Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The two-dimensional polymeric structures of the caesium com­plexes with the phen­oxy­acetic acid analogues (4-fluoro­phen­oxy)acetic acid, (3-chloro-2-methyl­phen­oxy)acetic acid and the herbicidally active (2,4-di­chloro­phen­oxy)acetic acid (2,4-D), namely poly[[μ5-(4-fluoro­phen­oxy)acetato][μ4-(4-fluoro­phen­oxy)acetato]­dicaesium], [Cs2(C8H6FO3)2]n, (I), poly[aqua­[μ5-(3-chloro-2-methyl­phen­oxy)acetato]caesium], [Cs(C9H8ClO3)(H2O)]n, (II), and poly[[μ7-(2,4-di­chloro­phen­oxy)acetato][(2,4-dichlorphen­oxy)acetic acid]caesium], [Cs(C8H5Cl2O3)(C8H6Cl2O3)]n, (III), are described. In (I), the Cs+ cations of the two individual irregular coordination polyhedra in the asymmetric unit (one CsO7 and the other CsO8) are linked by bridging carboxyl­ate O-atom donors from the two ligand mol­ecules, both of which are involved in bidentate chelate Ocarboxy,Ophenoxy inter­actions, while only one has a bidentate carboxyl­ate O,O′-chelate inter­action. Polymeric extension is achieved through a number of carboxyl­ate O-atom bridges, with a minimum Cs...Cs separation of 4.3231 (9) Å, giving layers which lie parallel to (001). In hydrated complex (II), the irregular nine-coordination about the Cs+ cation comprises a single monodentate water mol­ecule, a bidentate Ocarboxy,Ophenoxy chelate inter­action and six bridging carboxyl­ate O-atom bonding inter­actions, giving a Cs...Cs separation of 4.2473 (3) Å. The water mol­ecule forms intra­layer hydrogen bonds within the two-dimensional layers, which lie parallel to (100). In complex (III), the irregular centrosymmetric CsO6Cl2 coordination environment comprises two O-atom donors and two ring-substituted Cl-atom donors from two hydrogen bis­[(2,4-di­chloro­phen­oxy)acetate] ligand species in a bidentate chelate mode, and four O-atom donors from bridging carboxyl groups. The duplex ligand species lie across crystallographic inversion centres, linked through a short O—H...O hydrogen bond involving the single acid H atom. Structure extension gives layers which lie parallel to (001). The present set of structures of Cs salts of phen­oxy­acetic acids show previously demonstrated trends among the alkali metal salts of simple benzoic acids with no stereochemically favourable inter­active substituent groups for formation of two-dimensional coordination polymers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614010596/sf3232sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614010596/sf3232Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614010596/sf3232IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614010596/sf3232IIIsup4.hkl
Contains datablock III

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614010596/sf3232Isup5.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614010596/sf3232IIsup6.cml
Supplementary material

CCDC references: 1001909; 1001910; 1001911

Introduction top

The caesium salts of the carb­oxy­lic acids are of particular inter­est because of the ability of that metal to form expanded coordination polyhedra, as well as exhibiting bridging of metal centres through carboxyl O atoms and, when present, water molecules. Also common is the presence of bidentate carboxyl­ate O,O'-chelate inter­actions having a small bite angle at the metal centre. The structures so generated provide examples of stable coordination polymers which, with the aromatic acid having no inter­active secondary substituent groups, are two-dimensional, e.g. caesium hydrogen trans-cinnamate (Smith, 2014b). With a suitable ring-substituted group, the polymer may be expanded into three dimensions, such as is found in the caesium 4-nitro­benzoate monohydrate structure (Smith, 2013c) and in the caesium 3,5-di­nitro­benzoate dihydrate structure (Smith, 2012b), through Cs—Onitro bonds. However, crystallographically characterized examples of these Cs salts of aromatic carb­oxy­lic acids are not common.

The structures of any alkali metal salts of the phen­oxy­acetic acid analogues are even more rare in the crystallographic literature, comprising just four examples: sodium phen­oxy­acetate hemihydrate (Prout et al., 1971; Evans et al., 2001), anhydrous caesium phen­oxy­acetate (Smith, 2014b), caesium o-phenyl­ene­dioxydi­acetate dihydrate (Smith et al., 1989) and the potassium salt of the herbicidally active (2,4-di­chloro­phen­oxy)­acetic acid (2,4-D) (a hemihydrate) (Kennard et al., 1983). Our previous work on the metal complexes of the phen­oxy­alkanoic acids has provided a large number of structures involving primarily those with the metals of the first transition series (e.g. Smith et al., 1980, 1985, 1993; Smith, 2012b). The metal–ligand inter­active modes with these common metals include monodentate and bidentate–bridging structures involving the chelate Ocarb­oxy,O1phen­oxy [O,O)1-chelate] inter­action, but only occasional examples of the bidentate carboxyl­ate O,O'-chelate inter­action have been found. The unique phen­oxy­alkanoate O,O1-chelate inter­action was first reported for the monomeric copper(II) phen­oxy­acetate complex (Prout et al., 1968), and with the potassium–2,4-D salt (Kennard et al., 1983) a tridentate chelate inter­action is found which includes, in addition to the O,O1-chelate, a K—Cl bond to the ortho-Cl ring substituent of the ligand.

To investigate the modes of inter­action and the nature of the coordination complex structures generated, the reaction of a number of ring-substituted phen­oxy­acetic acid analogues with CsOH in aqueous ethanol was completed, affording three examples of polymeric caesium salts, namely with (4-fluoro­phen­oxy)­acetic acid (PFPA), [Cs2(C8H6FO3)2]n, (I), with (3-chloro-2-methyl­phen­oxy)­acetic acid (2,3-MCPA), [Cs(C9H8ClO3)(H2O)]n, (II), and with (2,4-di­chloro­phen­oxy)­acetic acid (2,4-D), [Cs(C8H5Cl2O3)(C8H6Cl2O3)]n, (III), and their structures are reported herein. All three structures form two-dimensional layered coordination polymers in which the core sheet comprises the Cs—O [or in (III), Cs—O and Cs—Cl] complex network, with the aromatic rings of the ligands peripherally located between the layers. However, there are no ππ ring inter­actions in any of the structures.

Experimental top

Synthesis and crystallization top

Title compounds (I) and (II) were synthesized by heating together for 10 min CsOH (1.0 mmol, 15 mg) and (4-fluoro­phen­oxy)­acetic acid (1.0 mmol, 17 mg) [for (I)] or (3-chloro-2-methyl­phen­oxy)­acetic acid (1.0 mmol, 20 mg) [for (II)] in ethanol–water (15 ml, 1:9 v/v). Compound (III) was prepared by the addition of CsCl (17 mg, 1.0 mmol) to a solution of (2,4-di­chloro­phen­oxy)­acetic acid [22 mg (1.0 mmol) in 20 ml of 1:1 v/v ethanol–water]. Partial room-temperature evaporation of the solutions gave, in all cases, colourless crystal plates [Prism given for (II) in CIF tables - please clarify] from which specimens were cleaved for the X-ray analyses.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were placed in calculated positions (aromatic C—H = 0.95 Å or methyl­ene C—H = 0.99 Å) and allowed to ride in the refinements, with Uiso(H) = 1.2Ueq(C). The water H atoms in (II) were located in a difference Fourier map but were allowed to ride in the refinement, with Uiso(H) = 1.5Ueq(O). The carb­oxy­lic acid H atom of the dimeric ligand unit in (III) was found to be delocalized at an inversion centre between two carboxyl O atoms and was subsequently fixed at that site, with Uiso(H) = 1.5Ueq(O). In (I), unusually large maximum and minimum refinement residual values were found (at 2.10 eÅ-3, 0.75 Å from Cs1, and -2.75 eÅ-3, 0.77 Å from Cs2).

Results and discussion top

In the structure of the anhydrous Cs salt with PFPA, (I), the dinuclear asymmetric unit (Fig. 1) comprises two separate irregular Cs coordination polyhedra, one CsO6 [Cs1—O range = 3.026 (7)–3.166 (6) Å], the other CsO7 [Cs2—O range, 3.003 (6)–3.297 (7) Å] (Table 2). Each Cs+ centre involves bidentate O,O1-chelate coordination modes with the two phen­oxy­acetate ligands (A and B, respectively), while only Cs2 is involved in a bidentate O,O'-chelate inter­action, having a bite angle of 40.48 (17)°. The remaining coordination sites are occupied by bridging carboxyl O-atom donors, giving a Cs1···Cs2 separation of 4.4908 (9) Å among five similar short Cs···Cs bridges, the shortest of which is Cs1···Cs2viii [4.3231 (9) Å; symmetry code: (viii) -x + 5/2, y + 1/2, -z + 1/2], in the two-dimensional polymeric structure which lies parallel to (001) (Figs. 2 and 3). Both PFPA ligands are similar, adopting the `planar' conformation, with minor variation in the phen­oxy side chains due to slight rotation of the carboxyl­ate group [defining torsion angle O11—C21—C31—O32 = 166.6 (8)° in the A ligand and -173.6 (8)° in the B ligand, which compare with 177° in the parent acid (Smith et al., 1992)]. The O,O1-chelate bite angles for the two ligands are 49.98 (17) and 49.13 (18)° for the A and B ligands, respectively.

In the Cs salt of 2,3-MCPA, (II) (Fig. 4), the irregular CsO9 coordination environment [Cs—O range = 3.0195 (19)–3.396 (2) Å; Table 3], like (I), involves a bidentate O,O1-chelate inter­action with a bite angle of 47.45 (5)°. However, no bidentate O,O'-chelate inter­action is present, the two carboxyl­ate O atoms being involved in three additional bridging inter­actions. The single coordinated water molecule (O1W) is triply bridging, giving the two-dimensional layers which lie parallel to (100) (Figs. 5 and 6). Within the polymer, the minimum Cs1···Cs1iii separation is 4.2474 (3) Å in an inversion-related duplex carboxyl­ate bridge [symmetry code: (iii) -x + 1, -y + 1, -z + 1]. The only other Cs···Cs separation is significantly longer [4.6034 (3) Å for Cs1···Cs1iv; symmetry code: (iv) -x + 1, -y + 1, -z + 2]. The water molecule is also involved in intra-layer O—H···Ocarboxyl­ate hydrogen-bonding inter­actions (Table 4). The 2,3-MCPA ligand adopts the `planar' conformation with a defining O11—C21—C31—O32 torsion angle of 171.9 (2)°, compared with 177.98 (17)° in the parent acid (Smith, 2013d).

For (III), the irregular CsO6Cl2 complex unit lies on a crystallographic inversion centre, the primary bonding with the 2,4-D ligand species being through a bidentate chelate inter­action involving a carboxyl O-atom donor and a ring-substituted ortho-Cl atom donor, completing an eight-membered ring about Cs1 (Fig. 7). The centrally located phen­oxy O atom (O11) lies 3.457 (3) Å from Cs1, a little longer than what is normally considered a typical Cs—O bond length. In (III), the Cs—O bond length range is 3.037 (3)–3.232(13 Å (Table 4). The hydrogen 2,4-D ligand species are inter-linked through a delocalized H atom lying on a crystallographic inversion centre within a short O32···H32···O32vi hydrogen bond [2.457 (3) Å; symmetry code: (vi) -x + 3, -y + 2, -z + 1] (Table 5). Although the occurrence of any hydrogen bis­(phen­oxy­acetate) species such as those found in (III) has not been reported among salts or complexes of phenoxalkanoic acids, an analogous two-dimensional polymeric structure of Cs with trans-cinnamic acid is known [O···H···O = 2.462 (10) Å; Smith, 2014a]. It is also found in both ammonium hydrogen bis­(3-chloro­cinnamate) and ammonium hydrogen bis­(3-bromo­cinnamate) (Chowdhury & Kariuki, 2006) [O···H···O = 2.554 (6) and 2.466 (5) Å, respectively]. A coordinated dimeric hydrogen bis­(4-nitro­benzoate) ligand is present in the potassium salt (Srivastava & Speakman, 1961), and in the rubidium salts of hydrogen bis­(acetyl­salicylate) (Grimvall & Wengelin, 1967) and the isostructural rubidium hydrogen bis­(3-chloro­benzoate) and rubidium hydrogen bis­(3-bromo­benzoate) (Van Deun et al., 2005).

The presence of coordinated ring-substituted Cl donors such as those found in (III) has precedence in two Cs complexes with aromatic carb­oxy­lic acids: 4-amino-3,5,6-tri­chloro­pyridine-2-carb­oxy­lic acid [all three Cl atoms coordinated; Cs—Cl = 3.6052 (11)–3.7151 (11) Å; Smith, 2013a] and 2,3-6-tri­chloro­phenyl­acetic acid [one bridging Cl; Cs—Cl = 3.646 (2) and 3.711 (2) Å; Smith, 2013b].

In (III), both of the carboxyl O atoms quadruply bridge Cs centres and generate the two-dimensional polymer lying parallel to (001) (Figs. 8 and 9). No inter-ring ππ inter­actions are present in the structure [minimum ring centroid separation = 4.8756 (4) Å, the a cell parameter].

The linked 2,4-D species in complex (III) are close to coplanar, with the side-chain carboxyl group of the molecule rotated slightly out of the plane [torsion angle C1—O11—C21—O31 = -172.6 (3)°]. The anti­periplanar (torsion angle = 180±30°) conformation is quite unlike that of the parent acid, which in this respect is an unusual member of the phen­oxy­acetate acid series in having a synclinal side-chain conformation (torsion angle = 90±30°) [comparative torsion angle = 75.2°; Smith et al., 1976; Smith & Kennard, 1979; Lynch et al., 1999, 2003]. However, in the potassium salt (Kennard et al., 1983) and the ammonium salt (Liu et al., 2009) (both hemihydrates), the anti­periplanar conformation is found.

The present set of structures of the Cs salts of phen­oxy­acetic acids show previously demonstrated trends among the alkali metal or ammonium salts of simple benzoic acids with no stereochemically favourable inter­active substituent groups, for formation of two-dimensional coordination polymers. In these also are examples of both O,O' and O,O1-chelates, and in the 2,4-D example, (III), the presence of the hydrogen bis­[(2,4-di­chloro­phen­oxy)­acetic acid] ligand species.

Related literature top

For related literature, see: Chowdhury & Kariuki (2006); Evans et al. (2001); Kennard et al. (1983); Liu et al. (2009); Lynch et al. (1999, 2003); Prout et al. (1968, 1971); Smith (2012b, 2013a, 2013b, 2013c, 2013d, 2014a, 2014b); Smith & Kennard (1979); Smith et al. (1976, 1985, 1992, 1993); Srivastava & Speakman (1961); Van Deun, Ramaekers, Nockemann, Van Hecke, Van Meervelt & Binnemans (2005).

Computing details top

For all compounds, data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for (I); SIR92 (Altomare et al., 1993) for (II), (III). For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
Fig. 1. The atom-numbering scheme and the molecular configuration of the two ligands (A and B) and the two Cs coordination polyhedra of (I), with displacement ellipsoids drawn at the 40% probability level. See Table 2 for symmetry codes.

Fig. 2. A view of the partially expanded polymeric extension of the structure of (I), viewed along the approximate a cell direction, with H atoms omitted. [Symmetry codes: (vi) x - 1, y, z; (vii) x, y - 1, z; see Table 2 for other codes.]

Fig. 3. The packing of the layered structure of (I) in the unit cell, viewed along b.

Fig. 4. The atom-numbering scheme and the molecular configuration of the CsO9 coordination polyhedron in (II), with displacement ellipsoids drawn at the 40% probability level. See Table 3 for symmetry codes.

Fig. 5. A view of the partially expanded polymeric extension of the structure of (II), viewed along the approximate a cell direction, with non-associative H atoms omitted. [Symmetry code: (viii) -x + 1, y - 1/2, -z + 3/2; see Table 3 for other codes.]

Fig. 6. The packing of the layered structure of (II) in the unit cell, viewed along c. Hydrogen bonds are shown as dashed lines.

Fig. 7. The atom-numbering scheme and the molecular configuration of the CsO6Cl2 coordination polyhedron of (III), with displacement ellipsoids drawn at the 40% probability level. The dashed line indicates the bond to the delocalized atom H32. See Table 4 for symmetry codes.

Fig. 8. A view of the partially expanded polymeric extension of the structure of (III), with C-bound H atoms omitted. The delocalized acid atom H32 lies on a crystallographic inversion centre; its bonding is indicated by dashed lines. [Symmetry code: (vi) -x + 3, -y + 2, -z + 1; see Table 4 for other codes.]

Fig. 9. The packing of the layered structure of (III) in the unit cell, viewed along a.
(I) Poly[[µ5-(4-fluorophenoxy)acetato][µ4-(4-fluorophenoxy)acetato]dicaesium] top
Crystal data top
[Cs2(C8H6FO3)2]F(000) = 1136
Mr = 604.08Dx = 2.155 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4505 reflections
a = 6.8582 (2) Åθ = 3.1–28.8°
b = 7.6183 (3) ŵ = 3.96 mm1
c = 35.6746 (15) ÅT = 200 K
β = 92.778 (3)°Plate, colourless
V = 1861.73 (12) Å30.25 × 0.20 × 0.05 mm
Z = 4
Data collection top
Oxford Gemini-S CCD area-detector
diffractometer
3668 independent reflections
Radiation source: Enhance (Mo) X-ray source3377 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω scansh = 78
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 99
Tmin = 0.559, Tmax = 0.980l = 4339
11999 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.25 w = 1/[σ2(Fo2) + (0.0156P)2 + 24.3P]
where P = (Fo2 + 2Fc2)/3
3668 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 2.10 e Å3
0 restraintsΔρmin = 2.75 e Å3
Crystal data top
[Cs2(C8H6FO3)2]V = 1861.73 (12) Å3
Mr = 604.08Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.8582 (2) ŵ = 3.96 mm1
b = 7.6183 (3) ÅT = 200 K
c = 35.6746 (15) Å0.25 × 0.20 × 0.05 mm
β = 92.778 (3)°
Data collection top
Oxford Gemini-S CCD area-detector
diffractometer
3668 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3377 reflections with I > 2σ(I)
Tmin = 0.559, Tmax = 0.980Rint = 0.045
11999 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.25 w = 1/[σ2(Fo2) + (0.0156P)2 + 24.3P]
where P = (Fo2 + 2Fc2)/3
3668 reflectionsΔρmax = 2.10 e Å3
235 parametersΔρmin = 2.75 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.75958 (8)0.42615 (7)0.20660 (2)0.0293 (2)
Cs21.23687 (8)0.02363 (7)0.21869 (2)0.0292 (2)
F4A0.8031 (10)0.5637 (11)0.00079 (18)0.067 (3)
F4B1.3076 (11)0.0195 (10)0.0143 (2)0.067 (3)
O11A0.4758 (9)0.4835 (9)0.13500 (18)0.033 (2)
O11B0.9332 (10)0.0287 (9)0.14616 (19)0.038 (2)
O31A0.3015 (10)0.4003 (8)0.19784 (19)0.034 (2)
O31B0.7836 (11)0.0407 (9)0.2130 (2)0.041 (3)
O32A0.1230 (9)0.6445 (9)0.19599 (19)0.035 (2)
O32B0.5970 (10)0.1948 (8)0.20193 (19)0.034 (2)
C1A0.5519 (13)0.5127 (13)0.1007 (3)0.031 (3)
C1B1.0205 (14)0.0169 (13)0.1124 (3)0.033 (3)
C2A0.7174 (14)0.4145 (14)0.0931 (3)0.039 (3)
C2B1.1839 (16)0.1245 (15)0.1086 (3)0.046 (4)
C3A0.8002 (16)0.4308 (16)0.0587 (3)0.047 (4)
C3B1.2799 (17)0.1255 (15)0.0758 (4)0.049 (4)
C4A0.7210 (16)0.5461 (16)0.0330 (3)0.044 (4)
C4B1.2118 (16)0.0221 (15)0.0468 (3)0.043 (4)
C5A0.5615 (15)0.6475 (15)0.0400 (3)0.042 (3)
C5B1.0525 (15)0.0855 (16)0.0496 (3)0.044 (4)
C6A0.4752 (14)0.6303 (13)0.0743 (3)0.035 (3)
C6B0.9560 (15)0.0863 (15)0.0829 (3)0.041 (3)
C21A0.3128 (13)0.5848 (12)0.1441 (3)0.028 (3)
C21B0.7808 (14)0.0955 (13)0.1527 (3)0.032 (3)
C31A0.2411 (13)0.5392 (12)0.1827 (2)0.026 (3)
C31B0.7154 (13)0.0816 (11)0.1928 (3)0.028 (3)
H2A0.772800.336700.111500.0480*
H2B1.228500.197300.128900.0550*
H3A0.911000.362700.053100.0560*
H3B1.391900.197000.073300.0590*
H5A0.510700.728200.021800.0500*
H5B1.009400.158000.029200.0530*
H6A0.364200.698800.079600.0420*
H6B0.844500.158800.085300.0500*
H21A0.205700.565200.124900.0340*
H21B0.828600.215900.148100.0390*
H22A0.348100.710800.143500.0340*
H22B0.668200.073000.134900.0390*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.0249 (3)0.0216 (3)0.0412 (4)0.0020 (2)0.0011 (2)0.0018 (2)
Cs20.0307 (3)0.0182 (3)0.0385 (4)0.0000 (2)0.0010 (2)0.0016 (2)
F4A0.059 (4)0.103 (6)0.040 (4)0.005 (4)0.022 (3)0.002 (4)
F4B0.063 (4)0.075 (5)0.064 (5)0.002 (4)0.028 (4)0.012 (4)
O11A0.032 (3)0.037 (4)0.032 (4)0.010 (3)0.009 (3)0.004 (3)
O11B0.047 (4)0.032 (4)0.034 (4)0.017 (3)0.001 (3)0.002 (3)
O31A0.041 (4)0.019 (3)0.043 (4)0.003 (3)0.010 (3)0.007 (3)
O31B0.058 (5)0.027 (4)0.039 (4)0.006 (3)0.002 (3)0.010 (3)
O32A0.026 (3)0.033 (4)0.046 (4)0.001 (3)0.007 (3)0.002 (3)
O32B0.034 (4)0.028 (4)0.041 (4)0.003 (3)0.006 (3)0.001 (3)
C1A0.028 (5)0.032 (5)0.033 (5)0.003 (4)0.001 (4)0.003 (4)
C1B0.035 (5)0.027 (5)0.036 (6)0.001 (4)0.003 (4)0.006 (4)
C2A0.032 (5)0.041 (6)0.045 (6)0.006 (5)0.003 (5)0.005 (5)
C2B0.046 (6)0.039 (6)0.051 (7)0.013 (5)0.004 (5)0.006 (5)
C3A0.039 (6)0.055 (7)0.048 (7)0.006 (5)0.010 (5)0.013 (6)
C3B0.039 (6)0.037 (6)0.073 (9)0.007 (5)0.010 (6)0.015 (6)
C4A0.043 (6)0.061 (7)0.029 (6)0.013 (6)0.013 (5)0.004 (5)
C4B0.038 (6)0.047 (6)0.044 (7)0.011 (5)0.010 (5)0.018 (5)
C5A0.037 (6)0.047 (6)0.041 (6)0.006 (5)0.001 (5)0.006 (5)
C5B0.039 (6)0.055 (7)0.037 (6)0.004 (5)0.000 (5)0.004 (5)
C6A0.032 (5)0.036 (5)0.037 (6)0.003 (4)0.003 (4)0.000 (4)
C6B0.034 (5)0.053 (7)0.037 (6)0.012 (5)0.001 (5)0.003 (5)
C21A0.027 (5)0.023 (4)0.033 (5)0.006 (4)0.008 (4)0.008 (4)
C21B0.033 (5)0.036 (5)0.028 (5)0.001 (4)0.006 (4)0.004 (4)
C31A0.025 (4)0.025 (5)0.028 (5)0.010 (4)0.001 (4)0.001 (4)
C31B0.033 (5)0.014 (4)0.037 (5)0.006 (4)0.006 (4)0.004 (4)
Geometric parameters (Å, º) top
Cs1—O11A3.166 (6)C1B—C2B1.400 (15)
Cs1—O31A3.148 (7)C1B—C6B1.370 (15)
Cs1—O31B2.949 (7)C2A—C3A1.383 (15)
Cs1—O32Bi3.097 (6)C2B—C3B1.370 (17)
Cs1—O32Aii3.036 (6)C3A—C4A1.363 (16)
Cs1—O31Biii3.026 (7)C3B—C4B1.365 (17)
Cs2—O11B3.242 (7)C4A—C5A1.372 (16)
Cs2—O31B3.108 (8)C4B—C5B1.373 (16)
Cs2—O32Aiv3.090 (7)C5A—C6A1.391 (15)
Cs2—O31Aii3.003 (6)C5B—C6B1.388 (15)
Cs2—O32Bii3.061 (7)C21A—C31A1.525 (13)
Cs2—O31Av3.146 (7)C21B—C31B1.524 (15)
Cs2—O32Av3.279 (7)C2A—H2A0.9500
F4A—C4A1.362 (13)C2B—H2B0.9500
F4B—C4B1.360 (13)C3A—H3A0.9500
O11A—C1A1.372 (12)C3B—H3B0.9500
O11A—C21A1.409 (11)C5A—H5A0.9500
O11B—C1B1.374 (12)C5B—H5B0.9500
O11B—C21B1.437 (12)C6A—H6A0.9500
O31A—C31A1.250 (11)C6B—H6B0.9500
O31B—C31B1.254 (12)C21A—H21A0.9900
O32A—C31A1.250 (11)C21A—H22A0.9900
O32B—C31B1.239 (11)C21B—H21B0.9900
C1A—C2A1.397 (14)C21B—H22B0.9900
C1A—C6A1.385 (14)
O11A—Cs1—O31A49.98 (17)Cs2vii—O32A—Cs2iii87.72 (17)
O11A—Cs1—O31B103.28 (19)Cs2vi—O32B—C31B102.6 (5)
O11A—Cs1—O32Bi67.80 (18)Cs1viii—O32B—C31B115.1 (6)
O11A—Cs1—O32Aii107.46 (17)Cs1viii—O32B—Cs2vi142.0 (2)
O11A—Cs1—O31Biii129.82 (18)O11A—C1A—C2A115.7 (9)
O31A—Cs1—O31B89.84 (18)O11A—C1A—C6A124.3 (8)
O31A—Cs1—O32Bi72.43 (17)C2A—C1A—C6A120.0 (10)
O31A—Cs1—O32Aii147.50 (17)O11B—C1B—C2B115.6 (9)
O31A—Cs1—O31Biii88.23 (19)O11B—C1B—C6B125.0 (9)
O31B—Cs1—O32Bi162.01 (19)C2B—C1B—C6B119.5 (10)
O31B—Cs1—O32Aii120.81 (19)C1A—C2A—C3A119.8 (10)
O31B—Cs1—O31Biii102.80 (19)C1B—C2B—C3B120.4 (10)
O32Aii—Cs1—O32Bi77.17 (18)C2A—C3A—C4A119.2 (10)
O31Biii—Cs1—O32Bi74.37 (18)C2B—C3B—C4B118.9 (11)
O31Biii—Cs1—O32Aii94.52 (19)F4A—C4A—C3A119.4 (10)
O11B—Cs2—O31B49.13 (18)F4A—C4A—C5A118.3 (10)
O11B—Cs2—O32Aiv69.97 (17)C3A—C4A—C5A122.4 (10)
O11B—Cs2—O31Aii83.55 (18)F4B—C4B—C3B119.5 (10)
O11B—Cs2—O32Bii110.10 (18)F4B—C4B—C5B118.2 (10)
O11B—Cs2—O31Av132.77 (17)C3B—C4B—C5B122.3 (11)
O11B—Cs2—O32Av152.31 (17)C4A—C5A—C6A119.0 (10)
O31B—Cs2—O32Aiv77.45 (17)C4B—C5B—C6B118.6 (10)
O31Aii—Cs2—O31B95.91 (18)C1A—C6A—C5A119.7 (9)
O31B—Cs2—O32Bii145.48 (18)C1B—C6B—C5B120.4 (10)
O31Av—Cs2—O31B86.85 (18)O11A—C21A—C31A112.2 (8)
O31B—Cs2—O32Av107.23 (17)O11B—C21B—C31B110.9 (8)
O31Aii—Cs2—O32Aiv150.10 (18)O31A—C31A—O32A126.0 (8)
O32Aiv—Cs2—O32Bii68.70 (17)O31A—C31A—C21A118.0 (8)
O31Av—Cs2—O32Aiv86.40 (17)O32A—C31A—C21A116.1 (8)
O32Aiv—Cs2—O32Av124.39 (17)O31B—C31B—O32B126.7 (10)
O31Aii—Cs2—O32Bii109.93 (18)O31B—C31B—C21B118.2 (8)
O31Aii—Cs2—O31Av122.69 (17)O32B—C31B—C21B115.2 (8)
O31Aii—Cs2—O32Av85.50 (18)C1A—C2A—H2A120.00
O31Av—Cs2—O32Bii97.35 (17)C3A—C2A—H2A120.00
O32Av—Cs2—O32Bii97.53 (17)C1B—C2B—H2B120.00
O31Av—Cs2—O32Av40.48 (17)C3B—C2B—H2B120.00
Cs1—O11A—C1A119.8 (5)C2A—C3A—H3A120.00
Cs1—O11A—C21A110.7 (5)C4A—C3A—H3A120.00
C1A—O11A—C21A117.2 (7)C2B—C3B—H3B121.00
Cs2—O11B—C1B114.1 (5)C4B—C3B—H3B121.00
Cs2—O11B—C21B107.9 (5)C4A—C5A—H5A121.00
C1B—O11B—C21B116.8 (8)C6A—C5A—H5A120.00
Cs1—O31A—C31A107.4 (5)C4B—C5B—H5B121.00
Cs1—O31A—Cs2vi101.17 (19)C6B—C5B—H5B121.00
Cs1—O31A—Cs2iii90.93 (18)C1A—C6A—H6A120.00
Cs2vi—O31A—C31A150.1 (6)C5A—C6A—H6A120.00
Cs2iii—O31A—C31A96.6 (5)C1B—C6B—H6B120.00
Cs2vi—O31A—Cs2iii91.77 (18)C5B—C6B—H6B120.00
Cs1—O31B—Cs295.7 (2)O11A—C21A—H21A109.00
Cs1—O31B—C31B132.6 (6)O11A—C21A—H22A109.00
Cs1—O31B—Cs1v110.7 (2)C31A—C21A—H21A109.00
Cs2—O31B—C31B110.5 (6)C31A—C21A—H22A109.00
Cs1v—O31B—Cs294.0 (2)H21A—C21A—H22A108.00
Cs1v—O31B—C31B106.2 (6)O11B—C21B—H21B109.00
Cs1vi—O32A—C31A104.3 (6)O11B—C21B—H22B109.00
Cs2vii—O32A—C31A122.6 (6)C31B—C21B—H21B110.00
Cs2iii—O32A—C31A90.3 (5)C31B—C21B—H22B110.00
Cs1vi—O32A—Cs2vii132.7 (2)H21B—C21B—H22B108.00
Cs1vi—O32A—Cs2iii86.32 (17)
O31A—Cs1—O11A—C1A174.8 (7)O31Av—Cs2—O31B—C31B108.4 (6)
O31A—Cs1—O11A—C21A44.1 (5)O31Av—Cs2—O31B—Cs1v0.57 (18)
O31B—Cs1—O11A—C1A96.4 (6)O32Av—Cs2—O31B—Cs176.4 (2)
O31B—Cs1—O11A—C21A122.4 (5)O32Av—Cs2—O31B—C31B143.9 (6)
O32Bi—Cs1—O11A—C1A100.0 (6)O32Av—Cs2—O31B—Cs1v34.9 (2)
O32Bi—Cs1—O11A—C21A41.1 (5)O11B—Cs2—O32Aiv—Cs1viii76.5 (3)
O32Aii—Cs1—O11A—C1A32.4 (7)O11B—Cs2—O32Aiv—C31Aiv111.7 (6)
O32Aii—Cs1—O11A—C21A108.8 (5)O31B—Cs2—O32Aiv—Cs1viii25.7 (3)
O31Biii—Cs1—O11A—C1A144.1 (6)O31B—Cs2—O32Aiv—C31Aiv162.5 (6)
O31Biii—Cs1—O11A—C21A2.9 (6)O11B—Cs2—O31Aii—Cs1ii135.9 (2)
O11A—Cs1—O31A—C31A51.8 (5)O11B—Cs2—O31Aii—C31Aii26.3 (11)
O11A—Cs1—O31A—Cs2vi119.0 (3)O31B—Cs2—O31Aii—Cs1ii176.50 (19)
O11A—Cs1—O31A—Cs2iii149.0 (3)O31B—Cs2—O31Aii—C31Aii21.3 (11)
O31B—Cs1—O31A—C31A159.4 (5)O11B—Cs2—O32Bii—Cs1iv89.9 (4)
O31B—Cs1—O31A—Cs2vi11.4 (2)O11B—Cs2—O32Bii—C31Bii96.9 (6)
O31B—Cs1—O31A—Cs2iii103.37 (18)O31B—Cs2—O32Bii—Cs1iv44.1 (6)
O32Bi—Cs1—O31A—C31A23.6 (5)O31B—Cs2—O32Bii—C31Bii142.7 (6)
O32Bi—Cs1—O31A—Cs2vi165.6 (2)O11B—Cs2—O31Av—Cs1v19.9 (3)
O32Bi—Cs1—O31A—Cs2iii73.60 (17)O11B—Cs2—O31Av—C31Av127.5 (5)
O32Aii—Cs1—O31A—C31A2.1 (7)O31B—Cs2—O31Av—Cs1v0.55 (17)
O32Aii—Cs1—O31A—Cs2vi172.9 (2)O31B—Cs2—O31Av—C31Av108.1 (5)
O32Aii—Cs1—O31A—Cs2iii95.1 (3)O11B—Cs2—O32Av—C31Av77.9 (6)
O31Biii—Cs1—O31A—C31A97.8 (5)O31B—Cs2—O32Av—C31Av50.0 (5)
O31Biii—Cs1—O31A—Cs2vi91.4 (2)Cs1—O11A—C1A—C2A39.1 (11)
O31Biii—Cs1—O31A—Cs2iii0.56 (17)Cs1—O11A—C1A—C6A140.9 (8)
O11A—Cs1—O31B—Cs2129.01 (17)C21A—O11A—C1A—C2A177.9 (8)
O11A—Cs1—O31B—C31B4.3 (9)C21A—O11A—C1A—C6A2.2 (13)
O11A—Cs1—O31B—Cs1v134.6 (2)Cs1—O11A—C21A—C31A38.2 (8)
O31A—Cs1—O31B—Cs2177.61 (19)C1A—O11A—C21A—C31A179.6 (8)
O31A—Cs1—O31B—C31B52.9 (8)Cs2—O11B—C1B—C2B45.4 (10)
O31A—Cs1—O31B—Cs1v86.0 (2)Cs2—O11B—C1B—C6B136.6 (9)
O32Aii—Cs1—O31B—Cs29.0 (3)C21B—O11B—C1B—C2B172.4 (9)
O32Aii—Cs1—O31B—C31B115.7 (8)C21B—O11B—C1B—C6B9.6 (14)
O32Aii—Cs1—O31B—Cs1v105.5 (3)Cs2—O11B—C21B—C31B43.0 (8)
O31Biii—Cs1—O31B—Cs294.2 (2)C1B—O11B—C21B—C31B173.0 (8)
O31Biii—Cs1—O31B—C31B141.0 (8)Cs1—O31A—C31A—O32A122.0 (8)
O31Biii—Cs1—O31B—Cs1v2.2 (3)Cs1—O31A—C31A—C21A59.5 (8)
O11A—Cs1—O32Bi—Cs2vii80.9 (4)Cs2vi—O31A—C31A—O32A76.3 (14)
O11A—Cs1—O32Bi—C31Bi106.4 (7)Cs2vi—O31A—C31A—C21A102.2 (12)
O31A—Cs1—O32Bi—Cs2vii27.7 (4)Cs2iii—O31A—C31A—O32A28.9 (10)
O31A—Cs1—O32Bi—C31Bi159.6 (7)Cs2iii—O31A—C31A—C21A152.5 (7)
O11A—Cs1—O32Aii—Cs2i91.4 (3)Cs1—O31B—C31B—O32B117.7 (10)
O11A—Cs1—O32Aii—C31Aii95.8 (5)Cs1—O31B—C31B—C21B61.9 (11)
O31A—Cs1—O32Aii—Cs2i50.9 (5)Cs2—O31B—C31B—O32B123.1 (9)
O31A—Cs1—O32Aii—C31Aii136.2 (5)Cs2—O31B—C31B—C21B57.3 (9)
O31B—Cs1—O32Aii—Cs2i150.7 (3)Cs1v—O31B—C31B—O32B22.4 (11)
O31B—Cs1—O32Aii—C31Aii22.1 (6)Cs1v—O31B—C31B—C21B158.0 (7)
O11A—Cs1—O31Biii—Cs1iii67.8 (3)Cs1vi—O32A—C31A—O31A58.9 (10)
O11A—Cs1—O31Biii—Cs2iii29.7 (3)Cs1vi—O32A—C31A—C21A119.7 (7)
O11A—Cs1—O31Biii—C31Biii142.5 (5)Cs2vii—O32A—C31A—O31A114.9 (9)
O31A—Cs1—O31Biii—Cs1iii98.2 (2)Cs2vii—O32A—C31A—C21A66.5 (9)
O31A—Cs1—O31Biii—Cs2iii0.57 (17)Cs2iii—O32A—C31A—O31A27.4 (9)
O31A—Cs1—O31Biii—C31Biii112.1 (6)Cs2iii—O32A—C31A—C21A154.0 (7)
O31B—Cs1—O31Biii—Cs1iii172.4 (2)Cs2vi—O32B—C31B—O31B62.3 (10)
O31B—Cs1—O31Biii—Cs2iii90.0 (2)Cs2vi—O32B—C31B—C21B117.3 (7)
O31B—Cs1—O31Biii—C31Biii22.7 (6)Cs1viii—O32B—C31B—O31B113.1 (9)
O31B—Cs2—O11B—C1B178.2 (7)Cs1viii—O32B—C31B—C21B67.3 (9)
O31B—Cs2—O11B—C21B46.7 (5)O11A—C1A—C2A—C3A177.8 (9)
O32Aiv—Cs2—O11B—C1B87.6 (6)C6A—C1A—C2A—C3A2.2 (15)
O32Aiv—Cs2—O11B—C21B43.9 (5)O11A—C1A—C6A—C5A178.7 (9)
O31Aii—Cs2—O11B—C1B78.3 (6)C2A—C1A—C6A—C5A1.2 (15)
O31Aii—Cs2—O11B—C21B150.2 (6)O11B—C1B—C2B—C3B178.8 (10)
O32Bii—Cs2—O11B—C1B30.7 (6)C6B—C1B—C2B—C3B0.6 (16)
O32Bii—Cs2—O11B—C21B100.9 (5)O11B—C1B—C6B—C5B178.5 (10)
O31Av—Cs2—O11B—C1B152.3 (6)C2B—C1B—C6B—C5B0.5 (16)
O31Av—Cs2—O11B—C21B20.8 (6)C1A—C2A—C3A—C4A1.5 (16)
O32Av—Cs2—O11B—C1B145.6 (6)C1B—C2B—C3B—C4B1.0 (17)
O32Av—Cs2—O11B—C21B82.9 (6)C2A—C3A—C4A—F4A179.4 (10)
O11B—Cs2—O31B—Cs186.9 (2)C2A—C3A—C4A—C5A0.1 (18)
O11B—Cs2—O31B—C31B52.9 (6)C2B—C3B—C4B—F4B178.9 (10)
O11B—Cs2—O31B—Cs1v161.8 (3)C2B—C3B—C4B—C5B1.3 (18)
O32Aiv—Cs2—O31B—Cs1161.2 (2)F4A—C4A—C5A—C6A179.6 (10)
O32Aiv—Cs2—O31B—C31B21.4 (6)C3A—C4A—C5A—C6A1.1 (17)
O32Aiv—Cs2—O31B—Cs1v87.58 (19)F4B—C4B—C5B—C6B178.8 (10)
O31Aii—Cs2—O31B—Cs110.8 (2)C3B—C4B—C5B—C6B1.1 (17)
O31Aii—Cs2—O31B—C31B129.0 (6)C4A—C5A—C6A—C1A0.4 (16)
O31Aii—Cs2—O31B—Cs1v121.99 (19)C4B—C5B—C6B—C1B0.8 (17)
O32Bii—Cs2—O31B—Cs1149.8 (2)O11A—C21A—C31A—O31A14.7 (11)
O32Bii—Cs2—O31B—C31B10.0 (8)O11A—C21A—C31A—O32A166.6 (8)
O32Bii—Cs2—O31B—Cs1v99.0 (3)O11B—C21B—C31B—O31B6.7 (12)
O31Av—Cs2—O31B—Cs1111.81 (19)O11B—C21B—C31B—O32B173.6 (8)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1, y1, z; (v) x+3/2, y1/2, z+1/2; (vi) x1, y, z; (vii) x1, y+1, z; (viii) x, y1, z.
(II) Poly[aqua[µ5-(3-chloro-2-methylphenoxy)acetato]caesium] top
Crystal data top
[Cs(C9H8ClO3)(H2O)]F(000) = 672
Mr = 350.53Dx = 2.045 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2801 reflections
a = 18.1357 (7) Åθ = 3.2–28.9°
b = 8.8722 (4) ŵ = 3.48 mm1
c = 7.0958 (3) ÅT = 200 K
β = 94.158 (4)°Plate, colourless
V = 1138.73 (8) Å30.30 × 0.20 × 0.15 mm
Z = 4
Data collection top
Oxford Gemini-S CCD area-detector
diffractometer
2230 independent reflections
Radiation source: Enhance (Mo) X-ray source2024 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω scansh = 2221
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1010
Tmin = 0.864, Tmax = 0.980l = 88
6705 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0197P)2 + 0.2986P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2230 reflectionsΔρmax = 0.43 e Å3
137 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0219 (7)
Crystal data top
[Cs(C9H8ClO3)(H2O)]V = 1138.73 (8) Å3
Mr = 350.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.1357 (7) ŵ = 3.48 mm1
b = 8.8722 (4) ÅT = 200 K
c = 7.0958 (3) Å0.30 × 0.20 × 0.15 mm
β = 94.158 (4)°
Data collection top
Oxford Gemini-S CCD area-detector
diffractometer
2230 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2024 reflections with I > 2σ(I)
Tmin = 0.864, Tmax = 0.980Rint = 0.029
6705 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.048H-atom parameters constrained
S = 1.05Δρmax = 0.43 e Å3
2230 reflectionsΔρmin = 0.33 e Å3
137 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.43536 (1)0.43073 (2)0.72238 (2)0.0241 (1)
Cl30.11172 (5)0.64082 (11)1.00244 (12)0.0480 (3)
O1W0.56012 (11)0.2745 (2)0.9860 (3)0.0325 (7)
O110.26794 (10)0.4721 (2)0.4811 (3)0.0248 (6)
O310.38663 (11)0.5439 (2)0.2971 (3)0.0305 (7)
O320.36286 (12)0.3644 (2)0.0831 (3)0.0319 (7)
C10.20072 (15)0.4599 (3)0.5573 (4)0.0217 (8)
C20.19296 (15)0.5457 (3)0.7203 (4)0.0219 (8)
C30.12531 (17)0.5364 (3)0.7984 (4)0.0274 (9)
C40.06705 (17)0.4499 (3)0.7242 (5)0.0325 (10)
C50.07712 (16)0.3652 (4)0.5651 (4)0.0338 (10)
C60.14362 (16)0.3688 (3)0.4810 (4)0.0302 (9)
C210.27581 (15)0.3959 (3)0.3055 (4)0.0237 (8)
C310.34809 (16)0.4395 (3)0.2239 (4)0.0207 (8)
C2110.25432 (15)0.6459 (3)0.7987 (4)0.0292 (9)
H40.021200.448800.781100.0390*
H50.037900.303700.512700.0410*
H60.150200.309500.372000.0360*
H11W0.580800.334000.907100.0490*
H12W0.597000.215901.060200.0490*
H210.233900.422500.214500.0280*
H220.274800.285500.326200.0280*
H2110.288300.666300.700500.0440*
H2120.281200.595900.906000.0440*
H2130.233600.741100.840800.0440*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.0253 (1)0.0256 (1)0.0217 (1)0.0007 (1)0.0038 (1)0.0020 (1)
Cl30.0356 (5)0.0630 (6)0.0476 (5)0.0023 (4)0.0186 (4)0.0186 (4)
O1W0.0294 (12)0.0372 (12)0.0311 (10)0.0009 (9)0.0037 (9)0.0106 (9)
O110.0207 (10)0.0304 (10)0.0238 (10)0.0038 (8)0.0059 (8)0.0056 (9)
O310.0281 (12)0.0336 (12)0.0305 (11)0.0101 (9)0.0069 (9)0.0066 (9)
O320.0420 (13)0.0282 (11)0.0272 (10)0.0002 (9)0.0137 (9)0.0033 (9)
C10.0173 (14)0.0215 (14)0.0264 (14)0.0026 (10)0.0022 (11)0.0058 (11)
C20.0197 (14)0.0209 (14)0.0252 (14)0.0036 (11)0.0032 (11)0.0012 (11)
C30.0282 (17)0.0271 (15)0.0275 (15)0.0069 (12)0.0069 (12)0.0034 (13)
C40.0197 (16)0.0395 (19)0.0393 (16)0.0007 (12)0.0087 (13)0.0079 (14)
C50.0223 (16)0.0397 (17)0.0389 (17)0.0102 (13)0.0010 (13)0.0027 (15)
C60.0274 (16)0.0313 (16)0.0319 (15)0.0066 (13)0.0031 (13)0.0030 (13)
C210.0251 (15)0.0255 (14)0.0208 (13)0.0015 (11)0.0034 (11)0.0051 (12)
C310.0256 (15)0.0175 (13)0.0189 (13)0.0027 (11)0.0018 (11)0.0047 (11)
C2110.0234 (16)0.0337 (16)0.0309 (15)0.0018 (12)0.0051 (12)0.0068 (13)
Geometric parameters (Å, º) top
Cs1—O1W3.151 (2)C1—C21.400 (4)
Cs1—O113.3958 (19)C1—C61.392 (4)
Cs1—O313.242 (2)C2—C2111.500 (4)
Cs1—O32i3.019 (2)C2—C31.385 (4)
Cs1—O1Wii3.3931 (19)C3—C41.379 (4)
Cs1—O31iii3.249 (2)C4—C51.379 (4)
Cs1—O1Wiv3.3322 (19)C5—C61.384 (4)
Cs1—O1Wv3.435 (2)C21—C311.521 (4)
Cs1—O32vi3.0617 (19)C4—H40.9500
Cl3—C31.751 (3)C5—H50.9500
O11—C11.373 (3)C6—H60.9500
O11—C211.434 (3)C21—H210.9900
O31—C311.251 (3)C21—H220.9900
O32—C311.246 (3)C211—H2110.9800
O1W—H11W0.8700C211—H2120.9800
O1W—H12W0.9700C211—H2130.9800
O1W—Cs1—O11157.56 (5)Cs1iii—O31—C31124.11 (17)
O1W—Cs1—O31145.54 (5)Cs1viii—O32—C31135.05 (17)
O1W—Cs1—O32i75.47 (6)Cs1v—O32—C31108.11 (17)
O1W—Cs1—O1Wii127.97 (5)Cs1viii—O32—Cs1v103.72 (6)
O1W—Cs1—O31iii51.88 (5)Cs1vii—O1W—H12W74.00
O1W—Cs1—O1Wiv89.56 (5)Cs1—O1W—H11W71.00
O1W—Cs1—O1Wv65.58 (5)Cs1—O1W—H12W174.00
O1W—Cs1—O32vi95.08 (5)H11W—O1W—H12W111.00
O11—Cs1—O3147.45 (5)Cs1vii—O1W—H11W104.00
O11—Cs1—O32i91.15 (5)Cs1iv—O1W—H11W86.00
O1Wii—Cs1—O1174.46 (5)Cs1vi—O1W—H11W164.00
O11—Cs1—O31iii145.68 (5)Cs1iv—O1W—H12W96.00
O1Wiv—Cs1—O11102.07 (5)Cs1vi—O1W—H12W84.00
O1Wv—Cs1—O11114.06 (5)O11—C1—C2115.3 (2)
O11—Cs1—O32vi65.31 (5)C2—C1—C6121.4 (3)
O31—Cs1—O32i138.03 (5)O11—C1—C6123.3 (2)
O1Wii—Cs1—O3147.90 (5)C1—C2—C3116.3 (2)
O31—Cs1—O31iii98.26 (5)C1—C2—C211120.8 (2)
O1Wiv—Cs1—O31109.13 (5)C3—C2—C211122.8 (2)
O1Wv—Cs1—O3181.63 (5)Cl3—C3—C2118.8 (2)
O31—Cs1—O32vi83.26 (5)Cl3—C3—C4117.4 (2)
O1Wii—Cs1—O32i124.78 (5)C2—C3—C4123.8 (3)
O31iii—Cs1—O32i123.01 (6)C3—C4—C5118.2 (3)
O1Wiv—Cs1—O32i67.61 (5)C4—C5—C6120.8 (3)
O1Wv—Cs1—O32i130.80 (5)C1—C6—C5119.5 (3)
O32i—Cs1—O32vi84.47 (5)O11—C21—C31110.7 (2)
O1Wii—Cs1—O31iii82.17 (5)O32—C31—C21114.2 (2)
O1Wii—Cs1—O1Wiv64.21 (5)O31—C31—O32125.7 (3)
O1Wii—Cs1—O1Wv103.07 (5)O31—C31—C21120.1 (2)
O1Wii—Cs1—O32vi130.65 (5)C3—C4—H4121.00
O1Wiv—Cs1—O31iii89.56 (5)C5—C4—H4121.00
O1Wv—Cs1—O31iii47.49 (5)C4—C5—H5120.00
O31iii—Cs1—O32vi116.76 (5)C6—C5—H5120.00
O1Wiv—Cs1—O1Wv137.05 (5)C1—C6—H6120.00
O1Wiv—Cs1—O32vi149.58 (5)C5—C6—H6120.00
O1Wv—Cs1—O32vi70.83 (5)O11—C21—H21110.00
Cs1—O1W—Cs1vii100.12 (6)O11—C21—H22109.00
Cs1—O1W—Cs1iv90.44 (5)C31—C21—H21109.00
Cs1—O1W—Cs1vi93.04 (5)C31—C21—H22109.00
Cs1vii—O1W—Cs1iv167.37 (7)H21—C21—H22108.00
Cs1vii—O1W—Cs1vi76.93 (4)C2—C211—H211109.00
Cs1iv—O1W—Cs1vi95.75 (5)C2—C211—H212110.00
Cs1—O11—C1125.44 (16)C2—C211—H213109.00
Cs1—O11—C21104.21 (14)H211—C211—H212109.00
C1—O11—C21116.9 (2)H211—C211—H213109.00
Cs1—O31—C31105.29 (16)H212—C211—H213109.00
Cs1—O31—Cs1iii81.74 (5)
O11—Cs1—O1W—Cs1vii51.09 (15)O1W—Cs1—O1Wii—Cs1iii69.07 (7)
O11—Cs1—O1W—Cs1iv121.95 (12)O11—Cs1—O1Wii—Cs1ii157.50 (6)
O11—Cs1—O1W—Cs1vi26.17 (15)O11—Cs1—O1Wii—Cs1iii111.70 (5)
O31—Cs1—O1W—Cs1vii62.34 (10)O31—Cs1—O1Wii—Cs1ii156.51 (9)
O31—Cs1—O1W—Cs1iv124.62 (7)O31—Cs1—O1Wii—Cs1iii65.72 (6)
O31—Cs1—O1W—Cs1vi139.60 (7)O1W—Cs1—O31iii—Cs1iii160.94 (7)
O32i—Cs1—O1W—Cs1vii106.09 (6)O1W—Cs1—O31iii—C31iii96.2 (2)
O32i—Cs1—O1W—Cs1iv66.95 (5)O11—Cs1—O31iii—Cs1iii1.80 (9)
O32i—Cs1—O1W—Cs1vi28.83 (5)O11—Cs1—O31iii—C31iii104.7 (2)
O1Wii—Cs1—O1W—Cs1vii130.87 (5)O31—Cs1—O31iii—Cs1iii0.00 (6)
O1Wii—Cs1—O1W—Cs1iv56.09 (7)O31—Cs1—O31iii—C31iii102.9 (2)
O1Wii—Cs1—O1W—Cs1vi151.87 (5)O1W—Cs1—O1Wiv—Cs1ii93.10 (5)
O31iii—Cs1—O1W—Cs1vii97.18 (7)O1W—Cs1—O1Wiv—Cs1iv0.00 (6)
O31iii—Cs1—O1W—Cs1iv89.78 (6)O11—Cs1—O1Wiv—Cs1ii106.24 (5)
O31iii—Cs1—O1W—Cs1vi174.43 (8)O11—Cs1—O1Wiv—Cs1iv160.66 (5)
O1Wiv—Cs1—O1W—Cs1vii173.04 (5)O31—Cs1—O1Wiv—Cs1ii57.37 (6)
O1Wiv—Cs1—O1W—Cs1iv0.00 (5)O31—Cs1—O1Wiv—Cs1iv150.47 (5)
O1Wiv—Cs1—O1W—Cs1vi95.78 (5)O1W—Cs1—O1Wv—Cs1vii43.53 (5)
O1Wv—Cs1—O1W—Cs1vii43.13 (5)O1W—Cs1—O1Wv—Cs1iii126.03 (5)
O1Wv—Cs1—O1W—Cs1iv143.83 (6)O1W—Cs1—O1Wv—Cs1v134.28 (6)
O1Wv—Cs1—O1W—Cs1vi120.38 (5)O11—Cs1—O1Wv—Cs1vii111.83 (5)
O32vi—Cs1—O1W—Cs1vii23.15 (6)O11—Cs1—O1Wv—Cs1iii78.61 (5)
O32vi—Cs1—O1W—Cs1iv149.89 (5)O11—Cs1—O1Wv—Cs1v21.08 (6)
O32vi—Cs1—O1W—Cs1vi54.11 (5)O31—Cs1—O1Wv—Cs1vii147.32 (5)
O1W—Cs1—O11—C153.6 (2)O31—Cs1—O1Wv—Cs1iii43.12 (4)
O1W—Cs1—O11—C2185.2 (2)O31—Cs1—O1Wv—Cs1v56.57 (5)
O31—Cs1—O11—C1171.2 (2)O1W—Cs1—O32vi—Cs1v93.46 (6)
O31—Cs1—O11—C2149.97 (14)O1W—Cs1—O32vi—C31vi54.34 (19)
O32i—Cs1—O11—C11.12 (18)O11—Cs1—O32vi—Cs1v97.89 (7)
O32i—Cs1—O11—C21137.70 (14)O11—Cs1—O32vi—C31vi114.31 (19)
O1Wii—Cs1—O11—C1124.80 (18)O31—Cs1—O32vi—Cs1v51.93 (6)
O1Wii—Cs1—O11—C2196.38 (15)O31—Cs1—O32vi—C31vi160.27 (19)
O31iii—Cs1—O11—C1173.63 (16)Cs1—O11—C1—C250.8 (3)
O31iii—Cs1—O11—C2147.55 (17)Cs1—O11—C1—C6128.9 (2)
O1Wiv—Cs1—O11—C166.22 (18)C21—O11—C1—C2174.9 (2)
O1Wiv—Cs1—O11—C21154.96 (14)C21—O11—C1—C65.4 (4)
O1Wv—Cs1—O11—C1137.57 (18)Cs1—O11—C21—C3145.9 (2)
O1Wv—Cs1—O11—C211.26 (15)C1—O11—C21—C31171.1 (2)
O32vi—Cs1—O11—C184.51 (18)Cs1—O31—C31—O32117.9 (3)
O32vi—Cs1—O11—C2154.32 (14)Cs1—O31—C31—C2162.8 (3)
O1W—Cs1—O31—C3196.21 (19)Cs1iii—O31—C31—O3227.6 (4)
O1W—Cs1—O31—Cs1iii27.01 (9)Cs1iii—O31—C31—C21153.14 (18)
O11—Cs1—O31—C3155.40 (17)Cs1viii—O32—C31—O3135.1 (4)
O11—Cs1—O31—Cs1iii178.62 (7)Cs1viii—O32—C31—C21144.2 (2)
O32i—Cs1—O31—C3166.91 (19)Cs1v—O32—C31—O3197.8 (3)
O32i—Cs1—O31—Cs1iii169.87 (5)Cs1v—O32—C31—C2183.0 (2)
O1Wii—Cs1—O31—C31165.3 (2)O11—C1—C2—C3179.3 (2)
O1Wii—Cs1—O31—Cs1iii71.54 (6)O11—C1—C2—C2111.6 (4)
O31iii—Cs1—O31—C31123.22 (17)C6—C1—C2—C31.0 (4)
O31iii—Cs1—O31—Cs1iii0.00 (6)C6—C1—C2—C211178.7 (3)
O1Wiv—Cs1—O31—C31144.37 (17)O11—C1—C6—C5178.9 (3)
O1Wiv—Cs1—O31—Cs1iii92.41 (5)C2—C1—C6—C51.5 (4)
O1Wv—Cs1—O31—C3178.58 (17)C1—C2—C3—Cl3180.0 (2)
O1Wv—Cs1—O31—Cs1iii44.64 (4)C1—C2—C3—C40.4 (4)
O32vi—Cs1—O31—C317.05 (17)C211—C2—C3—Cl32.3 (4)
O32vi—Cs1—O31—Cs1iii116.17 (5)C211—C2—C3—C4177.2 (3)
O1W—Cs1—O32i—C31i100.4 (3)Cl3—C3—C4—C5179.1 (2)
O1W—Cs1—O32i—Cs1vi33.79 (5)C2—C3—C4—C51.4 (5)
O11—Cs1—O32i—C31i97.8 (3)C3—C4—C5—C60.9 (5)
O11—Cs1—O32i—Cs1vi127.99 (6)C4—C5—C6—C10.5 (5)
O31—Cs1—O32i—C31i89.4 (3)O11—C21—C31—O318.8 (4)
O31—Cs1—O32i—Cs1vi136.44 (6)O11—C21—C31—O32171.9 (2)
O1W—Cs1—O1Wii—Cs1ii21.72 (8)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z+2; (v) x, y+1/2, z1/2; (vi) x, y+1/2, z+1/2; (vii) x+1, y1/2, z+3/2; (viii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O31iii0.871.942.801 (3)170
O1W—H12W···O31vii0.971.842.697 (3)145
C211—H211···O110.982.332.757 (3)105
C211—H213···Cl30.982.713.053 (3)101
Symmetry codes: (iii) x+1, y+1, z+1; (vii) x+1, y1/2, z+3/2.
(III) Poly[[µ7-(2,4-dichlorophenoxy)acetato][(2,4-dichlorphenoxy)acetic acid]caesium] top
Crystal data top
[Cs(C8H5Cl2O3)(C8H6Cl2O3)]Z = 1
Mr = 573.96F(000) = 278
Triclinic, P1Dx = 1.876 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.8756 (4) ÅCell parameters from 1960 reflections
b = 7.1876 (4) Åθ = 3.1–28.8°
c = 15.3045 (10) ŵ = 2.38 mm1
α = 96.223 (5)°T = 200 K
β = 94.561 (6)°Plate, colourless
γ = 106.450 (6)°0.20 × 0.20 × 0.04 mm
V = 507.92 (6) Å3
Data collection top
Oxford Gemini-S CCD area-detector
diffractometer
1977 independent reflections
Radiation source: Enhance (Mo) X-ray source1859 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.1°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 88
Tmin = 0.856, Tmax = 0.980l = 1818
6008 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.038P)2]
where P = (Fo2 + 2Fc2)/3
1977 reflections(Δ/σ)max < 0.001
124 parametersΔρmax = 1.01 e Å3
0 restraintsΔρmin = 0.79 e Å3
Crystal data top
[Cs(C8H5Cl2O3)(C8H6Cl2O3)]γ = 106.450 (6)°
Mr = 573.96V = 507.92 (6) Å3
Triclinic, P1Z = 1
a = 4.8756 (4) ÅMo Kα radiation
b = 7.1876 (4) ŵ = 2.38 mm1
c = 15.3045 (10) ÅT = 200 K
α = 96.223 (5)°0.20 × 0.20 × 0.04 mm
β = 94.561 (6)°
Data collection top
Oxford Gemini-S CCD area-detector
diffractometer
1977 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
1859 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 0.980Rint = 0.055
6008 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.04Δρmax = 1.01 e Å3
1977 reflectionsΔρmin = 0.79 e Å3
124 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.500000.500000.500000.0311 (1)
Cl20.2495 (3)0.37483 (17)0.26721 (9)0.0609 (5)
Cl40.1949 (3)0.7324 (2)0.02731 (8)0.0619 (5)
O110.6669 (5)0.7505 (4)0.32159 (18)0.0307 (8)
O311.0711 (6)0.7193 (4)0.4423 (2)0.0347 (9)
O321.3295 (6)1.0313 (4)0.44447 (19)0.0313 (9)
C10.4770 (8)0.7582 (6)0.2530 (3)0.0273 (12)
C20.2594 (9)0.5862 (6)0.2212 (3)0.0360 (12)
C30.0536 (10)0.5781 (7)0.1528 (3)0.0413 (17)
C40.0650 (9)0.7435 (7)0.1144 (3)0.0393 (14)
C50.2782 (10)0.9158 (7)0.1433 (3)0.0389 (16)
C60.4831 (9)0.9234 (6)0.2131 (3)0.0342 (12)
C210.9022 (8)0.9215 (5)0.3495 (3)0.0259 (11)
C311.1112 (8)0.8795 (5)0.4174 (3)0.0255 (11)
H30.094500.459500.132500.0490*
H50.285401.029000.115700.0470*
H60.628901.042900.233700.0410*
H210.830501.028500.375600.0310*
H221.001300.964400.298000.0310*
H321.500001.000000.500000.0470*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.0253 (2)0.0206 (2)0.0494 (3)0.0065 (1)0.0047 (2)0.0139 (2)
Cl20.0754 (9)0.0227 (6)0.0691 (9)0.0037 (6)0.0176 (7)0.0075 (6)
Cl40.0581 (8)0.0781 (10)0.0438 (7)0.0209 (7)0.0181 (6)0.0008 (7)
O110.0260 (14)0.0219 (14)0.0416 (16)0.0030 (12)0.0021 (12)0.0089 (12)
O310.0259 (15)0.0258 (15)0.0539 (19)0.0064 (12)0.0018 (13)0.0173 (13)
O320.0271 (14)0.0189 (14)0.0454 (17)0.0037 (12)0.0042 (12)0.0075 (12)
C10.027 (2)0.025 (2)0.029 (2)0.0069 (17)0.0022 (16)0.0027 (16)
C20.037 (2)0.027 (2)0.040 (2)0.0055 (19)0.0013 (19)0.0009 (18)
C30.039 (3)0.037 (3)0.038 (3)0.002 (2)0.003 (2)0.007 (2)
C40.038 (2)0.051 (3)0.029 (2)0.018 (2)0.0037 (18)0.002 (2)
C50.046 (3)0.038 (3)0.034 (2)0.015 (2)0.002 (2)0.0077 (19)
C60.032 (2)0.029 (2)0.039 (2)0.0063 (18)0.0021 (18)0.0048 (18)
C210.025 (2)0.0196 (19)0.032 (2)0.0040 (16)0.0027 (16)0.0065 (16)
C310.0211 (19)0.023 (2)0.036 (2)0.0091 (16)0.0091 (16)0.0080 (16)
Geometric parameters (Å, º) top
Cs1—Cl23.6035 (14)O32—H321.2200
Cs1—O313.037 (3)C1—C61.387 (6)
Cs1—O32i3.232 (3)C1—C21.391 (6)
Cs1—O31ii3.084 (3)C2—C31.376 (7)
Cs1—Cl2iii3.6035 (14)C3—C41.372 (7)
Cs1—O31iii3.037 (3)C4—C51.374 (7)
Cs1—O31iv3.084 (3)C5—C61.389 (7)
Cs1—O32v3.232 (3)C21—C311.511 (6)
Cl2—C21.733 (4)C3—H30.9500
Cl4—C41.744 (5)C5—H50.9500
O11—C11.360 (5)C6—H60.9500
O11—C211.421 (5)C21—H210.9900
O31—C311.220 (5)C21—H220.9900
O32—C311.292 (5)
Cl2—Cs1—O3185.77 (6)Cs1vi—O31—C31130.9 (3)
Cl2—Cs1—O32i69.94 (5)Cs1vii—O32—C31142.0 (2)
Cl2—Cs1—O31ii68.14 (6)C31—O32—H32113.00
Cl2—Cs1—Cl2iii180.00Cs1vii—O32—H3297.00
Cl2—Cs1—O31iii94.23 (6)O11—C1—C2116.9 (4)
Cl2—Cs1—O31iv111.86 (6)C2—C1—C6118.0 (4)
Cl2—Cs1—O32v110.06 (5)O11—C1—C6125.2 (4)
O31—Cs1—O32i113.38 (8)Cl2—C2—C3118.8 (3)
O31—Cs1—O31ii105.59 (8)C1—C2—C3121.7 (4)
Cl2iii—Cs1—O3194.23 (6)Cl2—C2—C1119.5 (3)
O31—Cs1—O31iii180.00C2—C3—C4119.1 (4)
O31—Cs1—O31iv74.41 (8)Cl4—C4—C5120.1 (4)
O31—Cs1—O32v66.62 (8)Cl4—C4—C3119.0 (4)
O31ii—Cs1—O32i118.94 (8)C3—C4—C5120.9 (4)
Cl2iii—Cs1—O32i110.06 (5)C4—C5—C6119.6 (4)
O31iii—Cs1—O32i66.62 (8)C1—C6—C5120.7 (4)
O31iv—Cs1—O32i61.07 (8)O11—C21—C31109.9 (3)
O32i—Cs1—O32v180.00O32—C31—C21112.0 (3)
Cl2iii—Cs1—O31ii111.86 (6)O31—C31—O32125.6 (4)
O31ii—Cs1—O31iii74.41 (8)O31—C31—C21122.4 (4)
O31ii—Cs1—O31iv180.00C2—C3—H3120.00
O31ii—Cs1—O32v61.07 (8)C4—C3—H3120.00
Cl2iii—Cs1—O31iii85.77 (6)C4—C5—H5120.00
Cl2iii—Cs1—O31iv68.14 (6)C6—C5—H5120.00
Cl2iii—Cs1—O32v69.94 (5)C1—C6—H6120.00
O31iii—Cs1—O31iv105.59 (8)C5—C6—H6120.00
O31iii—Cs1—O32v113.38 (8)O11—C21—H21110.00
O31iv—Cs1—O32v118.94 (8)O11—C21—H22110.00
Cs1—Cl2—C2109.50 (16)C31—C21—H21110.00
C1—O11—C21116.9 (3)C31—C21—H22110.00
Cs1—O31—C31122.2 (3)H21—C21—H22108.00
Cs1—O31—Cs1vi105.59 (8)
O31—Cs1—Cl2—C263.25 (18)Cs1vi—O31—C31—O3233.5 (6)
O32i—Cs1—Cl2—C2179.97 (19)Cs1vi—O31—C31—C21146.7 (3)
O31ii—Cs1—Cl2—C245.42 (18)Cs1vii—O32—C31—O31139.3 (3)
O31iii—Cs1—Cl2—C2116.75 (18)Cs1vii—O32—C31—C2140.6 (6)
O31iv—Cs1—Cl2—C2134.58 (18)O11—C1—C2—Cl22.1 (6)
O32v—Cs1—Cl2—C20.03 (19)O11—C1—C2—C3179.2 (4)
Cl2—Cs1—O31—C3177.8 (3)C6—C1—C2—Cl2178.3 (3)
Cl2—Cs1—O31—Cs1vi114.10 (8)C6—C1—C2—C30.5 (7)
O32i—Cs1—O31—C31143.8 (3)O11—C1—C6—C5179.9 (4)
O31ii—Cs1—O31—C3111.9 (3)C2—C1—C6—C50.3 (7)
Cl2iii—Cs1—O31—C31102.2 (3)Cl2—C2—C3—C4178.2 (4)
O31iv—Cs1—O31—C31168.1 (3)C1—C2—C3—C40.7 (7)
O32v—Cs1—O31—C3136.2 (3)C2—C3—C4—Cl4179.6 (4)
Cs1—Cl2—C2—C134.4 (4)C2—C3—C4—C50.0 (7)
Cs1—Cl2—C2—C3146.7 (3)Cl4—C4—C5—C6179.6 (4)
C21—O11—C1—C2175.2 (4)C3—C4—C5—C60.8 (7)
C21—O11—C1—C65.2 (6)C4—C5—C6—C10.9 (7)
C1—O11—C21—C31172.6 (3)O11—C21—C31—O310.3 (6)
Cs1—O31—C31—O32131.3 (4)O11—C21—C31—O32179.8 (3)
Cs1—O31—C31—C2148.6 (5)
Symmetry codes: (i) x1, y1, z; (ii) x1, y, z; (iii) x+1, y+1, z+1; (iv) x+2, y+1, z+1; (v) x+2, y+2, z+1; (vi) x+1, y, z; (vii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O32—H32···O32viii1.221.222.449 (4)180
Symmetry code: (viii) x+3, y+2, z+1.

Experimental details

(I)(II)(III)
Crystal data
Chemical formula[Cs2(C8H6FO3)2][Cs(C9H8ClO3)(H2O)][Cs(C8H5Cl2O3)(C8H6Cl2O3)]
Mr604.08350.53573.96
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/cTriclinic, P1
Temperature (K)200200200
a, b, c (Å)6.8582 (2), 7.6183 (3), 35.6746 (15)18.1357 (7), 8.8722 (4), 7.0958 (3)4.8756 (4), 7.1876 (4), 15.3045 (10)
α, β, γ (°)90, 92.778 (3), 9090, 94.158 (4), 9096.223 (5), 94.561 (6), 106.450 (6)
V3)1861.73 (12)1138.73 (8)507.92 (6)
Z441
Radiation typeMo KαMo KαMo Kα
µ (mm1)3.963.482.38
Crystal size (mm)0.25 × 0.20 × 0.050.30 × 0.20 × 0.150.20 × 0.20 × 0.04
Data collection
DiffractometerOxford Gemini-S CCD area-detector
diffractometer
Oxford Gemini-S CCD area-detector
diffractometer
Oxford Gemini-S CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Multi-scan
(CrysAlis PRO; Agilent, 2012)
Multi-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.559, 0.9800.864, 0.9800.856, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
11999, 3668, 3377 6705, 2230, 2024 6008, 1977, 1859
Rint0.0450.0290.055
(sin θ/λ)max1)0.6170.6170.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.119, 1.25 0.020, 0.048, 1.05 0.038, 0.082, 1.04
No. of reflections366822301977
No. of parameters235137124
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0156P)2 + 24.3P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0197P)2 + 0.2986P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.038P)2]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.10, 2.750.43, 0.331.01, 0.79

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012), PLATON (Spek, 2009).

Selected bond lengths (Å) for (I) top
Cs1—O11A3.166 (6)Cs2—O31B3.108 (8)
Cs1—O31A3.148 (7)Cs2—O32Aiv3.090 (7)
Cs1—O31B2.949 (7)Cs2—O31Aii3.003 (6)
Cs1—O32Bi3.097 (6)Cs2—O32Bii3.061 (7)
Cs1—O32Aii3.036 (6)Cs2—O31Av3.146 (7)
Cs1—O31Biii3.026 (7)Cs2—O32Av3.279 (7)
Cs2—O11B3.242 (7)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1, y1, z; (v) x+3/2, y1/2, z+1/2.
Selected bond lengths (Å) for (II) top
Cs1—O1W3.151 (2)Cs1—O31iii3.249 (2)
Cs1—O113.3958 (19)Cs1—O1Wiv3.3322 (19)
Cs1—O313.242 (2)Cs1—O1Wv3.435 (2)
Cs1—O32i3.019 (2)Cs1—O32vi3.0617 (19)
Cs1—O1Wii3.3931 (19)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z+2; (v) x, y+1/2, z1/2; (vi) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O31iii0.871.942.801 (3)170
O1W—H12W···O31vii0.971.842.697 (3)145
Symmetry codes: (iii) x+1, y+1, z+1; (vii) x+1, y1/2, z+3/2.
Selected bond lengths (Å) for (III) top
Cs1—Cl23.6035 (14)Cs1—Cl2iii3.6035 (14)
Cs1—O313.037 (3)Cs1—O31iii3.037 (3)
Cs1—O32i3.232 (3)Cs1—O31iv3.084 (3)
Cs1—O31ii3.084 (3)Cs1—O32v3.232 (3)
Symmetry codes: (i) x1, y1, z; (ii) x1, y, z; (iii) x+1, y+1, z+1; (iv) x+2, y+1, z+1; (v) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O32—H32···O32vi1.221.222.449 (4)180
Symmetry code: (vi) x+3, y+2, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds