Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101017644/sk1519sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270101017644/sk1519Isup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270101017644/sk1519IIsup3.hkl |
CCDC references: 175118; 175119
For related literature, see: Brown & Levy (1963, 1973); Cremer & Pople (1975); Hanson et al. (1973); Hooft et al. (1993); Hough & Phadnis (1967); Kanters et al. (1978, 1988); Kier (1972); Lee (1982, 1983, 1987a, 1987b); Lee et al. (1999); Mathlouthi et al. (1993); Muhammad & Lee (2001a, 2001b); Rohrer (1972); Shallenberger & Acree (1967).
The synthesis of compound (I) has been described by Muhammad Sofian & Lee (2001a). Suitable crystals were obtained by slow evaporation of a methanol solution [m.p. 422–423 K, [α]D +34.7° (c 0.49, H2O)]. For the synthesis of compound (II), trifluoromethane sulfonic anhydride (0.30 ml, 1.78 mmol) was added to a solution of 3,4-di-O-acetyl-β-D-fructofuranosyl 2,3,6-tri-O-acetyl-4-deoxy-4-fluoro-α-D-glucopyranoside (0.27 g, 0.49 mmol) (Muhammad Sofian & Lee, 2001b) in dry CH2Cl2/pyridine (15:1, 16 ml) at 195 K. The mixture was stirred at 195 K for 15 min and then at 273 K for 2 h. The mixture was diluted with dichloromethane and the organic solution was washed successively with aqueous KHSO4 (10%), saturated NaHCO3 and water, then dried (Na2SO4) and concentrated. The crude product was stirred with LiBr (0.40 g) in dry acetone (15 ml) overnight at room temperature. The reaction mixture was concentrated and the residue was taken up in dichloromethane, washed thoroughly with water, dried (Na2SO4), filtered and again concentrated to give, after flash chromatography (ethyl acetate/hexane, 1:3), 3,4-di-O-acetyl-1,6-dibromo-1,6-dideoxy-β-D-fructofuranosyl 2,3,6-tri-O-acetyl-4-deoxy-4-fluoro-α-D-glucopyranoside (0.21 g, 63%) as a colourless syrup. Spectroscopic analysis: [α]D 22.2° (c 0.59, CHCl3); 1H NMR (CDCl3, δ, p.p.m.): 2.03, 2.05, 2.06, 2.11 (s, 15H, 5 × CH3), 3.40–3.56 (m, 4H, H1'a,b, H6'a,b), 4.13–4.50 (m, 5H, H4, H5, H5', H6a,b), 4.78 (ddd, 1H, J1,2 = 3.8, J2,3 = 10.4, J2,F = 0.7 Hz, H2), 5.30 (t, 1H, J3',4' = J4',5' = 6.0 Hz, H4'), 5.44–5.55 (m, 2H, H1, H3), 5.65 (d, 1H, H3'); 13C NMR: δ 170.4, 170.0, 169.7, 169.6, 169.5 (COCH3), 103.8 (C2'), 90.0 (C1), 86.7 (J4,F = 187.6 Hz, C4), 81.0 (C5'), 76.8, 76.7 (C3', C4'), 69.6 (J2,F = 7.6 Hz, C2), 69.3 (J3,F = 20.0 Hz, C3), 68.2 (J5,F = 23.5 Hz, C5), 62.0 (C6), 32.5, 32.1 (C1', C6'), 20.7, 20.6, 20.4 (COCH3); 19F NMR: δ -122.3 (dd, JF,H3 = 15.3, JF,H4 = 53.4 Hz); HRMS-ESI (positive mode): calculated for [M + Na]+ 700.9857:702.9837:704.9817; found: 700.9869:702.9866:704.9800 (1:2:1). Deacetylation of the above 1',6'-dibromo-4-fluoro derivative (0.12 g, 0.17 mmol) by treatment with NaOMe (pH ~8.5) and recrystallization from methanol afforded compound (II) (0.0612 g, 75%, m.p. 367–368 K). Spectroscopic analysis: [α]D 27.2° (c 1.35, H2O); 1H NMR (D2O, δ, p.p.m., the assignments employ the crystallographic atom numbering used in Fig. 2): 4.12 (dd, 1H, J1,2 = 3.8, J2,3 = 10.4 Hz, H2), 4.16–4.38 (m, 6H, H3, H9, H11a,b, H12a,b), 4.50–4.65 (m, 4H, H5, H6a,b, H10), 4.86 (dt, 1H, J3,4 = J4,5 = 9.4, J4,F = 50.5 Hz, H4), 4.98 (d, 1H, J8,9 = 8.4 Hz, H8) and 5.93 (m, 1H, H1); 13C NMR: (D2O, δ, p.p.m.) 103.5 (C7), 93.0 (C1), 89.6 (J4,F = 179.9 Hz, C4), 81.6 (C10), 77.6, 77.0 (C8, C9), 71.3 (J3,F = 17.6 Hz, C3), 71.1 (J2,F = 8.2 Hz, C2), 70.7 (J5,F = 24.1 Hz, C5), 60.4 (C6), 33.3, 32.3 (C11, C12); 19F NMR: δ -122.6 (dd, JF,H3 = 15.3, JF,H4 = 53.4 Hz)); HRMS-ESI (positive mode): calculated for [M + Na]+ 490.9330:492.9308: 494.9288; found 490.9327:492.9295:494.9275 (1:2:1).
For each compound, all H atoms were initially located in a difference Fourier map. The hydroxy H atoms were then constrained to an ideal geometry, with O—H distances of 0.84 Å and fixed displacement parameters defined by Uiso(H) = 1.5Ueq(O), but they were allowed to rotate freely about the C—O bonds. The positions of the H atoms of the water molecule of (II) were refined freely along with individual isotropic displacement parameters. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.99–1.00 Å and Uiso(H) = 1.2Ueq(C). In each case, the determined absolute configuration agreed with that expected for a natural sucrose derivative. For (II), two low-angle reflections, whose intensities were zero, were omitted from the final cycles of refinement.
For both compounds, data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2001).
