9) | C14—H14 | 0.9300 |
N8—O4 | 1.384 (7) | C15—H15 | 0.9300 |
O1—Co2i | 2.121 (5) | C16—H16A | 0.9600 |
O2—C2 | 1.330 (8) | C16—H16B | 0.9600 |
O3—C3 | 1.362 (9) | C16—H16C | 0.9600 |
O3—C8 | 1.429 (7) | C17—C18 | 1.441 (12) |
O4—H4A | 0.840 (10) | C17—H17A | 0.9700 |
O5—C10 | 1.349 (8) | C17—H17B | 0.9700 |
O6—C11 | 1.406 (8) | C18—H18A | 0.9600 |
O6—C16 | 1.413 (8) | C18—H18B | 0.9600 |
O7—C17 | 1.432 (10) | C18—H18C | 0.9600 |
O7—H7A | 0.839 (10) | C19—C20 | 1.383 (14) |
O8—C19 | 1.301 (14) | C19—H19A | 0.9700 |
O8—H8 | 0.839 (10) | C19—H19B | 0.9700 |
C1—C2 | 1.396 (10) | C20—H20A | 0.9600 |
C1—C6 | 1.396 (10) | C20—H20B | 0.9600 |
C1—C7 | 1.455 (8) | C20—H20C | 0.9600 |
O2—Co1—N1 | 90.1 (2) | C4—C3—C2 | 120.8 (8) |
O2—Co1—N8 | 86.6 (2) | O3—C3—C2 | 113.6 (7) |
N1—Co1—N8 | 176.5 (3) | C3—C4—C5 | 119.8 (8) |
O2—Co1—O5 | 178.1 (2) | C3—C4—H4 | 120.1 |
N1—Co1—O5 | 91.2 (2) | C5—C4—H4 | 120.1 |
N8—Co1—O5 | 92.1 (2) | C6—C5—C4 | 120.7 (9) |
O2—Co1—N5 | 93.8 (2) | C6—C5—H5 | 119.7 |
N1—Co1—N5 | 91.4 (3) | C4—C5—H5 | 119.7 |
N8—Co1—N5 | 90.0 (3) | C5—C6—C1 | 118.9 (8) |
O5—Co1—N5 | 87.6 (2) | C5—C6—H6 | 120.5 |
O2—Co1—N2 | 90.2 (2) | C1—C6—H6 | 120.5 |
N1—Co1—N2 | 84.8 (3) | N1—C7—C1 | 124.5 (6) |
N8—Co1—N2 | 94.1 (3) | N1—C7—H7 | 117.8 |
O5—Co1—N2 | 88.5 (2) | C1—C7—H7 | 117.8 |
N5—Co1—N2 | 174.4 (2) | O3—C8—H8A | 109.5 |
O1—Co2—O7 | 99.1 (2) | O3—C8—H8B | 109.5 |
O1—Co2—O5 | 87.59 (18) | H8A—C8—H8B | 109.5 |
O7—Co2—O5 | 94.2 (2) | O3—C8—H8C | 109.5 |
O1—Co2—N2i | 91.5 (2) | H8A—C8—H8C | 109.5 |
O7—Co2—N2i | 94.5 (2) | H8B—C8—H8C | 109.5 |
O5—Co2—N2i | 171.3 (2) | C14—C9—C10 | 118.8 (7) |
O1—Co2—O1i | 87.8 (2) | C14—C9—C15 | 117.5 (7) |
O7—Co2—O1i | 173.1 (2) | C10—C9—C15 | 123.7 (7) |
O5—Co2—O1i | 85.44 (18) | O5—C10—C9 | 123.9 (7) |
N2i—Co2—O1i | 85.9 (2) | O5—C10—C11 | 118.2 (7) |
O1—Co2—O6 | 164.47 (18) | C9—C10—C11 | 117.9 (7) |
O7—Co2—O6 | 86.8 (2) | C12—C11—C10 | 122.4 (7) |
O5—Co2—O6 | 77.60 (18) | C12—C11—O6 | 123.7 (7) |
N2i—Co2—O6 | 102.5 (2) | C10—C11—O6 | 113.9 (7) |
O1i—Co2—O6 | 86.4 (2) | C11—C12—C13 | 119.5 (8) |
O1—Co2—Co2i | 45.44 (15) | C11—C12—H12 | 120.2 |
O7—Co2—Co2i | 144.54 (18) | C13—C12—H12 | 120.2 |
O5—Co2—Co2i | 85.12 (15) | C14—C13—C12 | 119.2 (8) |
N2i—Co2—Co2i | 88.06 (19) | C14—C13—H13 | 120.4 |
O1i—Co2—Co2i | 42.34 (13) | C12—C13—H13 | 120.4 |
O6—Co2—Co2i | 127.23 (16) | C13—C14—C9 | 122.2 (8) |
C7—N1—O1 | 116.4 (5) | C13—C14—H14 | 118.9 |
C7—N1—Co1 | 125.8 (4) | C9—C14—H14 | 118.9 |
