Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The synthesis and crystal structure (at 100 K) of the title compound, Cs[Fe(C11H13N3O2S2)2]·CH3OH, is reported. The asymmetric unit consists of an octa­hedral [FeIII(L)2] fragment, where L2− is 3-eth­oxysalicyl­aldehyde 4-methyl­thio­semi­carbazonate(2−) {systematic name: [2-(3-ethoxy-2-oxido­benzyli­dene)hy­dra­zin-1-ylidene](methyl­amino)methane­thiol­ate}, a caesium cation and a methanol solvent mol­ecule. Each L2− ligand binds through the thiol­ate S, the imine N and the phenolate O atoms as donors, resulting in an FeIIIS2N2O2 chromophore. The O,N,S-coordinating ligands are orientated in two perpendicular planes, with the O and S atoms in cis positions and the N atoms in trans positions. The FeIII cation is in the low-spin state at 100 K.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614008158/sf3227sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614008158/sf3227Isup2.hkl
Contains datablock I

CCDC reference: 996723

Introduction top

Transition metal fragments displaying switching behaviour are appealing materials, which may be used in a functional way in research and technology (Létard et al., 2004; Gütlich et al., 2004; Gütlich & Goodwin, 2004; van Koningsbruggen et al., 2004). It is now established that some molecular species containing transition metal ions may exhibit a crossover between states having different magnetic moments. Among these, iron(III) occupies a unique position in the development of the spin crossover area since it was with iron(III) tris­(di­thio­carbamates) that the temperature-induced phenomenon was first discovered (Cambi & Szegö, 1931, 1933). The magnetic inter­conversion between the low-spin (S = 1/2) and high-spin (S = 5/2) states in FeIII systems has now been found to be triggered by a change in temperature or pressure or by light irradiation (Hayami et al., 2000, 2009; van Koningsbruggen et al., 2004).

The generation of FeIII spin crossover behaviour has been demonstrated for a variety of ligand systems (van Koningsbruggen et al., 2004). Among these, particular inter­est has been focused on FeIII entities containing two tridentate O,N,S-thio­semicarbazonate ligands, which exhibit a thermal spin transition (Zelentsov et al., 1973; Ryabova et al., 1978, 1982; Ryabova, Ponomarev, Zelentsov & Atovmyan, 1981; Ryabova, Ponomarev, Zelentsov, Shipilov, & Atovmyan, 1981; Floquet et al., 2003, 2006, 2009; Li et al., 2013). In our research we first focused on using derivatives of pyridoxal-4-R-thio­semicarbazone for generating FeIII spin crossover, resulting in the o­cta­hedral FeIIIS2N2O2 entity [FeIII(HL)(L)].2H2O, where HL- and L2- are the mono- and dianionic forms of pyridoxal-4-methyl-thio­semicarbazone, respectively (Yemeli Tido et al., 2008). The crystal structure of this compound has been determined at 100 K and, from the values of the geometric parameters, it could be inferred that the FeIII cation is in the low-spin state. Temperature-dependent magnetic susceptibility measurements (5–300 K) showed that this spin state is retained over this temperature range. Complete dehydration of the compound results in an FeIII high-spin material (Yemeli Tido et al., 2008). Furthermore, it appeared that varying the pH during the synthesis of the FeIII entities leads to the formation of FeIII compounds differing in the degree of deprotonation of the ligand (Yemeli Tido, 2010). In addition, we have identified a photo-induced spin transition through light-induced excited spin-state trapping (LIESST) of FeIII in [FeIII(HL)(L)].xH2O, where HL- = 5-chloro-salicyl­aldehyde-thio­semicarbazone(-1) and L2- = 5-chloro-salicyl­aldehyde-thio­semicarbazonato(-2) (x = 1), or HL- = 5-bromo-salicyl­aldehyde-thio­semicarbazone(-1) and L2- = 5-bromo-salicyl­aldehyde-thio­semicarbazonato(-2) (x = 1/2) (Yemeli Tido, 2010). Here, we report the title novel FeIII compound, Cs[Fe(C11H13N3O2S2)2].CH3OH, (I), containing two dianionic tridentate 3-eth­oxy-salicyl­aldehyde-methyl­thio­semicarbazonate(-2) ligands, and the determination of its structure at 100 K. [Please provide a proper scheme showing the full structure of the compound, including the Cs+ cation and solvent molecule.]

Experimental top

Synthesis and crystallization top

FeCl3.6H2O (1.0 mmol, 0.27 g) was dissolved in methanol (5 ml). 3-Eth­oxy-salicyl­aldehyde-methyl­thio­semicarbazone (1.0 mmol, 0.25 g) was dissolved in methanol (30 ml) with the addition of CsOH.H2O (4.0 mmol, 0.67 g). To this mixture, the methano­lic FeIII salt solution was added with constant stirring. The resulting dark-green solution was stirred and heated to 353 K for approximately 10 min. The solution was then allowed to stand at room temperature until crystals were formed. The dark-green microcrystals of (I) were isolated by filtration and dried.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The H atoms on the secondary amine atoms N13 and N23 were located in difference Fourier maps and refined with restrained N—H distances and with Uiso(H) = 1.2Ueq(N). The H atom attached to atom O3 of the methanol molecule was located in a difference Fourier map and refined freely, with Uiso(H) = 1.5Ueq(O). The remaining H atoms were included in the refinement in calculated positions and treated as riding on their parent atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C), C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C), and C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for the methine (-CH), methyl­ene (–CH2–) and methyl (–CH3) H atoms, respectively.

The eth­oxy group of one of the ligands shows positional disorder. Two different sets of positions for the methyl and methyl­ene C atoms were identified in the difference Fourier synthesis, i.e. C111 and C110, and C113 and C112, respectively, which were refined with inversely proportional occupancy factors (0.55 and 0.45). The residual density on a difference Fourier map included a quadrilateral of peaks near Cs of height 1.21–1.84 e Å-3. Unreasonably close contacts to some ligand atoms, which persisted after refinement, ruled out an attribution of these peaks to disorder of the Cs site. Twinning was also considered and rejected: three possible twin laws were provided by ROTAX (Cooper et al., 2002), but refinement in SHELXL97 (Sheldrick, 2008) led to a negligible scale factor for each such twin component. Therefore the peaks, which represent a small fraction of the 54 electrons in the Cs+ cation, are assumed to arise from limitations of the data.

Results and discussion top

In solution the free ligand, 3-eth­oxy-salicyl­aldehyde-methyl­thio­semicarbazone (H2L), exists in two tautomeric forms, i.e. the thione and the thiol forms, as illustrated in Scheme 2. Consequently, in FeIII compounds the ligand may be present in either of the possible tautomers, and may be neutral, anionic or dianionic. Referring to the thiol tautomer, neutral 3-eth­oxy-salicyl­aldehyde-methyl­thio­semicarbazone (H2L) has H atoms located on the phenol O atom and the thiol S atom. The first deprotonation step involving the phenol group results in the formation of 3-eth­oxy-salicyl­aldehyde-methyl­thio­semicarbazone(-1) (abbreviated as HL-). Subsequent deprotonation yields 3-eth­oxy-salicyl­aldehyde-methyl­thio­semicarbazonato(-2) (abbreviated as L2-).

The structure of (I) (Fig. 1) was determined at 100 K. It crystallizes in the triclinic system in space group P1. The asymmetric unit consists of one formula unit, Cs[Fe(L)2].CH3OH, with no atom on a special position. The FeIII cation is coordinated by two dianionic tridentate O,N,S-thio­semicarbazonate ligands, displaying a distorted o­cta­hedral FeIIIS2N2O2 geometry. Selected geometric parameters are listed in Table 2.

The donor atoms of the ligands are situated in two perpendicular planes, with the O and S atoms in cis positions and the N atoms in trans positions. These features are corroborated by the bond angles involving the Fe1 atom and the donor atoms (Table 2).

The bond distances involving the Fe1 atom and the donor atoms (Table 2) suggest that (I) contains low-spin FeIII at 100 K. Typical distances for Fe—S, Fe—O and Fe—N bonds are 2.23–2.31, 1.93–1.95 and 1.88–1.96 Å, respectively, for low-spin FeIII compounds of this family, and 2.40–2.44, 1.96–1.99 and 2.05–2.15 Å, respectively, for the corresponding high-spin FeIII compounds (van Koningsbruggen et al., 2004). It is noteworthy that the Fe—O distances are both shorter than the typical values quoted for low-spin FeIII. Two reasons may be invoked for this occurrence. Firstly, the low-spin Fe—O reference values are mainly taken from X-ray crystal structures determined at temperatures higher than that at which the structure of (I) was determined (100 K), hence it may be anti­cipated that the range of actual low-spin Fe—O distances at 100 K will be slightly shorter than the cited values. Secondly, it is significant to note in this respect that the Fe—O distances seem to be less sensitive to a change in FeIII spin state than the Fe—N and Fe—S distances, which may be related to the π-acceptor capability of the N and S donor atoms opposed to the π-donor capability of the O donor atoms. This is of particular significance when FeIII is in the low-spin state, as increased back-bonding will lead to comparatively more pronounced shortening of the Fe—N and Fe—S bonds than of the Fe—O bonds.

The tridentate ligands in (I) are coordinated to the FeIII cation by the thiol­ate S, phenolate O and imine N atoms, forming six- and five-membered chelate rings. As might be expected, the five-membered chelate ring involves a significantly less restricted bite angle [O11—Fe1—N11 = 94.37 (19)° and O21—Fe1—N21 = 93.7 (2)°] than the six-membered chelate ring [S11—Fe1—N11 = 85.55 (15)° and S21—Fe1—N21 = 84.71 (16)°]. Further stabilisation arises from the near alternation of single and double bonds in the different electronic forms, allowing a high degree of π-electron delocalisation throughout both of the chelate rings. H atoms could not be located on the phenolate O and thiol­ate S atoms, which implies that both ligands are in the dianionic form. This is concomitant with the presence of a trivalent iron ion together with a monovalent caesium ion. Ryabova, Ponomarev, Zelentsov & Atovmyan (1981) reported the related compound Cs[Fe(L)2] [where L2- = salicyl­aldehyde-thio­semicarbazonato(-2)], although this contains high-spin FeIII.

The binding of the twofold deprotonated ligand of (I) to the FeIII cation involves electron delocalisation within the chelate ring, which is evident from the geometric parameters. The C18—S11 bond distance of 1.742 (7) Å and C28—S21 bond distance of 1.759 (6) Å suggest partial electron delocalisation of these bonds. This corresponds well with the C—S bond distance of 1.750 (6) Å for the low-spin FeIII compound NH4[Fe(L)2] [where L2- = 5-chloro-salicyl­aldehyde-thio­semicarbazonato(-2)] at 135 K (Ryabova et al., 1978). Similarly, a bond order larger than 1 can be inferred for the C—N bond involving the deprotonated hydrazinic N atom. The bond distances for the C17—N11 and C27—N21 separations in (I) are 1.302 (7) and 1.291 (8) Å, respectively, which correlates with the value reported by Ryabova et al. (1978), i.e. a C—N bond distance of 1.265 (8) Å for NH4[Fe(L)2] at 135 K. Moreover, for (I) the N—N bond distances for N11—N12 and N21—N22 are 1.398 (7) and 1.406 (7) Å, respectively, indicating some electron delocalisation.

The hydrogen-bonding inter­actions of (I) are listed in Table 3 and displayed in Fig. 2. N13—H13···S11(-x + 1, -y + 1, -z + 1) inter­actions paired about the inversion centre at (1/2, 1/2, 1/2) create R22(8) rings (Bernstein et al., 1995), as do N23—H23···S21(-x, -y + 1, -z + 1) contacts about (0, 1/2, 1/2). In this manner, successive FeIII entities are linked in the x direction. Atom O3 of the CH3OH solvate forms an O3—H3···N12 contact with hydrazinic atom N12. In turn, hydrazinic atom N12 is bonded to imine atom N11, which is coordinated to the FeIII cation centre. However, the Fe1—N11 bond length [1.933 (5) Å] is virtually identical to the Fe1—N21 bond length [1.939 (5) Å] involving the other ligand, which is devoid of hydrogen-bonding inter­actions.

This study has focused on the synthesis and characterisation of (I) and it has shown that the FeIII cation is in the low-spin state in this compound at 100 K. We are currently in the process of further investigating new members of this FeIII bis­(ligand) system, while tuning the spin state of FeIII by varying the degree of deprotonation of the ligand, as well as varying the R- and R'-substituents of the R-salicyl­aldehyde-R'-thio­semicarbazone ligand.

Related literature top

For related literature, see: Bernstein et al. (1995); Cambi & Szegö (1931, 1933); Cooper et al. (2002); Floquet et al. (2003, 2006, 2009); Gütlich & Goodwin (2004); Gütlich, van Koningsbruggen & Renz (2004); Hayami et al. (2000, 2009); Koningsbruggen, Maeda & Oshio (2004); Létard et al. (2004); Li et al. (2013); Ryabova et al. (1978, 1982); Ryabova, Ponomarev, Zelentsov & Atovmyan (1981); Ryabova, Ponomarev, Zelentsov, Shipilov & Atovmyan (1981); Sheldrick (2008); Yemeli (2010); Yemeli Tido, Alberda van Ekenstein, Meetsma & van Koningsbruggen (2008); Zelentsov et al. (1973).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2013); cell refinement: CrystalClear-SM Expert (Rigaku, 2013); data reduction: CrystalClear-SM Expert (Rigaku, 2013); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
Fig. 1. The molecular structure and atom-numbering scheme for (I). The Cs+ cation, CH3OH molecule and an alternative orientation for C110–C111 have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. A projection showing the unit cell of (I). An alternative orientation for C110–C111 has been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds [OK?] [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y + 1, -z + 1; (iii) 1 - x, 1 - y, 1 - z; (iv) -x, 1 - y, 1 - z.]
Caesium bis{[2-(3-ethoxy-2-oxidobenzylidene)hydrazin-1-ylidene](methylamino)methanethiolato-κ2O2,N1,S}ferrate(III) methanol monosolvate top
Crystal data top
Cs[Fe(C11H13N3O2S)2]·CH4OZ = 2
Mr = 723.40F(000) = 726
Triclinic, P1Dx = 1.754 Mg m3
a = 8.486 (3) ÅMo Kα radiation, λ = 0.71075 Å
b = 9.078 (3) ÅCell parameters from 2733 reflections
c = 19.875 (7) Åθ = 2.5–25.0°
α = 100.629 (5)°µ = 2.06 mm1
β = 91.549 (5)°T = 100 K
γ = 113.674 (5)°Plate, green
V = 1369.5 (8) Å30.04 × 0.02 × 0.01 mm
Data collection top
Rigaku AFC12 four-circle κ
diffractometer
4844 independent reflections
Radiation source: Rotating anode, Rotating anode3414 reflections with I > 2σ(I)
Confocal mirrors, VHF Varimax monochromatorRint = 0.082
Detector resolution: 28.5714 pixels mm-1θmax = 25.1°, θmin = 2.5°
profile data from ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2013)
k = 1010
Tmin = 0.711, Tmax = 1.000l = 2322
15188 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0635P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max < 0.001
4844 reflectionsΔρmax = 1.84 e Å3
377 parametersΔρmin = 0.62 e Å3
5 restraints
Crystal data top
Cs[Fe(C11H13N3O2S)2]·CH4Oγ = 113.674 (5)°
Mr = 723.40V = 1369.5 (8) Å3
Triclinic, P1Z = 2
a = 8.486 (3) ÅMo Kα radiation
b = 9.078 (3) ŵ = 2.06 mm1
c = 19.875 (7) ÅT = 100 K
α = 100.629 (5)°0.04 × 0.02 × 0.01 mm
β = 91.549 (5)°
Data collection top
Rigaku AFC12 four-circle κ
diffractometer
4844 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2013)
3414 reflections with I > 2σ(I)
Tmin = 0.711, Tmax = 1.000Rint = 0.082
15188 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0525 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 0.92Δρmax = 1.84 e Å3
4844 reflectionsΔρmin = 0.62 e Å3
377 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cs10.57891 (5)0.28483 (5)0.26270 (2)0.03559 (16)
Fe10.08110 (11)0.30324 (9)0.31166 (5)0.0266 (2)
S110.3264 (2)0.44993 (18)0.38549 (9)0.0319 (4)
O110.1195 (5)0.1797 (4)0.2469 (2)0.0282 (10)
O120.3529 (7)0.0646 (6)0.1372 (3)0.0448 (13)
N110.1004 (6)0.1112 (6)0.3326 (3)0.0268 (12)
N120.2322 (6)0.1243 (6)0.3803 (3)0.0272 (12)
N130.4747 (7)0.3043 (6)0.4520 (3)0.0317 (13)
H130.556 (6)0.403 (4)0.466 (3)0.038*
C110.1382 (8)0.0921 (7)0.2500 (3)0.0281 (14)