C12H21BrO10 | Dx = 1.807 Mg m−3 |
Mr = 405.19 | Melting point: 422 K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 39393 reflections |
a = 10.4516 (1) Å | θ = 1.0–30.0° |
b = 11.3466 (1) Å | µ = 2.81 mm−1 |
c = 12.5599 (1) Å | T = 160 K |
V = 1489.48 (2) Å3 | Prism, colourless |
Z = 4 | 0.20 × 0.20 × 0.15 mm |
F(000) = 832 |
Nonius KappaCCD diffractometer | 4340 independent reflections |
Horizontally mounted graphite crystal monochromator | 4246 reflections with I > 2σ(I) |
Detector resolution: 9 pixels mm-1 | Rint = 0.045 |
ϕ and ω scans with κ offsets | θmax = 30.0°, θmin = 3.1° |
Absorption correction: numerical (Coppens et al., 1965) | h = −14→14 |
Tmin = 0.556, Tmax = 0.693 | k = −15→15 |
58745 measured reflections | l = −17→17 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.017 | w = 1/[σ2(Fo2) + (0.0194P)2 + 0.5248P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.042 | (Δ/σ)max = 0.004 |
S = 1.05 | Δρmax = 0.32 e Å−3 |
4340 reflections | Δρmin = −0.26 e Å−3 |
216 parameters | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0045 (4) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983) |
Secondary atom site location: difference Fourier map | Absolute structure parameter: −0.005 (4) |
C12H21BrO10 | V = 1489.48 (2) Å3 |
Mr = 405.19 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 10.4516 (1) Å | µ = 2.81 mm−1 |
b = 11.3466 (1) Å | T = 160 K |
c = 12.5599 (1) Å | 0.20 × 0.20 × 0.15 mm |
Nonius KappaCCD diffractometer | 4340 independent reflections |
Absorption correction: numerical (Coppens et al., 1965) | 4246 reflections with I > 2σ(I) |
Tmin = 0.556, Tmax = 0.693 | Rint = 0.045 |
58745 measured reflections |
R[F2 > 2σ(F2)] = 0.017 | H-atom parameters constrained |
wR(F2) = 0.042 | Δρmax = 0.32 e Å−3 |
S = 1.05 | Δρmin = −0.26 e Å−3 |
4340 reflections | Absolute structure: Flack (1983) |
216 parameters | Absolute structure parameter: −0.005 (4) |
0 restraints |
Experimental. Solvent used: methanol Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.446 (1) Frames collected: 670 Seconds exposure per frame: 36 Degrees rotation per frame: 2.0 Crystal-Detector distance (mm): 35.0 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) - 8.0859 (0.0046) x + 0.6408 (0.0096) y + 7.9264 (0.0071) z = 0.9618 (0.0079) * -0.0130 (0.0005) C7 * 0.0116 (0.0004) C9 * -0.0192 (0.0007) C10 * 0.0205 (0.0008) O10 - 0.6211 (0.0020) C8 Rms deviation of fitted atoms = 0.0165 |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br | 0.072504 (12) | 0.864227 (12) | 0.849389 (11) | 0.01717 (4) | |
O1 | 0.41387 (8) | 0.64067 (8) | 0.65524 (7) | 0.01297 (16) | |
O2 | 0.19895 (10) | 0.56339 (9) | 0.55096 (8) | 0.01554 (19) | |
H2 | 0.2062 | 0.4922 | 0.5337 | 0.023* | |
O3 | −0.00145 (9) | 0.68266 (9) | 0.66482 (8) | 0.0173 (2) | |
H3 | −0.0194 | 0.7375 | 0.6225 | 0.026* | |
O5 | 0.33202 (9) | 0.59002 (8) | 0.82013 (7) | 0.01323 (18) | |
O6 | 0.25439 (10) | 0.66632 (9) | 1.02554 (8) | 0.0177 (2) | |
H6 | 0.2674 | 0.6895 | 1.0881 | 0.027* | |
O8 | 0.57067 (11) | 0.81137 (8) | 0.60071 (8) | 0.01896 (19) | |
H8 | 0.6110 | 0.8428 | 0.5504 | 0.028* | |
O9 | 0.77441 (9) | 0.75604 (9) | 0.77428 (8) | 0.0182 (2) | |
H9 | 0.8389 | 0.7261 | 0.7450 | 0.027* | |
O10 | 0.58689 (9) | 0.50840 (8) | 0.68153 (7) | 0.01432 (18) | |
O11 | 0.67557 (10) | 0.40096 (9) | 0.89049 (9) | 0.0210 (2) | |
H11 | 0.6102 | 0.3579 | 0.8900 | 0.032* | |
O12 | 0.43574 (10) | 0.61435 (9) | 0.44053 (8) | 0.0202 (2) | |
H12 | 0.3605 | 0.6140 | 0.4640 | 0.030* | |
C1 | 0.33206 (12) | 0.56238 (12) | 0.71009 (10) | 0.0122 (2) | |
H1 | 0.3634 | 0.4798 | 0.7001 | 0.015* | |
C2 | 0.19568 (12) | 0.57306 (11) | 0.66466 (10) | 0.0127 (2) | |
H21 | 0.1428 | 0.5070 | 0.6936 | 0.015* | |
C3 | 0.13079 (12) | 0.68970 (12) | 0.69331 (11) | 0.0126 (2) | |
H31 | 0.1722 | 0.7553 | 0.6527 | 0.015* | |
C4 | 0.14706 (12) | 0.71145 (12) | 0.81268 (11) | 0.0130 (2) | |
H41 | 0.1020 | 0.6480 | 0.8532 | 0.016* | |
C5 | 0.28928 (12) | 0.70890 (11) | 0.84004 (11) | 0.0126 (2) | |
H51 | 0.3358 | 0.7636 | 0.7910 | 0.015* | |
C6 | 0.32472 (13) | 0.73851 (12) | 0.95304 (11) | 0.0150 (2) | |
H61 | 0.4176 | 0.7258 | 0.9636 | 0.018* | |
H62 | 0.3059 | 0.8226 | 0.9672 | 0.018* | |
C7 | 0.53425 (12) | 0.59712 (12) | 0.61643 (10) | 0.0130 (2) | |
C8 | 0.62703 (13) | 0.70183 (12) | 0.62588 (10) | 0.0140 (2) | |
H81 | 0.7041 | 0.6882 | 0.5803 | 0.017* | |
C9 | 0.66303 (12) | 0.69288 (12) | 0.74317 (11) | 0.0139 (2) | |
H91 | 0.5894 | 0.7227 | 0.7863 | 0.017* | |
C10 | 0.67296 (12) | 0.55990 (12) | 0.76016 (11) | 0.0142 (2) | |
H101 | 0.7624 | 0.5343 | 0.7438 | 0.017* | |
C11 | 0.63917 (13) | 0.51978 (12) | 0.87146 (11) | 0.0167 (3) | |
H111 | 0.6825 | 0.5715 | 0.9237 | 0.020* | |
H112 | 0.5457 | 0.5278 | 0.8821 | 0.020* | |
C12 | 0.51439 (14) | 0.54320 (13) | 0.50676 (11) | 0.0170 (3) | |
H121 | 0.5986 | 0.5323 | 0.4721 | 0.020* | |
H122 | 0.4745 | 0.4646 | 0.5148 | 0.020* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br | 0.01467 (6) | 0.01764 (6) | 0.01921 (6) | 0.00421 (5) | 0.00149 (5) | −0.00148 (5) |
O1 | 0.0104 (4) | 0.0124 (4) | 0.0161 (4) | 0.0004 (3) | 0.0030 (3) | 0.0007 (4) |
O2 | 0.0193 (5) | 0.0153 (4) | 0.0121 (4) | 0.0010 (4) | −0.0023 (4) | −0.0015 (3) |
O3 | 0.0095 (4) | 0.0237 (5) | 0.0187 (5) | 0.0009 (3) | −0.0024 (3) | 0.0020 (4) |
O5 | 0.0142 (4) | 0.0139 (4) | 0.0116 (4) | 0.0029 (4) | −0.0013 (3) | −0.0008 (3) |
O6 | 0.0235 (5) | 0.0183 (5) | 0.0114 (4) | −0.0012 (4) | 0.0001 (4) | 0.0004 (3) |
O8 | 0.0174 (4) | 0.0156 (4) | 0.0239 (5) | 0.0008 (4) | 0.0062 (4) | 0.0052 (4) |
O9 | 0.0131 (4) | 0.0227 (5) | 0.0187 (5) | −0.0042 (4) | 0.0016 (4) | −0.0057 (4) |
O10 | 0.0144 (4) | 0.0133 (4) | 0.0153 (4) | 0.0016 (4) | −0.0039 (3) | −0.0021 (3) |
O11 | 0.0161 (5) | 0.0174 (5) | 0.0296 (5) | 0.0010 (4) | −0.0021 (4) | 0.0046 (4) |
O12 | 0.0160 (4) | 0.0300 (6) | 0.0147 (4) | −0.0019 (4) | −0.0010 (4) | 0.0043 (4) |
C1 | 0.0124 (5) | 0.0120 (5) | 0.0123 (6) | −0.0003 (4) | −0.0004 (4) | −0.0001 (4) |
C2 | 0.0117 (5) | 0.0140 (6) | 0.0125 (6) | −0.0009 (4) | −0.0012 (4) | −0.0004 (4) |
C3 | 0.0093 (5) | 0.0145 (6) | 0.0140 (5) | −0.0001 (4) | −0.0003 (4) | 0.0011 (5) |
C4 | 0.0119 (5) | 0.0131 (6) | 0.0140 (5) | 0.0019 (4) | 0.0014 (4) | 0.0002 (4) |
C5 | 0.0113 (5) | 0.0124 (5) | 0.0142 (6) | 0.0007 (4) | 0.0002 (5) | 0.0000 (5) |
C6 | 0.0142 (6) | 0.0162 (6) | 0.0145 (6) | −0.0011 (5) | −0.0006 (5) | −0.0001 (5) |
C7 | 0.0114 (5) | 0.0142 (5) | 0.0132 (5) | 0.0031 (4) | 0.0014 (4) | 0.0002 (4) |
C8 | 0.0123 (5) | 0.0150 (6) | 0.0145 (6) | 0.0000 (5) | 0.0015 (4) | −0.0004 (4) |
C9 | 0.0103 (5) | 0.0164 (6) | 0.0151 (6) | −0.0018 (5) | 0.0009 (4) | −0.0018 (5) |
C10 | 0.0111 (5) | 0.0156 (6) | 0.0158 (6) | −0.0005 (5) | −0.0014 (4) | −0.0025 (5) |
C11 | 0.0161 (6) | 0.0174 (6) | 0.0166 (6) | 0.0013 (5) | −0.0014 (5) | −0.0002 (5) |
C12 | 0.0169 (6) | 0.0191 (6) | 0.0150 (6) | 0.0004 (5) | 0.0005 (5) | −0.0034 (5) |
Br—C4 | 1.9557 (13) | C2—C3 | 1.5301 (18) |
O1—C1 | 1.4124 (15) | C2—H21 | 1.00 |
O1—C7 | 1.4369 (15) | C3—C4 | 1.5290 (19) |
O2—C2 | 1.4326 (15) | C3—H31 | 1.00 |
O2—H2 | 0.84 | C4—C5 | 1.5258 (17) |
O3—C3 | 1.4300 (15) | C4—H41 | 1.00 |
O3—H3 | 0.84 | C5—C6 | 1.5048 (18) |
O5—C1 | 1.4172 (15) | C5—H51 | 1.00 |
O5—C5 | 1.4427 (15) | C6—H61 | 0.99 |
O6—C6 | 1.4284 (16) | C6—H62 | 0.99 |
O6—H6 | 0.84 | C7—C12 | 1.5214 (19) |
O8—C8 | 1.4114 (16) | C7—C8 | 1.5381 (19) |
O8—H8 | 0.84 | C8—C9 | 1.5238 (19) |
O9—C9 | 1.4218 (16) | C8—H81 | 1.00 |
O9—H9 | 0.84 | C9—C10 | 1.5274 (19) |
O10—C7 | 1.4089 (16) | C9—H91 | 1.00 |
O10—C10 | 1.4581 (16) | C10—C11 | 1.5120 (19) |
O11—C11 | 1.4211 (17) | C10—H101 | 1.00 |
O11—H11 | 0.84 | C11—H111 | 0.99 |
O12—C12 | 1.4211 (17) | C11—H112 | 0.99 |
O12—H12 | 0.84 | C12—H121 | 0.99 |
C1—C2 | 1.5402 (17) | C12—H122 | 0.99 |
C1—H1 | 1.00 | ||
C1—O1—C7 | 118.63 (10) | O6—C6—H61 | 109.6 |
C2—O2—H2 | 109.5 | C5—C6—H61 | 109.6 |
C3—O3—H3 | 109.5 | O6—C6—H62 | 109.6 |
C1—O5—C5 | 112.09 (10) | C5—C6—H62 | 109.6 |
C6—O6—H6 | 109.5 | H61—C6—H62 | 108.1 |
C8—O8—H8 | 109.5 | O10—C7—O1 | 113.00 (10) |
C9—O9—H9 | 109.5 | O10—C7—C12 | 106.94 (11) |
C7—O10—C10 | 110.35 (10) | O1—C7—C12 | 109.03 (10) |
C11—O11—H11 | 109.5 | O10—C7—C8 | 105.12 (10) |
C12—O12—H12 | 109.5 | O1—C7—C8 | 105.08 (10) |
O1—C1—O5 | 109.67 (10) | C12—C7—C8 | 117.81 (11) |
O1—C1—C2 | 109.27 (10) | O8—C8—C9 | 112.23 (11) |
O5—C1—C2 | 110.10 (10) | O8—C8—C7 | 113.57 (11) |
O1—C1—H1 | 109.3 | C9—C8—C7 | 100.30 (10) |
O5—C1—H1 | 109.3 | O8—C8—H81 | 110.1 |
C2—C1—H1 | 109.3 | C9—C8—H81 | 110.1 |
O2—C2—C3 | 108.13 (10) | C7—C8—H81 | 110.1 |
O2—C2—C1 | 109.95 (10) | O9—C9—C8 | 115.74 (11) |
C3—C2—C1 | 113.02 (11) | O9—C9—C10 | 113.82 (11) |
O2—C2—H21 | 108.5 | C8—C9—C10 | 102.58 (11) |
C3—C2—H21 | 108.5 | O9—C9—H91 | 108.1 |
C1—C2—H21 | 108.5 | C8—C9—H91 | 108.1 |
O3—C3—C4 | 111.22 (10) | C10—C9—H91 | 108.1 |
O3—C3—C2 | 108.73 (11) | O10—C10—C11 | 111.19 (11) |
C4—C3—C2 | 108.72 (11) | O10—C10—C9 | 105.03 (10) |
O3—C3—H31 | 109.4 | C11—C10—C9 | 114.25 (11) |
C4—C3—H31 | 109.4 | O10—C10—H101 | 108.7 |
C2—C3—H31 | 109.4 | C11—C10—H101 | 108.7 |
C5—C4—C3 | 109.03 (10) | C9—C10—H101 | 108.7 |
C5—C4—Br | 110.60 (9) | O11—C11—C10 | 112.25 (11) |
C3—C4—Br | 109.26 (9) | O11—C11—H111 | 109.2 |
C5—C4—H41 | 109.3 | C10—C11—H111 | 109.2 |
C3—C4—H41 | 109.3 | O11—C11—H112 | 109.2 |
Br—C4—H41 | 109.3 | C10—C11—H112 | 109.2 |
O5—C5—C6 | 107.22 (10) | H111—C11—H112 | 107.9 |
O5—C5—C4 | 106.28 (10) | O12—C12—C7 | 112.36 (11) |
C6—C5—C4 | 116.61 (11) | O12—C12—H121 | 109.1 |
O5—C5—H51 | 108.8 | C7—C12—H121 | 109.1 |
C6—C5—H51 | 108.8 | O12—C12—H122 | 109.1 |
C4—C5—H51 | 108.8 | C7—C12—H122 | 109.1 |
O6—C6—C5 | 110.27 (11) | H121—C12—H122 | 107.9 |
C7—O1—C1—O5 | 107.31 (11) | C10—O10—C7—C8 | 21.61 (13) |
C7—O1—C1—C2 | −131.92 (11) | C1—O1—C7—O10 | −32.23 (15) |
C5—O5—C1—O1 | 59.51 (12) | C1—O1—C7—C12 | 86.54 (13) |
C5—O5—C1—C2 | −60.75 (13) | C1—O1—C7—C8 | −146.31 (10) |
O1—C1—C2—O2 | 50.44 (13) | O10—C7—C8—O8 | −157.59 (10) |
O5—C1—C2—O2 | 170.95 (10) | O1—C7—C8—O8 | −38.11 (13) |
O1—C1—C2—C3 | −70.49 (13) | C12—C7—C8—O8 | 83.48 (14) |
O5—C1—C2—C3 | 50.02 (14) | O10—C7—C8—C9 | −37.67 (12) |
O2—C2—C3—O3 | 68.45 (12) | O1—C7—C8—C9 | 81.81 (11) |
C1—C2—C3—O3 | −169.60 (10) | C12—C7—C8—C9 | −156.60 (11) |
O2—C2—C3—C4 | −170.32 (10) | O8—C8—C9—O9 | −75.77 (14) |
C1—C2—C3—C4 | −48.37 (14) | C7—C8—C9—O9 | 163.35 (11) |
O3—C3—C4—C5 | 175.75 (11) | O8—C8—C9—C10 | 159.69 (11) |
C2—C3—C4—C5 | 56.06 (13) | C7—C8—C9—C10 | 38.80 (12) |
O3—C3—C4—Br | −63.26 (12) | C7—O10—C10—C11 | 127.72 (11) |
C2—C3—C4—Br | 177.05 (8) | C7—O10—C10—C9 | 3.65 (14) |
C1—O5—C5—C6 | −165.74 (10) | O9—C9—C10—O10 | −153.20 (10) |
C1—O5—C5—C4 | 68.88 (12) | C8—C9—C10—O10 | −27.39 (13) |
C3—C4—C5—O5 | −65.39 (13) | O9—C9—C10—C11 | 84.70 (14) |
Br—C4—C5—O5 | 174.44 (8) | C8—C9—C10—C11 | −149.50 (11) |
C3—C4—C5—C6 | 175.18 (11) | O10—C10—C11—O11 | 73.99 (14) |
Br—C4—C5—C6 | 55.02 (13) | C9—C10—C11—O11 | −167.34 (11) |
O5—C5—C6—O6 | −65.69 (13) | O10—C7—C12—O12 | 166.64 (11) |
C4—C5—C6—O6 | 53.23 (15) | O1—C7—C12—O12 | 44.15 (14) |
C10—O10—C7—O1 | −92.44 (12) | C8—C7—C12—O12 | −75.39 (15) |
C10—O10—C7—C12 | 147.59 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O6i | 0.84 | 1.85 | 2.6708 (14) | 166 |
O3—H3···O12ii | 0.84 | 1.92 | 2.7362 (14) | 165 |
O6—H6···O9iii | 0.84 | 1.84 | 2.6723 (14) | 173 |
O8—H8···O2iv | 0.84 | 1.90 | 2.7287 (14) | 171 |
O9—H9···O3v | 0.84 | 2.01 | 2.8410 (14) | 170 |
O11—H11···O8vi | 0.84 | 1.97 | 2.7692 (15) | 160 |
O12—H12···O2 | 0.84 | 2.09 | 2.8953 (15) | 160 |
Symmetry codes: (i) −x+1/2, −y+1, z−1/2; (ii) x−1/2, −y+3/2, −z+1; (iii) x−1/2, −y+3/2, −z+2; (iv) x+1/2, −y+3/2, −z+1; (v) x+1, y, z; (vi) −x+1, y−1/2, −z+3/2. |
C12H19Br2FO8·H2O | Dx = 1.936 Mg m−3 |
Mr = 488.10 | Melting point: 368 K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 60953 reflections |
a = 7.6133 (1) Å | θ = 1.0–30.0° |
b = 9.4705 (1) Å | µ = 4.90 mm−1 |
c = 23.2227 (2) Å | T = 160 K |
V = 1674.40 (3) Å3 | Prism, colourless |
Z = 4 | 0.23 × 0.22 × 0.15 mm |
F(000) = 976 |
Nonius KappaCCD diffractometer | 4893 independent reflections |
Horizontally mounted graphite crystal monochromator | 4620 reflections with I > 2σ(I) |
Detector resolution: 9 pixels mm-1 | Rint = 0.057 |
ϕ and ω scans with κ offsets | θmax = 30.0°, θmin = 2.8° |
Absorption correction: numerical (Coppens et al., 1965) | h = −10→10 |
Tmin = 0.349, Tmax = 0.583 | k = −13→13 |
58507 measured reflections | l = −31→32 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.024 | w = 1/[σ2(Fo2) + (0.0273P)2 + 1.3147P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.061 | (Δ/σ)max = 0.001 |
S = 1.07 | Δρmax = 0.47 e Å−3 |
4891 reflections | Δρmin = −0.82 e Å−3 |
231 parameters | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0013 (3) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983) |
Secondary atom site location: difference Fourier map | Absolute structure parameter: −0.002 (6) |
C12H19Br2FO8·H2O | V = 1674.40 (3) Å3 |
Mr = 488.10 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.6133 (1) Å | µ = 4.90 mm−1 |
b = 9.4705 (1) Å | T = 160 K |
c = 23.2227 (2) Å | 0.23 × 0.22 × 0.15 mm |
Nonius KappaCCD diffractometer | 4893 independent reflections |
Absorption correction: numerical (Coppens et al., 1965) | 4620 reflections with I > 2σ(I) |
Tmin = 0.349, Tmax = 0.583 | Rint = 0.057 |
58507 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.061 | Δρmax = 0.47 e Å−3 |
S = 1.07 | Δρmin = −0.82 e Å−3 |
4891 reflections | Absolute structure: Flack (1983) |
231 parameters | Absolute structure parameter: −0.002 (6) |
0 restraints |
Experimental. Solvent used: methanol Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.502 (1) Frames collected: 893 Seconds exposure per frame: 26 Degrees rotation per frame: 1.3 Crystal-Detector distance (mm): 35.0 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 5.7500 (0.0071) x - 6.0838 (0.0090) y - 3.0192 (0.0612) z = 3.0445 (0.0129) * 0.0000 (0.0000) C7 * 0.0000 (0.0000) C10 * 0.0000 (0.0000) O10 - 0.2562 (0.0054) C8 0.4313 (0.0054) C9 5.8393 (0.0063) x - 6.0764 (0.0093) y - 0.1826 (0.0278) z = 3.4978 (0.0090) * 0.0523 (0.0011) C7 * 0.0346 (0.0007) C10 * -0.0558 (0.0012) O10 * -0.0310 (0.0007) C8 0.6352 (0.0031) C9 Rms deviation of fitted atoms = 0.0448 |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 1.01041 (4) | 0.38845 (3) | 0.031072 (11) | 0.03334 (8) | |
Br2 | 0.38171 (3) | −0.00660 (3) | 0.192015 (9) | 0.02296 (6) | |
F4 | 1.26286 (18) | −0.12991 (17) | 0.04911 (6) | 0.0258 (3) | |
O1 | 0.79778 (19) | −0.03298 (15) | 0.15264 (6) | 0.0136 (3) | |
O2 | 0.8284 (2) | −0.31755 (17) | 0.17656 (7) | 0.0192 (3) | |
H2 | 0.7390 | −0.3695 | 0.1768 | 0.029* | |
O3 | 1.1575 (2) | −0.35439 (17) | 0.12209 (7) | 0.0207 (3) | |
H3 | 1.1638 | −0.3724 | 0.1575 | 0.031* | |
O5 | 0.7885 (2) | −0.08055 (16) | 0.05232 (6) | 0.0154 (3) | |
O6 | 0.9677 (2) | −0.08857 (19) | −0.06130 (7) | 0.0245 (4) | |
H6 | 0.8604 | −0.1049 | −0.0664 | 0.037* | |
O8 | 0.7691 (2) | 0.06829 (16) | 0.26173 (6) | 0.0155 (3) | |
H8 | 0.8408 | 0.0026 | 0.2555 | 0.023* | |
O9 | 1.0081 (2) | 0.32921 (16) | 0.24163 (6) | 0.0200 (3) | |
H9 | 1.0662 | 0.2892 | 0.2677 | 0.030* | |
O10 | 0.7967 (2) | 0.19569 (16) | 0.11453 (6) | 0.0161 (3) | |
C1 | 0.7507 (3) | −0.1305 (2) | 0.10808 (9) | 0.0143 (4) | |
H1 | 0.6225 | −0.1522 | 0.1109 | 0.017* | |
C2 | 0.8561 (3) | −0.2650 (2) | 0.12013 (9) | 0.0142 (4) | |
H21 | 0.8224 | −0.3392 | 0.0915 | 0.017* | |
C3 | 1.0527 (3) | −0.2317 (2) | 0.11360 (9) | 0.0150 (4) | |
H31 | 1.0868 | −0.1583 | 0.1425 | 0.018* | |
C4 | 1.0842 (3) | −0.1750 (2) | 0.05355 (10) | 0.0168 (4) | |
H41 | 1.0585 | −0.2494 | 0.0242 | 0.020* | |
C5 | 0.9704 (3) | −0.0462 (2) | 0.04319 (9) | 0.0158 (4) | |
H51 | 1.0047 | 0.0284 | 0.0715 | 0.019* | |
C6 | 0.9881 (3) | 0.0145 (2) | −0.01702 (8) | 0.0195 (4) | |
H61 | 0.8986 | 0.0892 | −0.0223 | 0.023* | |
H62 | 1.1052 | 0.0590 | −0.0209 | 0.023* | |
C7 | 0.7187 (3) | 0.1018 (2) | 0.15535 (8) | 0.0135 (4) | |
C8 | 0.7709 (3) | 0.1638 (2) | 0.21450 (8) | 0.0139 (4) | |
H81 | 0.6884 | 0.2430 | 0.2235 | 0.017* | |
C9 | 0.9506 (3) | 0.2273 (2) | 0.20117 (9) | 0.0150 (4) | |
H91 | 1.0401 | 0.1506 | 0.1974 | 0.018* | |
C10 | 0.9147 (3) | 0.2934 (2) | 0.14243 (9) | 0.0157 (4) | |
H101 | 0.8544 | 0.3863 | 0.1477 | 0.019* | |
C11 | 1.0758 (3) | 0.3134 (2) | 0.10597 (10) | 0.0198 (4) | |
H111 | 1.1366 | 0.2218 | 0.1010 | 0.024* | |
H112 | 1.1575 | 0.3794 | 0.1253 | 0.024* | |
C12 | 0.5249 (3) | 0.1062 (2) | 0.14004 (9) | 0.0169 (4) | |
H121 | 0.5092 | 0.0711 | 0.1002 | 0.020* | |
H122 | 0.4838 | 0.2054 | 0.1412 | 0.020* | |
O13 | 0.5519 (2) | 0.5002 (2) | 0.16891 (7) | 0.0241 (3) | |
H131 | 0.473 (5) | 0.516 (4) | 0.1883 (15) | 0.036 (9)* | |
H132 | 0.511 (5) | 0.526 (4) | 0.1403 (16) | 0.039 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.04262 (16) | 0.03752 (14) | 0.01989 (11) | −0.01326 (12) | 0.00352 (11) | 0.00491 (10) |
Br2 | 0.01490 (9) | 0.03525 (12) | 0.01874 (10) | −0.00574 (9) | 0.00149 (8) | 0.00068 (10) |
F4 | 0.0188 (7) | 0.0333 (8) | 0.0253 (7) | 0.0042 (6) | 0.0002 (5) | 0.0077 (6) |
O1 | 0.0146 (7) | 0.0145 (7) | 0.0116 (6) | 0.0007 (5) | −0.0017 (5) | −0.0034 (5) |
O2 | 0.0233 (8) | 0.0200 (7) | 0.0143 (7) | −0.0058 (6) | −0.0006 (6) | 0.0033 (6) |
O3 | 0.0244 (8) | 0.0224 (8) | 0.0154 (7) | 0.0077 (6) | −0.0009 (6) | 0.0018 (6) |
O5 | 0.0154 (7) | 0.0194 (7) | 0.0114 (6) | −0.0009 (6) | −0.0012 (5) | 0.0007 (5) |
O6 | 0.0235 (8) | 0.0362 (10) | 0.0138 (7) | −0.0066 (7) | −0.0009 (6) | −0.0019 (6) |
O8 | 0.0185 (7) | 0.0160 (7) | 0.0120 (7) | 0.0019 (6) | 0.0015 (6) | 0.0010 (5) |
O9 | 0.0253 (8) | 0.0174 (7) | 0.0173 (7) | −0.0039 (7) | −0.0067 (7) | −0.0005 (6) |
O10 | 0.0179 (7) | 0.0184 (7) | 0.0120 (7) | −0.0049 (6) | 0.0010 (6) | 0.0021 (6) |
C1 | 0.0145 (9) | 0.0163 (9) | 0.0121 (8) | −0.0028 (8) | −0.0004 (7) | −0.0023 (7) |
C2 | 0.0163 (10) | 0.0142 (9) | 0.0121 (9) | −0.0039 (7) | −0.0014 (7) | −0.0007 (7) |
C3 | 0.0174 (9) | 0.0151 (9) | 0.0125 (9) | 0.0019 (7) | −0.0003 (7) | −0.0019 (7) |
C4 | 0.0146 (10) | 0.0203 (10) | 0.0154 (9) | 0.0015 (8) | 0.0018 (7) | 0.0017 (8) |
C5 | 0.0172 (10) | 0.0167 (9) | 0.0133 (9) | −0.0001 (7) | 0.0010 (7) | −0.0003 (7) |
C6 | 0.0210 (9) | 0.0207 (10) | 0.0166 (9) | −0.0001 (9) | 0.0012 (7) | 0.0038 (8) |
C7 | 0.0144 (9) | 0.0156 (9) | 0.0106 (8) | 0.0011 (7) | −0.0001 (7) | 0.0003 (7) |
C8 | 0.0162 (9) | 0.0144 (9) | 0.0110 (8) | 0.0011 (7) | −0.0008 (7) | 0.0000 (7) |
C9 | 0.0165 (9) | 0.0143 (8) | 0.0143 (9) | −0.0005 (7) | −0.0013 (7) | −0.0004 (7) |
C10 | 0.0176 (10) | 0.0134 (9) | 0.0161 (10) | −0.0001 (7) | −0.0011 (7) | 0.0006 (7) |
C11 | 0.0192 (10) | 0.0209 (10) | 0.0191 (10) | −0.0029 (8) | 0.0014 (8) | 0.0006 (8) |
C12 | 0.0140 (9) | 0.0212 (9) | 0.0153 (9) | 0.0023 (8) | −0.0002 (7) | 0.0024 (8) |
O13 | 0.0192 (7) | 0.0378 (10) | 0.0152 (7) | 0.0010 (8) | −0.0005 (6) | 0.0009 (8) |
Br1—C11 | 1.944 (2) | C3—C4 | 1.514 (3) |
Br2—C12 | 1.946 (2) | C3—H31 | 1.00 |
F4—C4 | 1.429 (2) | C4—C5 | 1.515 (3) |
O1—C7 | 1.412 (2) | C4—H41 | 1.00 |
O1—C1 | 1.433 (2) | C5—C6 | 1.518 (3) |
O2—C2 | 1.418 (2) | C5—H51 | 1.00 |
O2—H2 | 0.84 | C6—H61 | 0.99 |
O3—C3 | 1.423 (3) | C6—H62 | 0.99 |
O3—H3 | 0.84 | C7—C12 | 1.519 (3) |
O5—C1 | 1.408 (3) | C7—C8 | 1.546 (3) |
O5—C5 | 1.438 (3) | C8—C9 | 1.526 (3) |
O6—C6 | 1.426 (3) | C8—H81 | 1.00 |
O6—H6 | 0.84 | C9—C10 | 1.526 (3) |
O8—C8 | 1.422 (2) | C9—H91 | 1.00 |
O8—H8 | 0.84 | C10—C11 | 1.502 (3) |
O9—C9 | 1.416 (2) | C10—H101 | 1.00 |
O9—H9 | 0.84 | C11—H111 | 0.99 |
O10—C7 | 1.429 (2) | C11—H112 | 0.99 |
O10—C10 | 1.444 (3) | C12—H121 | 0.99 |
C1—C2 | 1.531 (3) | C12—H122 | 0.99 |
C1—H1 | 1.00 | O13—H131 | 0.77 (4) |
C2—C3 | 1.537 (3) | O13—H132 | 0.77 (4) |
C2—H21 | 1.00 | ||
C7—O1—C1 | 120.56 (16) | O6—C6—H62 | 108.9 |
C2—O2—H2 | 109.5 | C5—C6—H62 | 108.9 |
C3—O3—H3 | 109.5 | H61—C6—H62 | 107.7 |
C1—O5—C5 | 114.08 (16) | O1—C7—O10 | 110.85 (16) |
C6—O6—H6 | 109.5 | O1—C7—C12 | 115.37 (18) |
C8—O8—H8 | 109.5 | O10—C7—C12 | 103.35 (16) |
C9—O9—H9 | 109.5 | O1—C7—C8 | 105.89 (16) |
C7—O10—C10 | 111.08 (15) | O10—C7—C8 | 104.27 (16) |
O5—C1—O1 | 113.37 (17) | C12—C7—C8 | 116.56 (17) |
O5—C1—C2 | 109.92 (17) | O8—C8—C9 | 114.56 (17) |
O1—C1—C2 | 105.86 (16) | O8—C8—C7 | 116.18 (17) |
O5—C1—H1 | 109.2 | C9—C8—C7 | 101.52 (16) |
O1—C1—H1 | 109.2 | O8—C8—H81 | 108.0 |
C2—C1—H1 | 109.2 | C9—C8—H81 | 108.0 |
O2—C2—C1 | 112.52 (17) | C7—C8—H81 | 108.0 |
O2—C2—C3 | 107.95 (17) | O9—C9—C10 | 111.63 (17) |
C1—C2—C3 | 108.76 (16) | O9—C9—C8 | 114.27 (17) |
O2—C2—H21 | 109.2 | C10—C9—C8 | 100.52 (16) |
C1—C2—H21 | 109.2 | O9—C9—H91 | 110.0 |
C3—C2—H21 | 109.2 | C10—C9—H91 | 110.0 |
O3—C3—C4 | 109.20 (17) | C8—C9—H91 | 110.0 |
O3—C3—C2 | 111.39 (17) | O10—C10—C11 | 109.63 (17) |
C4—C3—C2 | 108.54 (17) | O10—C10—C9 | 104.45 (16) |
O3—C3—H31 | 109.2 | C11—C10—C9 | 114.19 (18) |
C4—C3—H31 | 109.2 | O10—C10—H101 | 109.5 |
C2—C3—H31 | 109.2 | C11—C10—H101 | 109.5 |
F4—C4—C3 | 108.86 (17) | C9—C10—H101 | 109.5 |
F4—C4—C5 | 107.01 (17) | C10—C11—Br1 | 109.98 (15) |
C3—C4—C5 | 109.97 (17) | C10—C11—H111 | 109.7 |
F4—C4—H41 | 110.3 | Br1—C11—H111 | 109.7 |
C3—C4—H41 | 110.3 | C10—C11—H112 | 109.7 |
C5—C4—H41 | 110.3 | Br1—C11—H112 | 109.7 |
O5—C5—C4 | 110.20 (17) | H111—C11—H112 | 108.2 |
O5—C5—C6 | 107.89 (17) | C7—C12—Br2 | 112.58 (14) |
C4—C5—C6 | 113.60 (18) | C7—C12—H121 | 109.1 |
O5—C5—H51 | 108.3 | Br2—C12—H121 | 109.1 |
C4—C5—H51 | 108.3 | C7—C12—H122 | 109.1 |
C6—C5—H51 | 108.3 | Br2—C12—H122 | 109.1 |
O6—C6—C5 | 113.26 (18) | H121—C12—H122 | 107.8 |
O6—C6—H61 | 108.9 | H131—O13—H132 | 97 (4) |
C5—C6—H61 | 108.9 | ||
C5—O5—C1—O1 | 58.2 (2) | C1—O1—C7—C8 | 168.62 (17) |
C5—O5—C1—C2 | −60.1 (2) | C10—O10—C7—O1 | −103.67 (18) |
C7—O1—C1—O5 | 61.5 (2) | C10—O10—C7—C12 | 132.16 (17) |
C7—O1—C1—C2 | −177.93 (16) | C10—O10—C7—C8 | 9.8 (2) |
O5—C1—C2—O2 | 177.85 (16) | O1—C7—C8—O8 | −40.4 (2) |
O1—C1—C2—O2 | 55.1 (2) | O10—C7—C8—O8 | −157.42 (17) |
O5—C1—C2—C3 | 58.3 (2) | C12—C7—C8—O8 | 89.4 (2) |
O1—C1—C2—C3 | −64.5 (2) | O1—C7—C8—C9 | 84.54 (18) |
O2—C2—C3—O3 | 59.9 (2) | O10—C7—C8—C9 | −32.48 (19) |
C1—C2—C3—O3 | −177.70 (16) | C12—C7—C8—C9 | −145.65 (18) |
O2—C2—C3—C4 | −179.81 (17) | O8—C8—C9—O9 | −72.7 (2) |
C1—C2—C3—C4 | −57.4 (2) | C7—C8—C9—O9 | 161.23 (17) |
O3—C3—C4—F4 | −64.4 (2) | O8—C8—C9—C10 | 167.59 (16) |
C2—C3—C4—F4 | 173.98 (16) | C7—C8—C9—C10 | 41.56 (18) |
O3—C3—C4—C5 | 178.65 (17) | C7—O10—C10—C11 | 139.73 (18) |
C2—C3—C4—C5 | 57.0 (2) | C7—O10—C10—C9 | 17.0 (2) |
C1—O5—C5—C4 | 59.0 (2) | O9—C9—C10—O10 | −158.07 (17) |
C1—O5—C5—C6 | −176.40 (17) | C8—C9—C10—O10 | −36.52 (19) |
F4—C4—C5—O5 | −174.61 (16) | O9—C9—C10—C11 | 82.2 (2) |
C3—C4—C5—O5 | −56.5 (2) | C8—C9—C10—C11 | −156.26 (18) |
F4—C4—C5—C6 | 64.2 (2) | O10—C10—C11—Br1 | 60.1 (2) |
C3—C4—C5—C6 | −177.72 (18) | C9—C10—C11—Br1 | 176.87 (14) |
O5—C5—C6—O6 | −71.7 (2) | O1—C7—C12—Br2 | 61.8 (2) |
C4—C5—C6—O6 | 50.8 (3) | O10—C7—C12—Br2 | −177.05 (13) |
C1—O1—C7—O10 | −78.9 (2) | C8—C7—C12—Br2 | −63.4 (2) |
C1—O1—C7—C12 | 38.1 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O13i | 0.84 | 1.89 | 2.728 (3) | 172 |
O3—H3···O8ii | 0.84 | 2.02 | 2.851 (2) | 168 |
O6—H6···O3iii | 0.84 | 2.05 | 2.804 (2) | 149 |
O8—H8···O9ii | 0.84 | 2.01 | 2.830 (2) | 167 |
O9—H9···O2iv | 0.84 | 1.83 | 2.663 (2) | 172 |
O13—H131···O8v | 0.77 (4) | 2.23 (4) | 2.997 (2) | 175 (3) |
O13—H132···O6vi | 0.77 (4) | 1.96 (4) | 2.712 (2) | 166 (4) |
Symmetry codes: (i) x, y−1, z; (ii) −x+2, y−1/2, −z+1/2; (iii) x−1/2, −y−1/2, −z; (iv) −x+2, y+1/2, −z+1/2; (v) −x+1, y+1/2, −z+1/2; (vi) x−1/2, −y+1/2, −z. |
Experimental details
(I) | (II) | |
Crystal data | ||
Chemical formula | C12H21BrO10 | C12H19Br2FO8·H2O |
Mr | 405.19 | 488.10 |
Crystal system, space group | Orthorhombic, P212121 | Orthorhombic, P212121 |
Temperature (K) | 160 | 160 |
a, b, c (Å) | 10.4516 (1), 11.3466 (1), 12.5599 (1) | 7.6133 (1), 9.4705 (1), 23.2227 (2) |
V (Å3) | 1489.48 (2) | 1674.40 (3) |
Z | 4 | 4 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 2.81 | 4.90 |
Crystal size (mm) | 0.20 × 0.20 × 0.15 | 0.23 × 0.22 × 0.15 |
Data collection | ||
Diffractometer | Nonius KappaCCD diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Numerical (Coppens et al., 1965) | Numerical (Coppens et al., 1965) |
Tmin, Tmax | 0.556, 0.693 | 0.349, 0.583 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 58745, 4340, 4246 | 58507, 4893, 4620 |
Rint | 0.045 | 0.057 |
(sin θ/λ)max (Å−1) | 0.704 | 0.704 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.017, 0.042, 1.05 | 0.024, 0.061, 1.07 |
No. of reflections | 4340 | 4891 |
No. of parameters | 216 | 231 |
H-atom treatment | H-atom parameters constrained | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.32, −0.26 | 0.47, −0.82 |
Absolute structure | Flack (1983) | Flack (1983) |
Absolute structure parameter | −0.005 (4) | −0.002 (6) |
Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97 and PLATON (Spek, 2001).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O6i | 0.84 | 1.85 | 2.6708 (14) | 166 |
O3—H3···O12ii | 0.84 | 1.92 | 2.7362 (14) | 165 |
O6—H6···O9iii | 0.84 | 1.84 | 2.6723 (14) | 173 |
O8—H8···O2iv | 0.84 | 1.90 | 2.7287 (14) | 171 |
O9—H9···O3v | 0.84 | 2.01 | 2.8410 (14) | 170 |
O11—H11···O8vi | 0.84 | 1.97 | 2.7692 (15) | 160 |
O12—H12···O2 | 0.84 | 2.09 | 2.8953 (15) | 160 |
Symmetry codes: (i) −x+1/2, −y+1, z−1/2; (ii) x−1/2, −y+3/2, −z+1; (iii) x−1/2, −y+3/2, −z+2; (iv) x+1/2, −y+3/2, −z+1; (v) x+1, y, z; (vi) −x+1, y−1/2, −z+3/2. |
(I) | (II) | sucrosea | sucraloseb | |
C1—O1—C7 | 118.63 (10) | 120.56 (16) | 114.30 (8) | 119.2 (2) |
O1—C1—O5 | 109.67 (10) | 113.37 (17) | 110.49 (8) | 110.8 (2) |
O1—C1—C2 | 109.27 (10) | 105.86 (16) | 110.33 (8) | 106.3 (2) |
O1—C7—O10 | 113.00 (10) | 110.85 (16) | 111.00 (8) | 102.7 (2) |
O1—C7—C8 | 105.08 (10) | 105.89 (16) | 108.43 (7) | 112.5 (2) |
O1—C7—C12 | 109.03 (10) | 115.37 (18) | 109.93 (8) | 110.1 (2) |
C1—O1—C7—C8 | -146.31 (10) | 168.62 (17) | -159.81 (8) | 83.7 (2) |
C1—O1—C7—O10 | -32.23 (15) | -78.9 (2) | -44.75 (11) | -162.2 (2) |
C1—O1—C7—C12 | 86.54 (13) | 38.1 (2) | 73.70 (10) | -46.1 (2) |
C7—O1—C1—C2 | -131.92 (11) | -177.93 (16) | -129.25 (9) | -147.9 (2) |
C7—O1—C1—O5 | 107.31 (11) | 61.5 (2) | 107.82 (10) | 91.4 (2) |
O5—C5—C6—O6 | -65.69 (13) | -71.7 (2) | -56.42 (13) | 66.9 (2) |
C4—C5—C6—O6 | 53.23 (15) | 50.8 (3) | 64.39 (13) | -169.8 (2) |
Notes: (a) Brown & Levy (1973); (b) Kanters et al. (1988). |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O13i | 0.84 | 1.89 | 2.728 (3) | 172.2 |
O3—H3···O8ii | 0.84 | 2.02 | 2.851 (2) | 167.7 |
O6—H6···O3iii | 0.84 | 2.05 | 2.804 (2) | 148.9 |
O8—H8···O9ii | 0.84 | 2.01 | 2.830 (2) | 166.7 |
O9—H9···O2iv | 0.84 | 1.83 | 2.663 (2) | 172.3 |
O13—H131···O8v | 0.77 (4) | 2.23 (4) | 2.997 (2) | 175 (3) |
O13—H132···O6vi | 0.77 (4) | 1.96 (4) | 2.712 (2) | 166 (4) |
Symmetry codes: (i) x, y−1, z; (ii) −x+2, y−1/2, −z+1/2; (iii) x−1/2, −y−1/2, −z; (iv) −x+2, y+1/2, −z+1/2; (v) −x+1, y+1/2, −z+1/2; (vi) x−1/2, −y+1/2, −z. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
The introduction of halogens at certain sites of the sucrose molecule has a profound effect on the sweetness of the disaccharide (Hough & Phadnis, 1967; Lee, 1982, 1983, 1987a). Many of these analogues have been reported to have sweetness intensities which are several thousand times that of the parent sugar. Currently, the most widely accepted explanation for sweetness is the Shallenberger and Acree–Kier AH,B,γ tripartite hypothesis (Shallenberger & Acree, 1967; Kier, 1972). The location of the AH,B,γ glucophore in many classes of high intensity sweeteners, particularly the halogenated sucrose analogues, is still being debated intensely. Furthermore, it is fairly widely recognized that the high sweetness intensity of the halodeoxy sucrose analogues is a direct effect of one or more of the halogen substituents, and for this reason we are interested in the synthesis and structure of these analogues. As part of this programme, the crystal structures of 4-bromo-4-deoxysucrose, (I), and 1',6'-dibromo-4-fluoro-4,1',6'-trideoxysucrose monohydrate, (II), have been determined.
The absolute configurations of (I) and (II) have been confidently determined by refinement of the absolute structure parameter and are shown in Figs. 1 and 2, respectively. The bond lengths and angles exhibit normal values and generally agree with those of sucrose (Brown & Levy, 1963, 1973; Hanson et al., 1973) and sucralose (Kanters et al., 1988).
The disposition of the two sugar rings with respect to the C—O bond of the glycosidic linkage of (I) (Table 1) is similar to that of sucrose, since, like sucrose, O12—H is intramolecularly hydrogen-bonded to O2. Such an intramolecular hydrogen bond is not observed in (II) because the hydroxy group at C12 has been substituted by bromine. This probably explains the large conformational differences between the corresponding bond angles and torsion angles involving the anomeric O1 atom of (II) and those of sucrose (Table 1). The conformation of the glycosidic linkage in (II) is also very different from that in sucralose (Table 1), where a rotation about the glycosidic linkage allows the formation of an intramolecular O2—H···O8 hydrogen bond [labelled as O2—H···O13 in Kanters et al. (1988)]. This interaction is not present in (II). The O11—H···O5 intramolecular hydrogen bond that is present in sucrose [labelled as O'6—H···O5 in Brown & Levy (1973)] is also not present in sucralose or (II) because the hydroxy group at C11 has been replaced by a halogen atom. However, even though this hydroxy group is present in (I), the equivalent intramolecular hydrogen bond is absent.
Aside from the intramolecular hydrogen bond in (I), each of the other hydroxy groups in each compound is a donor for an intermolecular hydrogen bond with another hydroxy O atom of a neighbouring sugar molecule, or with the water molecule in the case of compound (II) (Tables 2 and 3). In (I), atom O2 is an acceptor of both an intramolecular and an intermolecular interaction, while O11 does not accept any hydrogen bonds. In all, six different sugar molecules are hydrogen bonded to a central molecule and these interactions link the molecules into an infinite three-dimensional framework. In (II), the water molecule also donates two hydrogen bonds to neighbouring sugar molecules and the O8 hydroxy group is an acceptor of two hydrogen bonds, one being from a water molecule and the other from an adjacent sugar molecule. In all, four different molecules are hydrogen bonded to a central sugar molecule and these interactions also link the molecules into an infinite three-dimensional framework.
The hydroxymethyl group of the glucopyranosyl ring of both (I) and (II) has the familiar gauche–gauche conformation (Table 1), which is also observed for sucrose. In galactopyranosides, such as sucralose (Kanters et al., 1988), 3-O-acetyl-1,4,6-trichloro-1,4,6-trideoxy-β-D-fructofuranosyl 2,3,6-tri-O-acetyl-4-chloro-4-deoxy-α-D-galactopyranoside (Lee, 1987b) and 3-O-acetyl-1,4,6-trichloro-1,4,6-trideoxy-β-D-tagatofuranosyl 2,3,6-tri-O-acetyl-4-chloro-4-deoxy-α-D-galactopyranoside (Lee et al., 1999), this hydroxymethyl substituent has a gauche–trans conformation, which is preferred over the trans–gauche conformation (Kanters et al., 1978).
The glucopyranosyl rings in compounds (I) and (II) adopt slightly distorted 4C1 chair conformations. The puckering parameters (Cremer & Pople, 1975) are: Q = 0.599 (1) Å, q2 = 0.116 (1) Å, q3 = 0.588 (1) Å, ϕ2 = 296.1 (6)° and θ = 11.2 (1)° for (I), and Q = 0.586 (2) Å, q2 = 0.031 (2) Å, q3 = 0.585 (2) Å, ϕ2 = 153 (4)° and θ = 2.2 (2)° for (II). The magnitude of distortion, θ, in compound (I) is much greater than that in sucrose (θ = 5.2°; Cremer & Pople, 1975), while that in compound (II) is significantly smaller than in sucrose, yet similar to that in sucralose (θ = 1.9°; Kanters et al., 1988). For the fructofuranosyl ring of compound (I), ϕ2 = 258.32 (19)°, which is close to a value (252°) that is appropriate for the E3 conformation. The envelope flap is formed by C8, which lies 0.621 (2) Å from the plane defined by atoms C7, C9, C10 and O10. For compound (II), this ring has the 4T3 twist conformation [ϕ2 = 274.4 (3)°], which is very similar to that in sucrose (Rohrer, 1972). The twist is on C8 and C9, with these atoms being -0.256 (5) and 0.431 (5) Å, respectively, from the plane defined by atoms C7, C10 and O10.
It is now strongly believed that the AH,B unit of the Shallenberger and Acree-Kier AH,B,γ glucophore (Shallenberger & Acree, 1967; Kier, 1972) spans the two sugar rings of sucrose (Mathlouthi et al., 1993). Using molecular mechanics and dynamics studies, Hooft et al. (1993) proposed that the `sweet conformation' of halogenated sucrose analogues should have values for the torsion angles defined by Φ(C1—O1—C7—O10) and Ψ(C7—O1—C1—O5) of 75 and 95°, respectively. However, both (I) and (II) have corresponding torsion angles that are very different from these theoretical values (Table 1), although those for (I) are quire similar to those of sucrose. Similarly, sucralose, which has a sweetness that is 650 times that of sucrose, has a completely different set of values for these torsion angles.