O1—N1—Co1 | 117.4 (4) | N8—C15—C9 | 123.9 (7) |
N3—N2—Co1 | 116.9 (5) | N8—C15—H15 | 118.1 |
N3—N2—Co2i | 121.5 (5) | C9—C15—H15 | 118.1 |
Co1—N2—Co2i | 114.9 (3) | O6—C16—H16A | 109.5 |
N4—N3—N2 | 178.7 (8) | O6—C16—H16B | 109.5 |
N6—N5—Co1 | 118.8 (6) | H16A—C16—H16B | 109.5 |
N7—N6—N5 | 177.9 (10) | O6—C16—H16C | 109.5 |
C15—N8—O4 | 113.4 (6) | H16A—C16—H16C | 109.5 |
C15—N8—Co1 | 129.2 (5) | H16B—C16—H16C | 109.5 |
O4—N8—Co1 | 117.3 (5) | O7—C17—C18 | 113.2 (9) |
N1—O1—Co2 | 115.7 (4) | O7—C17—H17A | 108.9 |
N1—O1—Co2i | 107.8 (4) | C18—C17—H17A | 108.9 |
Co2—O1—Co2i | 92.2 (2) | O7—C17—H17B | 108.9 |
C2—O2—Co1 | 125.1 (5) | C18—C17—H17B | 108.9 |
C3—O3—C8 | 117.7 (6) | H17A—C17—H17B | 107.7 |
N8—O4—H4A | 97 (6) | C17—C18—H18A | 109.5 |
C10—O5—Co1 | 126.9 (4) | C17—C18—H18B | 109.5 |
C10—O5—Co2 | 115.0 (4) | H18A—C18—H18B | 109.5 |
Co1—O5—Co2 | 115.8 (2) | C17—C18—H18C | 109.5 |
C11—O6—C16 | 119.0 (6) | H18A—C18—H18C | 109.5 |
C11—O6—Co2 | 112.4 (4) | H18B—C18—H18C | 109.5 |
C16—O6—Co2 | 127.9 (5) | O8—C19—C20 | 124.2 (12) |
C17—O7—Co2 | 123.8 (6) | O8—C19—H19A | 106.3 |
C17—O7—H7A | 112 (6) | C20—C19—H19A | 106.3 |
Co2—O7—H7A | 110 (6) | O8—C19—H19B | 106.3 |
C19—O8—H8 | 123 (9) | C20—C19—H19B | 106.3 |
C2—C1—C6 | 121.1 (7) | H19A—C19—H19B | 106.4 |
C2—C1—C7 | 120.4 (7) | C19—C20—H20A | 109.5 |
C6—C1—C7 | 118.3 (7) | C19—C20—H20B | 109.5 |
O2—C2—C1 | 122.3 (7) | H20A—C20—H20B | 109.5 |
O2—C2—C3 | 119.0 (7) | C19—C20—H20C | 109.5 |
C1—C2—C3 | 118.7 (7) | H20A—C20—H20C | 109.5 |
C4—C3—O3 | 125.6 (7) | H20B—C20—H20C | 109.5 |
O2—Co1—N1—C7 | −27.2 (6) | O1—Co2—O5—Co1 | 3.1 (3) |
N8—Co1—N1—C7 | −47 (5) | O7—Co2—O5—Co1 | −95.9 (3) |
O5—Co1—N1—C7 | 154.2 (6) | N2i—Co2—O5—Co1 | 87.1 (14) |
N5—Co1—N1—C7 | 66.6 (6) | O1i—Co2—O5—Co1 | 91.1 (3) |
N2—Co1—N1—C7 | −117.4 (6) | O6—Co2—O5—Co1 | 178.4 (3) |
O2—Co1—N1—O1 | 146.2 (5) | Co2i—Co2—O5—Co1 | 48.6 (2) |
N8—Co1—N1—O1 | 127 (4) | O1—Co2—O6—C11 | 3.4 (10) |
O5—Co1—N1—O1 | −32.4 (5) | O7—Co2—O6—C11 | −109.4 (5) |
N5—Co1—N1—O1 | −120.0 (5) | O5—Co2—O6—C11 | −14.4 (5) |
N2—Co1—N1—O1 | 56.0 (5) | N2i—Co2—O6—C11 | 156.7 (5) |
O2—Co1—N2—N3 | 33.5 (6) | O1i—Co2—O6—C11 | 71.7 (5) |
N1—Co1—N2—N3 | 123.5 (6) | Co2i—Co2—O6—C11 | 59.5 (5) |
N8—Co1—N2—N3 | −53.2 (6) | O1—Co2—O6—C16 | −167.2 (8) |
O5—Co1—N2—N3 | −145.2 (6) | O7—Co2—O6—C16 | 80.0 (7) |
N5—Co1—N2—N3 | 170 (3) | O5—Co2—O6—C16 | 175.0 (7) |
O2—Co1—N2—Co2i | −118.4 (3) | N2i—Co2—O6—C16 | −13.9 (7) |
N1—Co1—N2—Co2i | −28.4 (3) | O1i—Co2—O6—C16 | −98.9 (7) |
N8—Co1—N2—Co2i | 154.9 (3) | Co2i—Co2—O6—C16 | −111.0 (7) |
O5—Co1—N2—Co2i | 62.9 (3) | O1—Co2—O7—C17 | 25.4 (7) |
N5—Co1—N2—Co2i | 18 (3) | O5—Co2—O7—C17 | 113.6 (7) |
Co1—N2—N3—N4 | 94 (41) | N2i—Co2—O7—C17 | −66.8 (7) |
Co2i—N2—N3—N4 | −116 (41) | O1i—Co2—O7—C17 | −159.7 (15) |
O2—Co1—N5—N6 | −26.2 (7) | O6—Co2—O7—C17 | −169.1 (7) |
N1—Co1—N5—N6 | −116.3 (7) | Co2i—Co2—O7—C17 | 26.1 (8) |
N8—Co1—N5—N6 | 60.5 (7) | Co1—O2—C2—C1 | −26.9 (11) |
O5—Co1—N5—N6 | 152.5 (7) | Co1—O2—C2—C3 | 156.3 (6) |
N2—Co1—N5—N6 | −163 (2) | C6—C1—C2—O2 | −179.1 (8) |
Co1—N5—N6—N7 | 120 (26) | C7—C1—C2—O2 | −4.9 (12) |
O2—Co1—N8—C15 | −178.9 (8) | C6—C1—C2—C3 | −2.2 (13) |
N1—Co1—N8—C15 | −160 (4) | C7—C1—C2—C3 | 172.0 (7) |
O5—Co1—N8—C15 | −0.4 (8) | C8—O3—C3—C4 | −6.1 (12) |
N5—Co1—N8—C15 | 87.2 (8) | C8—O3—C3—C2 | 173.9 (6) |
N2—Co1—N8—C15 | −89.0 (8) | O2—C2—C3—C4 | 178.6 (8) |
O2—Co1—N8—O4 | 3.6 (6) | C1—C2—C3—C4 | 1.6 (13) |
N1—Co1—N8—O4 | 23 (5) | O2—C2—C3—O3 | −1.4 (11) |
O5—Co1—N8—O4 | −177.8 (6) | C1—C2—C3—O3 | −178.4 (7) |
N5—Co1—N8—O4 | −90.2 (6) | O3—C3—C4—C5 | 179.6 (8) |
N2—Co1—N8—O4 | 93.6 (6) | C2—C3—C4—C5 | −0.3 (14) |
C7—N1—O1—Co2 | −144.1 (5) | C3—C4—C5—C6 | −0.3 (15) |
Co1—N1—O1—Co2 | 41.8 (6) | C4—C5—C6—C1 | −0.3 (15) |
C7—N1—O1—Co2i | 114.3 (5) | C2—C1—C6—C5 | 1.6 (14) |
Co1—N1—O1—Co2i | −59.7 (5) | C7—C1—C6—C5 | −172.7 (8) |
O7—Co2—O1—N1 | 68.4 (4) | O1—N1—C7—C1 | −166.2 (6) |
O5—Co2—O1—N1 | −25.5 (4) | Co1—N1—C7—C1 | 7.3 (10) |
N2i—Co2—O1—N1 | 163.2 (4) | C2—C1—C7—N1 | 15.0 (12) |
O1i—Co2—O1—N1 | −111.0 (5) | C6—C1—C7—N1 | −170.7 (8) |
O6—Co2—O1—N1 | −42.9 (10) | Co1—O5—C10—C9 | 6.7 (11) |
Co2i—Co2—O1—N1 | −111.0 (5) | Co2—O5—C10—C9 | 169.0 (7) |
O7—Co2—O1—Co2i | 179.39 (19) | Co1—O5—C10—C11 | −174.1 (5) |
O5—Co2—O1—Co2i | 85.53 (18) | Co2—O5—C10—C11 | −11.8 (9) |
N2i—Co2—O1—Co2i | −85.8 (2) | C14—C9—C10—O5 | 179.0 (8) |
O1i—Co2—O1—Co2i | 0.0 | C15—C9—C10—O5 | −3.1 (14) |
O6—Co2—O1—Co2i | 68.1 (8) | C14—C9—C10—C11 | −0.2 (13) |
N1—Co1—O2—C2 | 36.9 (6) | C15—C9—C10—C11 | 177.7 (8) |
N8—Co1—O2—C2 | −144.2 (6) | O5—C10—C11—C12 | −179.8 (8) |
O5—Co1—O2—C2 | 168 (6) | C9—C10—C11—C12 | −0.5 (13) |
N5—Co1—O2—C2 | −54.4 (6) | O5—C10—C11—O6 | −1.2 (11) |
N2—Co1—O2—C2 | 121.7 (6) | C9—C10—C11—O6 | 178.1 (7) |
O2—Co1—O5—C10 | 43 (7) | C16—O6—C11—C12 | 2.9 (12) |
N1—Co1—O5—C10 | 174.2 (6) | Co2—O6—C11—C12 | −168.6 (7) |
N8—Co1—O5—C10 | −4.6 (6) | C16—O6—C11—C10 | −175.7 (7) |
N5—Co1—O5—C10 | −94.5 (6) | Co2—O6—C11—C10 | 12.8 (9) |
N2—Co1—O5—C10 | 89.4 (6) | C10—C11—C12—C13 | 1.1 (15) |
O2—Co1—O5—Co2 | −119 (6) | O6—C11—C12—C13 | −177.4 (9) |
N1—Co1—O5—Co2 | 12.0 (3) | C11—C12—C13—C14 | −1.0 (16) |
N8—Co1—O5—Co2 | −166.7 (3) | C12—C13—C14—C9 | 0.3 (17) |
N5—Co1—O5—Co2 | 103.4 (3) | C10—C9—C14—C13 | 0.3 (16) |
N2—Co1—O5—Co2 | −72.7 (3) | C15—C9—C14—C13 | −177.7 (9) |
O1—Co2—O5—C10 | −161.2 (5) | O4—N8—C15—C9 | −179.1 (8) |
O7—Co2—O5—C10 | 99.8 (5) | Co1—N8—C15—C9 | 3.4 (13) |
N2i—Co2—O5—C10 | −77.2 (15) | C14—C9—C15—N8 | 175.7 (9) |
O1i—Co2—O5—C10 | −73.3 (5) | C10—C9—C15—N8 | −2.2 (15) |
O6—Co2—O5—C10 | 14.1 (5) | Co2—O7—C17—C18 | 144.9 (8) |
Co2i—Co2—O5—C10 | −115.7 (5) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7A···O8 | 0.84 (1) | 1.79 (2) | 2.620 (10) | 171 (9) |
O8—H8···N5 | 0.84 (1) | 2.31 (9) | 2.970 (10) | 136 (12) |
C5—H5···N3ii | 0.93 | 2.70 | 3.565 (12) | 156 |
C8—H8C···O4iii | 0.96 | 2.64 | 3.229 (8) | 120 |
Symmetry codes: (ii) x−1, y, z; (iii) −x, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | [Co4(C8H7NO3)2(C8H8NO3)2(N3)4(C2H6O)2]·2C2H6O |
Mr | 1250.71 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 9.605 (7), 10.749 (7), 13.010 (9) |
α, β, γ (°) | 91.524 (11), 107.539 (10), 93.855 (10) |
V (Å3) | 1276.3 (15) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.36 |
Crystal size (mm) | 0.21 × 0.12 × 0.07 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.763, 0.911 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6405, 4419, 2144 |
Rint | 0.058 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.063, 0.158, 0.98 |
No. of reflections | 4419 |
No. of parameters | 353 |
No. of restraints | 3 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.57, −0.62 |
Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Co1—O2 | 1.860 (5) | Co2—O1 | 2.005 (5) |
Co1—N1 | 1.900 (6) | Co2—O7 | 2.041 (6) |
Co1—N8 | 1.927 (6) | Co2—O5 | 2.047 (5) |
Co1—O5 | 1.928 (5) | Co2—N2i | 2.103 (6) |
Co1—N5 | 1.948 (7) | Co2—O1i | 2.121 (5) |
Co1—N2 | 1.995 (7) | Co2—O6 | 2.124 (5) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7A···O8 | 0.839 (10) | 1.787 (19) | 2.620 (10) | 171 (9) |
O8—H8···N5 | 0.839 (10) | 2.31 (9) | 2.970 (10) | 136 (12) |
C5—H5···N3ii | 0.93 | 2.70 | 3.565 (12) | 155.5 |
C8—H8C···O4iii | 0.96 | 2.64 | 3.229 (8) | 120.3 |
Symmetry codes: (ii) x−1, y, z; (iii) −x, −y, −z. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register