C120.1862 (8)0.0187 (7)0.2223 (3)0.0293 (15)
C130.3131 (8)0.0478 (7)0.1652 (4)0.0372 (17)
C140.3949 (8)0.2141 (8)0.1380 (4)0.0393 (17)
H140.48040.25470.09940.047*
C150.3516 (9)0.3233 (8)0.1675 (4)0.0402 (18)
H150.41010.43860.15000.048*
C160.2252 (8)0.2630 (7)0.2213 (4)0.0349 (16)
H160.19420.33760.24030.042*
C170.0002 (8)0.0410 (7)0.3039 (3)0.0290 (15)
H170.02040.12480.32000.035*
C180.3411 (8)0.2772 (7)0.4062 (3)0.0302 (15)
C190.5001 (9)0.1727 (8)0.4766 (4)0.0415 (18)
H19A0.52360.10230.43820.062*
H19B0.39540.10680.49540.062*
H19C0.59840.22060.51270.062*
C1100.3870 (19)0.0423 (14)0.0647 (6)0.047 (5)0.552 (17)
H11A0.51190.02670.05060.056*0.552 (17)
H11B0.32190.01770.04130.056*0.552 (17)
C1110.338 (2)0.2021 (19)0.0411 (10)0.043 (4)0.552 (17)
H11C0.37220.17880.00860.065*0.552 (17)
H11D0.21260.26650.05080.065*0.552 (17)
H11E0.39770.26480.06570.065*0.552 (17)
C1120.2503 (16)0.1287 (14)0.0901 (7)0.023 (4)0.448 (17)
H11F0.27730.04530.04660.027*0.448 (17)
H11G0.12700.16590.10720.027*0.448 (17)
C1130.286 (2)0.2708 (18)0.0784 (10)0.029 (4)0.448 (17)
H11H0.23070.30880.03850.043*0.448 (17)
H11I0.23880.36060.11930.043*0.448 (17)
H11J0.41100.23640.06990.043*0.448 (17)
S210.0784 (2)0.32882 (18)0.39898 (9)0.0316 (4)
O210.2202 (5)0.2897 (5)0.2382 (2)0.0290 (10)
O220.3242 (5)0.1540 (5)0.1222 (2)0.0336 (11)
N210.0586 (6)0.4957 (5)0.2920 (3)0.0265 (12)
N220.0018 (7)0.5926 (6)0.3401 (3)0.0306 (13)
N230.1254 (7)0.6013 (6)0.4403 (3)0.0352 (13)
H230.128 (9)0.582 (8)0.4817 (17)0.042*
C210.1506 (8)0.4674 (7)0.1771 (3)0.0306 (15)
C220.2078 (7)0.3420 (7)0.1814 (3)0.0291 (15)
C230.2581 (8)0.2713 (7)0.1211 (3)0.0299 (15)
C240.2536 (8)0.3237 (8)0.0606 (4)0.0385 (17)
H240.28690.27340.02050.046*
C250.2016 (9)0.4479 (7)0.0573 (4)0.0381 (17)
H250.20200.48520.01570.046*
C260.1487 (8)0.5181 (7)0.1152 (4)0.0365 (17)
H260.11060.60220.11260.044*
C270.0929 (8)0.5449 (7)0.2350 (4)0.0317 (16)
H270.07860.64160.23100.038*
C280.0599 (8)0.5248 (7)0.3910 (4)0.0313 (15)
C290.1007 (10)0.7715 (7)0.4438 (4)0.0411 (18)
H29A0.17560.77530.40640.062*
H29B0.02060.83860.43910.062*
H29C0.13030.81480.48820.062*
C2100.2056 (9)0.0007 (7)0.1370 (4)0.0395 (17)
H21A0.16040.02140.18140.047*
H21B0.26910.06960.14180.047*
C2110.0565 (9)0.0936 (8)0.0815 (4)0.047 (2)
H21C0.00280.02350.07470.071*
H21D0.02490.19270.09510.071*
H21E0.09970.12520.03840.071*
O30.3902 (7)0.0555 (6)0.2962 (3)0.0464 (13)
H30.337 (10)0.021 (10)0.326 (3)0.070*
C310.4608 (10)0.1567 (8)0.3210 (4)0.0467 (19)
H31A0.47690.23060.28190.070*
H31B0.38130.22190.34990.070*
H31C0.57280.08690.34830.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.0301 (2)0.0342 (2)0.0458 (3)0.01752 (17)0.00371 (19)0.00666 (17)
Fe10.0238 (5)0.0223 (4)0.0343 (6)0.0105 (4)0.0035 (4)0.0056 (4)
S110.0298 (9)0.0232 (7)0.0413 (11)0.0104 (6)0.0003 (8)0.0057 (7)
O110.022 (2)0.023 (2)0.039 (3)0.0092 (17)0.0014 (19)0.0060 (18)
O120.056 (3)0.047 (3)0.040 (3)0.036 (3)0.007 (3)0.002 (2)
N110.021 (3)0.026 (3)0.034 (3)0.011 (2)0.002 (2)0.006 (2)
N120.025 (3)0.029 (3)0.027 (3)0.012 (2)0.001 (2)0.004 (2)
N130.027 (3)0.027 (3)0.039 (4)0.010 (2)0.004 (3)0.006 (2)
C110.026 (3)0.031 (3)0.028 (4)0.013 (3)0.006 (3)0.004 (3)
C120.019 (3)0.027 (3)0.041 (4)0.007 (3)0.008 (3)0.009 (3)
C130.031 (4)0.030 (3)0.054 (5)0.017 (3)0.010 (3)0.006 (3)
C140.026 (4)0.035 (4)0.053 (5)0.013 (3)0.003 (3)0.001 (3)
C150.033 (4)0.025 (3)0.058 (5)0.010 (3)0.004 (4)0.003 (3)
C160.031 (4)0.023 (3)0.055 (5)0.015 (3)0.011 (3)0.010 (3)
C170.031 (4)0.027 (3)0.035 (4)0.016 (3)0.008 (3)0.011 (3)
C180.029 (4)0.032 (3)0.031 (4)0.015 (3)0.009 (3)0.003 (3)
C190.044 (4)0.037 (4)0.046 (5)0.022 (3)0.001 (4)0.006 (3)
C1100.044 (10)0.032 (7)0.064 (11)0.019 (7)0.002 (8)0.002 (6)
C1110.046 (10)0.045 (9)0.045 (11)0.020 (8)0.017 (8)0.017 (7)
C1120.009 (8)0.018 (6)0.034 (9)0.000 (6)0.000 (6)0.004 (6)
C1130.030 (9)0.026 (8)0.032 (11)0.013 (7)0.002 (8)0.007 (7)
S210.0303 (9)0.0273 (8)0.0402 (11)0.0139 (7)0.0072 (8)0.0094 (7)
O210.023 (2)0.031 (2)0.034 (3)0.0133 (18)0.002 (2)0.0055 (19)
O220.025 (2)0.037 (2)0.039 (3)0.0149 (19)0.007 (2)0.004 (2)
N210.025 (3)0.022 (2)0.029 (3)0.009 (2)0.001 (2)0.002 (2)
N220.030 (3)0.026 (3)0.038 (3)0.013 (2)0.007 (3)0.008 (2)
N230.039 (3)0.031 (3)0.045 (4)0.021 (2)0.013 (3)0.012 (3)
C210.026 (3)0.022 (3)0.037 (4)0.002 (3)0.006 (3)0.008 (3)
C220.017 (3)0.027 (3)0.035 (4)0.001 (2)0.004 (3)0.006 (3)
C230.021 (3)0.028 (3)0.032 (4)0.004 (3)0.000 (3)0.002 (3)
C240.027 (4)0.035 (4)0.043 (5)0.006 (3)0.005 (3)0.001 (3)
C250.042 (4)0.031 (3)0.032 (4)0.004 (3)0.010 (3)0.010 (3)
C260.035 (4)0.021 (3)0.047 (5)0.003 (3)0.007 (3)0.010 (3)
C270.029 (4)0.024 (3)0.044 (5)0.012 (3)0.001 (3)0.011 (3)
C280.031 (4)0.028 (3)0.035 (4)0.012 (3)0.002 (3)0.007 (3)
C290.055 (5)0.029 (3)0.048 (5)0.024 (3)0.015 (4)0.011 (3)
C2100.036 (4)0.028 (3)0.051 (5)0.012 (3)0.004 (3)0.003 (3)
C2110.035 (4)0.041 (4)0.061 (6)0.010 (3)0.010 (4)0.012 (3)
O30.048 (3)0.043 (3)0.057 (4)0.025 (2)0.014 (3)0.016 (2)
C310.042 (4)0.037 (4)0.067 (6)0.021 (3)0.011 (4)0.012 (4)
Geometric parameters (Å, º) top
Cs1—O11i3.075 (4)C110—C1111.508 (15)
Cs1—O12i3.117 (5)C111—H11C0.9800
Cs1—C12i3.701 (6)C111—H11D0.9800
Cs1—C13i3.725 (6)C111—H11E0.9800
Cs1—C183.533 (6)C112—H11F0.9900
Cs1—O213.089 (4)C112—H11G0.9900
Cs1—O223.205 (5)C112—C1131.492 (15)
Cs1—N21i3.712 (5)C113—Cs1ii3.862 (19)
Cs1—N22i3.622 (5)C113—H11H0.9800
Cs1—C28i3.578 (6)C113—H11I0.9800
Cs1—C2103.686 (7)C113—H11J0.9800
Cs1—O33.065 (5)S21—Cs1ii3.767 (2)
Cs1—H33.22 (8)S21—C281.759 (6)
Fe1—Cs1ii4.2755 (18)O21—C221.320 (8)
Fe1—S112.2686 (19)O22—C231.391 (8)
Fe1—O111.904 (4)O22—C2101.451 (7)
Fe1—N111.933 (5)N21—Cs1ii3.712 (5)
Fe1—S212.265 (2)N21—N221.406 (7)
Fe1—O211.918 (4)N21—C271.291 (8)
Fe1—N211.939 (5)N22—Cs1ii3.622 (5)
S11—C181.742 (7)N22—C281.293 (8)
O11—Cs1ii3.075 (4)N23—H230.87 (2)
O11—C121.324 (7)N23—C281.357 (8)
O12—Cs1ii3.117 (5)N23—C291.462 (8)
O12—C131.393 (8)C21—C221.420 (9)
O12—C1101.423 (13)C21—C261.392 (9)
O12—C1121.346 (12)C21—C271.439 (9)
N11—N121.398 (7)C22—C231.412 (9)
N11—C171.302 (7)C23—C241.378 (10)
N12—C181.314 (7)C24—H240.9500
N13—H130.87 (2)C24—C251.377 (10)
N13—C181.347 (8)C25—H250.9500
N13—C191.459 (8)C25—C261.385 (9)
C11—C121.414 (9)C26—H260.9500
C11—C161.417 (8)C27—H270.9500
C11—C171.433 (9)C28—Cs1ii3.578 (6)
C12—Cs1ii3.701 (6)C29—H29A0.9800
C12—C131.405 (9)C29—H29B0.9800
C13—Cs1ii3.725 (6)C29—H29C0.9800
C13—C141.374 (9)C210—H21A0.9900
C14—H140.9500C210—H21B0.9900
C14—C151.398 (10)C210—C2111.501 (10)
C15—H150.9500C211—H21C0.9800
C15—C161.358 (10)C211—H21D0.9800
C16—H160.9500C211—H21E0.9800
C17—H170.9500O3—H30.85 (2)
C19—H19A0.9800O3—C311.428 (9)
C19—H19B0.9800C31—H31A0.9800
C19—H19C0.9800C31—H31B0.9800
C110—H11A0.9900C31—H31C0.9800
C110—H11B0.9900
O11i—Cs1—O12i50.71 (12)C15—C14—H14120.1
O11i—Cs1—C12i19.92 (11)C14—C15—H15120.3
O11i—Cs1—C13i38.88 (13)C16—C15—C14119.4 (6)
O11i—Cs1—C18126.17 (14)C16—C15—H15120.3
O11i—Cs1—O21160.79 (10)C11—C16—H16119.0
O11i—Cs1—O22110.91 (11)C15—C16—C11122.0 (6)
O11i—Cs1—N21i44.01 (10)C15—C16—H16119.0
O11i—Cs1—N22i63.92 (11)N11—C17—C11125.3 (6)
O11i—Cs1—C28i66.84 (13)N11—C17—H17117.3
O11i—Cs1—C210109.83 (13)C11—C17—H17117.3
O11i—Cs1—H395.6 (11)S11—C18—Cs184.4 (2)
O12i—Cs1—C12i39.63 (14)N12—C18—Cs191.4 (4)
O12i—Cs1—C13i21.20 (15)N12—C18—S11124.8 (5)
O12i—Cs1—C18143.96 (14)N12—C18—N13118.3 (6)
O12i—Cs1—O2260.30 (12)N13—C18—Cs194.4 (4)
O12i—Cs1—N21i83.74 (12)N13—C18—S11116.9 (4)
O12i—Cs1—N22i105.65 (13)N13—C19—H19A109.5
O12i—Cs1—C28i115.91 (14)N13—C19—H19B109.5
O12i—Cs1—C21062.24 (15)N13—C19—H19C109.5
O12i—Cs1—H394.3 (7)H19A—C19—H19B109.5
C12i—Cs1—C13i21.81 (15)H19A—C19—H19C109.5
C12i—Cs1—N21i63.92 (12)H19B—C19—H19C109.5
C12i—Cs1—H380.9 (9)O12—C110—H11A108.9
C13i—Cs1—H379.6 (6)O12—C110—H11B108.9
C18—Cs1—C12i122.28 (15)O12—C110—C111113.2 (10)
C18—Cs1—C13i128.55 (15)H11A—C110—H11B107.8
C18—Cs1—N21i118.74 (13)C111—C110—H11A108.9
C18—Cs1—N22i100.47 (13)C111—C110—H11B108.9
C18—Cs1—C28i82.85 (15)C110—C111—H11C109.5
C18—Cs1—C21095.74 (16)C110—C111—H11D109.5
C18—Cs1—H349.9 (6)C110—C111—H11E109.5
O21—Cs1—O12i110.99 (12)H11C—C111—H11D109.5
O21—Cs1—C12i142.14 (12)H11C—C111—H11E109.5
O21—Cs1—C13i121.97 (13)H11D—C111—H11E109.5
O21—Cs1—C1863.41 (14)O12—C112—H11F110.4
O21—Cs1—O2251.74 (11)O12—C112—H11G110.4
O21—Cs1—N21i151.27 (10)O12—C112—C113106.5 (11)
O21—Cs1—N22i134.09 (11)H11F—C112—H11G108.6
O21—Cs1—C28i132.31 (13)C113—C112—H11F110.4
O21—Cs1—C21050.96 (13)C113—C112—H11G110.4
O21—Cs1—H378.6 (14)Cs1ii—C113—H11H159.8
O22—Cs1—C12i98.06 (13)Cs1ii—C113—H11I50.8
O22—Cs1—C13i76.39 (14)Cs1ii—C113—H11J78.0
O22—Cs1—C18110.36 (13)C112—C113—Cs1ii84.3 (9)
O22—Cs1—N21i129.96 (11)C112—C113—H11H109.5
O22—Cs1—N22i141.63 (12)C112—C113—H11I109.5
O22—Cs1—C28i162.18 (13)C112—C113—H11J109.5
O22—Cs1—C21022.98 (13)H11H—C113—H11I109.5
O22—Cs1—H392.3 (16)H11H—C113—H11J109.5
N21i—Cs1—C13i80.59 (13)H11I—C113—H11J109.5
N21i—Cs1—H3126.2 (16)Fe1—S21—Cs1ii86.49 (6)
N22i—Cs1—C12i83.55 (12)C28—S21—Cs1ii70.2 (2)
N22i—Cs1—C13i102.00 (13)C28—S21—Fe194.3 (2)
N22i—Cs1—N21i22.07 (11)Fe1—O21—Cs1122.27 (19)
N22i—Cs1—C210163.06 (15)C22—O21—Cs1110.5 (3)
N22i—Cs1—H3125.5 (16)C22—O21—Fe1122.8 (4)
C28i—Cs1—C12i83.85 (14)C23—O22—Cs1105.1 (3)
C28i—Cs1—C13i105.22 (15)C23—O22—C210115.9 (5)
C28i—Cs1—N21i35.96 (13)C210—O22—Cs197.5 (4)
C28i—Cs1—N22i20.68 (13)Fe1—N21—Cs1ii92.97 (16)
C28i—Cs1—C210173.95 (15)N22—N21—Cs1ii75.4 (3)
C28i—Cs1—H3105.4 (16)N22—N21—Fe1121.3 (4)
C210—Cs1—C12i92.00 (15)C27—N21—Cs1ii100.8 (4)
C210—Cs1—C13i71.05 (16)C27—N21—Fe1123.8 (4)
C210—Cs1—N21i144.62 (14)C27—N21—N22114.9 (5)
C210—Cs1—H369.5 (15)N21—N22—Cs1ii82.6 (3)
O3—Cs1—O11i83.41 (12)C28—N22—Cs1ii77.8 (4)
O3—Cs1—O12i79.58 (14)C28—N22—N21113.1 (5)
O3—Cs1—C12i67.03 (13)C28—N23—H23121 (5)
O3—Cs1—C13i64.40 (14)C28—N23—C29120.9 (6)
O3—Cs1—C1864.93 (14)C29—N23—H23110 (5)
O3—Cs1—O2187.47 (13)C22—C21—C27122.1 (6)
O3—Cs1—O2288.26 (13)C26—C21—C22119.8 (6)
O3—Cs1—N21i120.17 (13)C26—C21—C27118.1 (6)
O3—Cs1—N22i126.29 (13)O21—C22—Cs150.3 (3)
O3—Cs1—C28i108.60 (15)O21—C22—C21124.3 (6)
O3—Cs1—C21065.61 (15)O21—C22—C23118.1 (6)
O3—Cs1—H315.2 (6)C21—C22—Cs1140.5 (4)
S11—Fe1—Cs1ii141.53 (5)C23—C22—Cs181.3 (4)
O11—Fe1—Cs1ii40.12 (12)C23—C22—C21117.5 (6)
O11—Fe1—S11177.83 (14)O22—C23—Cs154.3 (3)
O11—Fe1—N1194.37 (19)O22—C23—C22120.9 (6)
O11—Fe1—S2192.56 (14)C22—C23—Cs177.2 (4)
O11—Fe1—O2188.49 (18)C24—C23—Cs1140.9 (4)
O11—Fe1—N2185.55 (18)C24—C23—O22117.9 (6)
N11—Fe1—Cs1ii119.22 (14)C24—C23—C22121.1 (6)
N11—Fe1—S1185.55 (15)C23—C24—H24119.6
N11—Fe1—S2194.17 (16)C25—C24—C23120.9 (7)
N11—Fe1—N21178.9 (2)C25—C24—H24119.6
S21—Fe1—Cs1ii61.59 (5)C24—C25—H25120.2
S21—Fe1—S1189.61 (7)C24—C25—C26119.5 (7)
O21—Fe1—Cs1ii118.58 (13)C26—C25—H25120.2
O21—Fe1—S1189.34 (13)C21—C26—H26119.5
O21—Fe1—N1187.4 (2)C25—C26—C21121.1 (7)
O21—Fe1—S21178.01 (13)C25—C26—H26119.5
O21—Fe1—N2193.7 (2)N21—C27—C21126.2 (6)
N21—Fe1—Cs1ii60.11 (14)N21—C27—H27116.9
N21—Fe1—S1194.57 (15)C21—C27—H27116.9
N21—Fe1—S2184.71 (16)S21—C28—Cs1ii82.2 (2)
Fe1—S11—Cs190.32 (6)N22—C28—Cs1ii81.5 (4)
C18—S11—Cs168.4 (2)N22—C28—S21124.3 (5)
C18—S11—Fe194.6 (2)N22—C28—N23119.8 (6)
Fe1—O11—Cs1ii116.35 (16)N23—C28—Cs1ii104.0 (4)
C12—O11—Cs1ii107.8 (3)N23—C28—S21115.8 (5)
C12—O11—Fe1126.1 (4)N23—C29—H29A109.5
C13—O12—Cs1ii104.8 (4)N23—C29—H29B109.5
C13—O12—C110120.8 (6)N23—C29—H29C109.5
C110—O12—Cs1ii133.0 (6)H29A—C29—H29B109.5
C112—O12—Cs1ii122.2 (6)H29A—C29—H29C109.5
C112—O12—C13114.7 (7)H29B—C29—H29C109.5
N12—N11—Fe1121.8 (3)Cs1—C210—H21A72.6
C17—N11—Fe1125.4 (4)Cs1—C210—H21B78.0
C17—N11—N12112.7 (5)O22—C210—Cs159.6 (3)
N11—N12—Cs192.7 (3)O22—C210—H21A109.2
C18—N12—Cs168.4 (3)O22—C210—H21B109.2
C18—N12—N11113.3 (5)O22—C210—C211112.1 (6)
C18—N13—H13120 (5)H21A—C210—H21B107.9
C18—N13—C19123.2 (5)C211—C210—Cs1171.0 (5)
C19—N13—H13116 (5)C211—C210—H21A109.2
C12—C11—C16119.0 (6)C211—C210—H21B109.2
C12—C11—C17123.6 (5)C210—C211—H21C109.5
C16—C11—C17117.4 (6)C210—C211—H21D109.5
O11—C12—Cs1ii52.3 (3)C210—C211—H21E109.5
O11—C12—C11124.2 (6)H21C—C211—H21D109.5
O11—C12—C13118.4 (6)H21C—C211—H21E109.5
C11—C12—Cs1ii141.1 (4)H21D—C211—H21E109.5
C13—C12—Cs1ii80.1 (4)Cs1—O3—H393 (6)
C13—C12—C11117.4 (5)C31—O3—Cs1129.1 (4)
O12—C13—Cs1ii54.0 (3)C31—O3—H3111 (6)
O12—C13—C12116.2 (5)O3—C31—H31A109.5
C12—C13—Cs1ii78.1 (3)O3—C31—H31B109.5
C14—C13—Cs1ii138.2 (5)O3—C31—H31C109.5
C14—C13—O12121.3 (7)H31A—C31—H31B109.5
C14—C13—C12122.5 (7)H31A—C31—H31C109.5
C13—C14—H14120.1H31B—C31—H31C109.5
C13—C14—C15119.7 (7)
Cs1—S11—C18—N1287.8 (5)C13—O12—C110—C111150.5 (9)
Cs1—S11—C18—N1392.1 (5)C13—O12—C112—C113167.5 (9)
Cs1ii—O11—C12—C11131.7 (5)C13—C14—C15—C162.1 (11)
Cs1ii—O11—C12—C1348.2 (6)C14—C15—C16—C111.7 (10)
Cs1ii—O12—C13—C1250.2 (6)C16—C11—C12—Cs1ii106.4 (7)
Cs1ii—O12—C13—C14129.6 (6)C16—C11—C12—O11176.8 (6)
Cs1ii—O12—C110—C11145.2 (15)C16—C11—C12—C133.0 (9)
Cs1ii—O12—C112—C11339.0 (12)C16—C11—C17—N11175.3 (6)
Cs1—N12—C18—S1184.1 (5)C17—N11—N12—Cs1108.1 (5)
Cs1—N12—C18—N1395.8 (5)C17—N11—N12—C18175.6 (5)
Cs1ii—C12—C13—O1239.4 (5)C17—C11—C12—Cs1ii76.6 (8)
Cs1ii—C12—C13—C14140.3 (7)C17—C11—C12—O116.2 (10)
Cs1ii—C13—C14—C15110.5 (8)C17—C11—C12—C13174.0 (6)
Cs1ii—S21—C28—N2274.2 (5)C17—C11—C16—C15176.3 (6)
Cs1ii—S21—C28—N23101.9 (5)C19—N13—C18—Cs196.8 (6)
Cs1—O21—C22—C21130.3 (5)C19—N13—C18—S11177.3 (5)
Cs1—O21—C22—C2348.3 (6)C19—N13—C18—N122.8 (9)
Cs1—O22—C23—C2241.5 (6)C110—O12—C13—Cs1ii168.2 (9)
Cs1—O22—C23—C24134.5 (5)C110—O12—C13—C12141.6 (9)
Cs1—O22—C210—C211176.2 (5)C110—O12—C13—C1438.6 (11)
Cs1ii—N21—N22—C2873.3 (5)C110—O12—C112—C11382.2 (12)
Cs1ii—N21—C27—C21100.4 (6)C112—O12—C13—Cs1ii136.7 (8)
Cs1ii—N22—C28—S2174.5 (5)C112—O12—C13—C1286.5 (9)
Cs1ii—N22—C28—N23101.4 (6)C112—O12—C13—C1493.7 (9)
Cs1—C22—C23—O2233.4 (5)C112—O12—C110—C11153.4 (11)
Cs1—C22—C23—C24142.4 (5)O21—C22—C23—Cs135.6 (4)
Cs1—C23—C24—C25108.7 (8)O21—C22—C23—O222.1 (8)
Fe1—S11—C18—Cs188.53 (10)O21—C22—C23—C24178.0 (5)
Fe1—S11—C18—N120.8 (6)O22—C23—C24—C25175.3 (5)
Fe1—S11—C18—N13179.4 (5)N21—N22—C28—Cs1ii76.3 (4)
Fe1—O11—C12—Cs1ii144.3 (5)N21—N22—C28—S211.8 (8)
Fe1—O11—C12—C1112.6 (9)N21—N22—C28—N23177.7 (5)
Fe1—O11—C12—C13167.5 (4)N22—N21—C27—C21179.1 (6)
Fe1—N11—N12—Cs170.0 (4)C21—C22—C23—Cs1143.2 (5)
Fe1—N11—N12—C182.4 (7)C21—C22—C23—O22176.6 (5)
Fe1—N11—C17—C112.3 (9)C21—C22—C23—C240.8 (8)
Fe1—S21—C28—Cs1ii84.70 (10)C22—C21—C26—C250.1 (9)
Fe1—S21—C28—N2210.6 (6)C22—C21—C27—N2112.1 (10)
Fe1—S21—C28—N23173.4 (5)C22—C23—C24—C250.7 (9)
Fe1—O21—C22—Cs1156.7 (5)C23—O22—C210—Cs1110.9 (5)
Fe1—O21—C22—C2126.4 (7)C23—O22—C210—C21165.4 (7)
Fe1—O21—C22—C23155.0 (4)C23—C24—C25—C261.7 (9)
Fe1—N21—N22—Cs1ii84.5 (3)C24—C25—C26—C211.3 (9)
Fe1—N21—N22—C2811.2 (7)C26—C21—C22—Cs1110.3 (7)
Fe1—N21—C27—C210.7 (9)C26—C21—C22—O21177.5 (5)
O11—C12—C13—Cs1ii36.8 (5)C26—C21—C22—C231.1 (8)
O11—C12—C13—O122.6 (9)C26—C21—C27—N21167.6 (6)
O11—C12—C13—C14177.1 (6)C27—N21—N22—Cs1ii95.3 (5)
O12—C13—C14—C15180.0 (6)C27—N21—N22—C28168.6 (5)
O12—C112—C113—Cs1ii25.6 (8)C27—C21—C22—Cs170.0 (8)
N11—N12—C18—Cs183.3 (4)C27—C21—C22—O212.8 (9)
N11—N12—C18—S110.8 (8)C27—C21—C22—C23178.6 (5)
N11—N12—C18—N13179.1 (5)C27—C21—C26—C25179.6 (6)
N12—N11—C17—C11175.7 (5)C29—N23—C28—Cs1ii98.9 (6)
C11—C12—C13—Cs1ii143.1 (5)C29—N23—C28—S21173.1 (5)
C11—C12—C13—O12177.5 (6)C29—N23—C28—N2210.7 (10)
C11—C12—C13—C142.7 (10)C210—O22—C23—Cs1106.3 (5)
C12—C11—C16—C150.9 (10)C210—O22—C23—C2264.9 (7)
C12—C11—C17—N111.8 (10)C210—O22—C23—C24119.2 (6)
C12—C13—C14—C150.2 (11)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13···S11iii0.87 (2)2.97 (6)3.505 (6)122 (5)
N23—H23···S21iv0.87 (2)2.70 (5)3.416 (6)141 (6)
O3—H3···N120.85 (2)2.04 (4)2.852 (7)160 (8)
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaCs[Fe(C11H13N3O2S)2]·CH4O
Mr723.40
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.486 (3), 9.078 (3), 19.875 (7)
α, β, γ (°)100.629 (5), 91.549 (5), 113.674 (5)
V3)1369.5 (8)
Z2
Radiation typeMo Kα
µ (mm1)2.06
Crystal size (mm)0.04 × 0.02 × 0.01
Data collection
DiffractometerRigaku AFC12 four-circle κ
diffractometer
Absorption correctionMulti-scan
(CrystalClear-SM Expert; Rigaku, 2013)
Tmin, Tmax0.711, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15188, 4844, 3414
Rint0.082
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.122, 0.92
No. of reflections4844
No. of parameters377
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.84, 0.62

Computer programs: CrystalClear-SM Expert (Rigaku, 2013), SUPERFLIP (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), OLEX2 (Dolomanov et al., 2009).

Selected geometric parameters (Å, º) top
Fe1—S112.2686 (19)Fe1—S212.265 (2)
Fe1—O111.904 (4)Fe1—O211.918 (4)
Fe1—N111.933 (5)Fe1—N211.939 (5)
O11—Fe1—S11177.83 (14)S21—Fe1—S1189.61 (7)
O11—Fe1—N1194.37 (19)O21—Fe1—S1189.34 (13)
O11—Fe1—S2192.56 (14)O21—Fe1—N1187.4 (2)
O11—Fe1—O2188.49 (18)O21—Fe1—S21178.01 (13)
O11—Fe1—N2185.55 (18)O21—Fe1—N2193.7 (2)
N11—Fe1—S1185.55 (15)N21—Fe1—S1194.57 (15)
N11—Fe1—S2194.17 (16)N21—Fe1—S2184.71 (16)
N11—Fe1—N21178.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13···S11i0.87 (2)2.97 (6)3.505 (6)122 (5)
N23—H23···S21ii0.87 (2)2.70 (5)3.416 (6)141 (6)
O3—H3···N120.85 (2)2.04 (4)2.852 (7)160 (8)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds