Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
At 160 K, the structure of 4-bromo-4-deoxy­sucrose, C12H21BrO10, is very similar to that of sucrose, particularly with respect to the conformation of the glycosidic linkage. As in sucrose, an intramolecular hydrogen bond exists between the gluco­pyran­osyl and the fructo­furan­osyl rings. Conversely, the structure of 1',6'-di­bromo-4-fluoro-4,1',6'-tri­deoxy­sucrose mono­hydrate, C12H19Br2FO8·H2O, shows large conformational differences when compared with the structures of both sucrose and sucralose. This compound does not exhibit any intramolecular hydrogen bonds. In each compound, a complex series of intermolecular hydrogen bonds link the mol­ecules into an infinite three-dimensional framework. The absolute configuration of each mol­ecule has been determined.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101017644/sk1519sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101017644/sk1519Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101017644/sk1519IIsup3.hkl
Contains datablock II

CCDC references: 175118; 175119

Comment top

The introduction of halogens at certain sites of the sucrose molecule has a profound effect on the sweetness of the disaccharide (Hough & Phadnis, 1967; Lee, 1982, 1983, 1987a). Many of these analogues have been reported to have sweetness intensities which are several thousand times that of the parent sugar. Currently, the most widely accepted explanation for sweetness is the Shallenberger and Acree–Kier AH,B,γ tripartite hypothesis (Shallenberger & Acree, 1967; Kier, 1972). The location of the AH,B,γ glucophore in many classes of high intensity sweeteners, particularly the halogenated sucrose analogues, is still being debated intensely. Furthermore, it is fairly widely recognized that the high sweetness intensity of the halodeoxy sucrose analogues is a direct effect of one or more of the halogen substituents, and for this reason we are interested in the synthesis and structure of these analogues. As part of this programme, the crystal structures of 4-bromo-4-deoxysucrose, (I), and 1',6'-dibromo-4-fluoro-4,1',6'-trideoxysucrose monohydrate, (II), have been determined.

The absolute configurations of (I) and (II) have been confidently determined by refinement of the absolute structure parameter and are shown in Figs. 1 and 2, respectively. The bond lengths and angles exhibit normal values and generally agree with those of sucrose (Brown & Levy, 1963, 1973; Hanson et al., 1973) and sucralose (Kanters et al., 1988).

The disposition of the two sugar rings with respect to the C—O bond of the glycosidic linkage of (I) (Table 1) is similar to that of sucrose, since, like sucrose, O12—H is intramolecularly hydrogen-bonded to O2. Such an intramolecular hydrogen bond is not observed in (II) because the hydroxy group at C12 has been substituted by bromine. This probably explains the large conformational differences between the corresponding bond angles and torsion angles involving the anomeric O1 atom of (II) and those of sucrose (Table 1). The conformation of the glycosidic linkage in (II) is also very different from that in sucralose (Table 1), where a rotation about the glycosidic linkage allows the formation of an intramolecular O2—H···O8 hydrogen bond [labelled as O2—H···O13 in Kanters et al. (1988)]. This interaction is not present in (II). The O11—H···O5 intramolecular hydrogen bond that is present in sucrose [labelled as O'6—H···O5 in Brown & Levy (1973)] is also not present in sucralose or (II) because the hydroxy group at C11 has been replaced by a halogen atom. However, even though this hydroxy group is present in (I), the equivalent intramolecular hydrogen bond is absent.

Aside from the intramolecular hydrogen bond in (I), each of the other hydroxy groups in each compound is a donor for an intermolecular hydrogen bond with another hydroxy O atom of a neighbouring sugar molecule, or with the water molecule in the case of compound (II) (Tables 2 and 3). In (I), atom O2 is an acceptor of both an intramolecular and an intermolecular interaction, while O11 does not accept any hydrogen bonds. In all, six different sugar molecules are hydrogen bonded to a central molecule and these interactions link the molecules into an infinite three-dimensional framework. In (II), the water molecule also donates two hydrogen bonds to neighbouring sugar molecules and the O8 hydroxy group is an acceptor of two hydrogen bonds, one being from a water molecule and the other from an adjacent sugar molecule. In all, four different molecules are hydrogen bonded to a central sugar molecule and these interactions also link the molecules into an infinite three-dimensional framework.

The hydroxymethyl group of the glucopyranosyl ring of both (I) and (II) has the familiar gauche–gauche conformation (Table 1), which is also observed for sucrose. In galactopyranosides, such as sucralose (Kanters et al., 1988), 3-O-acetyl-1,4,6-trichloro-1,4,6-trideoxy-β-D-fructofuranosyl 2,3,6-tri-O-acetyl-4-chloro-4-deoxy-α-D-galactopyranoside (Lee, 1987b) and 3-O-acetyl-1,4,6-trichloro-1,4,6-trideoxy-β-D-tagatofuranosyl 2,3,6-tri-O-acetyl-4-chloro-4-deoxy-α-D-galactopyranoside (Lee et al., 1999), this hydroxymethyl substituent has a gauche–trans conformation, which is preferred over the trans–gauche conformation (Kanters et al., 1978).

The glucopyranosyl rings in compounds (I) and (II) adopt slightly distorted 4C1 chair conformations. The puckering parameters (Cremer & Pople, 1975) are: Q = 0.599 (1) Å, q2 = 0.116 (1) Å, q3 = 0.588 (1) Å, ϕ2 = 296.1 (6)° and θ = 11.2 (1)° for (I), and Q = 0.586 (2) Å, q2 = 0.031 (2) Å, q3 = 0.585 (2) Å, ϕ2 = 153 (4)° and θ = 2.2 (2)° for (II). The magnitude of distortion, θ, in compound (I) is much greater than that in sucrose (θ = 5.2°; Cremer & Pople, 1975), while that in compound (II) is significantly smaller than in sucrose, yet similar to that in sucralose (θ = 1.9°; Kanters et al., 1988). For the fructofuranosyl ring of compound (I), ϕ2 = 258.32 (19)°, which is close to a value (252°) that is appropriate for the E3 conformation. The envelope flap is formed by C8, which lies 0.621 (2) Å from the plane defined by atoms C7, C9, C10 and O10. For compound (II), this ring has the 4T3 twist conformation [ϕ2 = 274.4 (3)°], which is very similar to that in sucrose (Rohrer, 1972). The twist is on C8 and C9, with these atoms being -0.256 (5) and 0.431 (5) Å, respectively, from the plane defined by atoms C7, C10 and O10.

It is now strongly believed that the AH,B unit of the Shallenberger and Acree-Kier AH,B,γ glucophore (Shallenberger & Acree, 1967; Kier, 1972) spans the two sugar rings of sucrose (Mathlouthi et al., 1993). Using molecular mechanics and dynamics studies, Hooft et al. (1993) proposed that the `sweet conformation' of halogenated sucrose analogues should have values for the torsion angles defined by Φ(C1—O1—C7—O10) and Ψ(C7—O1—C1—O5) of 75 and 95°, respectively. However, both (I) and (II) have corresponding torsion angles that are very different from these theoretical values (Table 1), although those for (I) are quire similar to those of sucrose. Similarly, sucralose, which has a sweetness that is 650 times that of sucrose, has a completely different set of values for these torsion angles.

Related literature top

For related literature, see: Brown & Levy (1963, 1973); Cremer & Pople (1975); Hanson et al. (1973); Hooft et al. (1993); Hough & Phadnis (1967); Kanters et al. (1978, 1988); Kier (1972); Lee (1982, 1983, 1987a, 1987b); Lee et al. (1999); Mathlouthi et al. (1993); Muhammad & Lee (2001a, 2001b); Rohrer (1972); Shallenberger & Acree (1967).

Experimental top

The synthesis of compound (I) has been described by Muhammad Sofian & Lee (2001a). Suitable crystals were obtained by slow evaporation of a methanol solution [m.p. 422–423 K, [α]D +34.7° (c 0.49, H2O)]. For the synthesis of compound (II), trifluoromethane sulfonic anhydride (0.30 ml, 1.78 mmol) was added to a solution of 3,4-di-O-acetyl-β-D-fructofuranosyl 2,3,6-tri-O-acetyl-4-deoxy-4-fluoro-α-D-glucopyranoside (0.27 g, 0.49 mmol) (Muhammad Sofian & Lee, 2001b) in dry CH2Cl2/pyridine (15:1, 16 ml) at 195 K. The mixture was stirred at 195 K for 15 min and then at 273 K for 2 h. The mixture was diluted with dichloromethane and the organic solution was washed successively with aqueous KHSO4 (10%), saturated NaHCO3 and water, then dried (Na2SO4) and concentrated. The crude product was stirred with LiBr (0.40 g) in dry acetone (15 ml) overnight at room temperature. The reaction mixture was concentrated and the residue was taken up in dichloromethane, washed thoroughly with water, dried (Na2SO4), filtered and again concentrated to give, after flash chromatography (ethyl acetate/hexane, 1:3), 3,4-di-O-acetyl-1,6-dibromo-1,6-dideoxy-β-D-fructofuranosyl 2,3,6-tri-O-acetyl-4-deoxy-4-fluoro-α-D-glucopyranoside (0.21 g, 63%) as a colourless syrup. Spectroscopic analysis: [α]D 22.2° (c 0.59, CHCl3); 1H NMR (CDCl3, δ, p.p.m.): 2.03, 2.05, 2.06, 2.11 (s, 15H, 5 × CH3), 3.40–3.56 (m, 4H, H1'a,b, H6'a,b), 4.13–4.50 (m, 5H, H4, H5, H5', H6a,b), 4.78 (ddd, 1H, J1,2 = 3.8, J2,3 = 10.4, J2,F = 0.7 Hz, H2), 5.30 (t, 1H, J3',4' = J4',5' = 6.0 Hz, H4'), 5.44–5.55 (m, 2H, H1, H3), 5.65 (d, 1H, H3'); 13C NMR: δ 170.4, 170.0, 169.7, 169.6, 169.5 (COCH3), 103.8 (C2'), 90.0 (C1), 86.7 (J4,F = 187.6 Hz, C4), 81.0 (C5'), 76.8, 76.7 (C3', C4'), 69.6 (J2,F = 7.6 Hz, C2), 69.3 (J3,F = 20.0 Hz, C3), 68.2 (J5,F = 23.5 Hz, C5), 62.0 (C6), 32.5, 32.1 (C1', C6'), 20.7, 20.6, 20.4 (COCH3); 19F NMR: δ -122.3 (dd, JF,H3 = 15.3, JF,H4 = 53.4 Hz); HRMS-ESI (positive mode): calculated for [M + Na]+ 700.9857:702.9837:704.9817; found: 700.9869:702.9866:704.9800 (1:2:1). Deacetylation of the above 1',6'-dibromo-4-fluoro derivative (0.12 g, 0.17 mmol) by treatment with NaOMe (pH ~8.5) and recrystallization from methanol afforded compound (II) (0.0612 g, 75%, m.p. 367–368 K). Spectroscopic analysis: [α]D 27.2° (c 1.35, H2O); 1H NMR (D2O, δ, p.p.m., the assignments employ the crystallographic atom numbering used in Fig. 2): 4.12 (dd, 1H, J1,2 = 3.8, J2,3 = 10.4 Hz, H2), 4.16–4.38 (m, 6H, H3, H9, H11a,b, H12a,b), 4.50–4.65 (m, 4H, H5, H6a,b, H10), 4.86 (dt, 1H, J3,4 = J4,5 = 9.4, J4,F = 50.5 Hz, H4), 4.98 (d, 1H, J8,9 = 8.4 Hz, H8) and 5.93 (m, 1H, H1); 13C NMR: (D2O, δ, p.p.m.) 103.5 (C7), 93.0 (C1), 89.6 (J4,F = 179.9 Hz, C4), 81.6 (C10), 77.6, 77.0 (C8, C9), 71.3 (J3,F = 17.6 Hz, C3), 71.1 (J2,F = 8.2 Hz, C2), 70.7 (J5,F = 24.1 Hz, C5), 60.4 (C6), 33.3, 32.3 (C11, C12); 19F NMR: δ -122.6 (dd, JF,H3 = 15.3, JF,H4 = 53.4 Hz)); HRMS-ESI (positive mode): calculated for [M + Na]+ 490.9330:492.9308: 494.9288; found 490.9327:492.9295:494.9275 (1:2:1).

Refinement top

For each compound, all H atoms were initially located in a difference Fourier map. The hydroxy H atoms were then constrained to an ideal geometry, with O—H distances of 0.84 Å and fixed displacement parameters defined by Uiso(H) = 1.5Ueq(O), but they were allowed to rotate freely about the C—O bonds. The positions of the H atoms of the water molecule of (II) were refined freely along with individual isotropic displacement parameters. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.99–1.00 Å and Uiso(H) = 1.2Ueq(C). In each case, the determined absolute configuration agreed with that expected for a natural sucrose derivative. For (II), two low-angle reflections, whose intensities were zero, were omitted from the final cycles of refinement.

Computing details top

For both compounds, data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2001).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.
[Figure 2] Fig. 2. View of the molecule of (II) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.
(I) 4-bromo-4-deoxysucrose top
Crystal data top
C12H21BrO10Dx = 1.807 Mg m3
Mr = 405.19Melting point: 422 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 39393 reflections
a = 10.4516 (1) Åθ = 1.0–30.0°
b = 11.3466 (1) ŵ = 2.81 mm1
c = 12.5599 (1) ÅT = 160 K
V = 1489.48 (2) Å3Prism, colourless
Z = 40.20 × 0.20 × 0.15 mm
F(000) = 832
Data collection top
Nonius KappaCCD
diffractometer
4340 independent reflections
Horizontally mounted graphite crystal monochromator4246 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.045
ϕ and ω scans with κ offsetsθmax = 30.0°, θmin = 3.1°
Absorption correction: numerical
(Coppens et al., 1965)
h = 1414
Tmin = 0.556, Tmax = 0.693k = 1515
58745 measured reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.017 w = 1/[σ2(Fo2) + (0.0194P)2 + 0.5248P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.042(Δ/σ)max = 0.004
S = 1.05Δρmax = 0.32 e Å3
4340 reflectionsΔρmin = 0.26 e Å3
216 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0045 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.005 (4)
Crystal data top
C12H21BrO10V = 1489.48 (2) Å3
Mr = 405.19Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.4516 (1) ŵ = 2.81 mm1
b = 11.3466 (1) ÅT = 160 K
c = 12.5599 (1) Å0.20 × 0.20 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
4340 independent reflections
Absorption correction: numerical
(Coppens et al., 1965)
4246 reflections with I > 2σ(I)
Tmin = 0.556, Tmax = 0.693Rint = 0.045
58745 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.042Δρmax = 0.32 e Å3
S = 1.05Δρmin = 0.26 e Å3
4340 reflectionsAbsolute structure: Flack (1983)
216 parametersAbsolute structure parameter: 0.005 (4)
0 restraints
Special details top

Experimental. Solvent used: methanol Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.446 (1) Frames collected: 670 Seconds exposure per frame: 36 Degrees rotation per frame: 2.0 Crystal-Detector distance (mm): 35.0

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 8.0859 (0.0046) x + 0.6408 (0.0096) y + 7.9264 (0.0071) z = 0.9618 (0.0079)

* -0.0130 (0.0005) C7 * 0.0116 (0.0004) C9 * -0.0192 (0.0007) C10 * 0.0205 (0.0008) O10 - 0.6211 (0.0020) C8

Rms deviation of fitted atoms = 0.0165

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.072504 (12)0.864227 (12)0.849389 (11)0.01717 (4)
O10.41387 (8)0.64067 (8)0.65524 (7)0.01297 (16)
O20.19895 (10)0.56339 (9)0.55096 (8)0.01554 (19)
H20.20620.49220.53370.023*
O30.00145 (9)0.68266 (9)0.66482 (8)0.0173 (2)
H30.01940.73750.62250.026*
O50.33202 (9)0.59002 (8)0.82013 (7)0.01323 (18)
O60.25439 (10)0.66632 (9)1.02554 (8)0.0177 (2)
H60.26740.68951.08810.027*
O80.57067 (11)0.81137 (8)0.60071 (8)0.01896 (19)
H80.61100.84280.55040.028*
O90.77441 (9)0.75604 (9)0.77428 (8)0.0182 (2)
H90.83890.72610.74500.027*
O100.58689 (9)0.50840 (8)0.68153 (7)0.01432 (18)
O110.67557 (10)0.40096 (9)0.89049 (9)0.0210 (2)
H110.61020.35790.89000.032*
O120.43574 (10)0.61435 (9)0.44053 (8)0.0202 (2)
H120.36050.61400.46400.030*
C10.33206 (12)0.56238 (12)0.71009 (10)0.0122 (2)
H10.36340.47980.70010.015*
C20.19568 (12)0.57306 (11)0.66466 (10)0.0127 (2)
H210.14280.50700.69360.015*
C30.13079 (12)0.68970 (12)0.69331 (11)0.0126 (2)
H310.17220.75530.65270.015*
C40.14706 (12)0.71145 (12)0.81268 (11)0.0130 (2)
H410.10200.64800.85320.016*
C50.28928 (12)0.70890 (11)0.84004 (11)0.0126 (2)
H510.33580.76360.79100.015*
C60.32472 (13)0.73851 (12)0.95304 (11)0.0150 (2)
H610.41760.72580.96360.018*
H620.30590.82260.96720.018*
C70.53425 (12)0.59712 (12)0.61643 (10)0.0130 (2)
C80.62703 (13)0.70183 (12)0.62588 (10)0.0140 (2)
H810.70410.68820.58030.017*
C90.66303 (12)0.69288 (12)0.74317 (11)0.0139 (2)
H910.58940.72270.78630.017*
C100.67296 (12)0.55990 (12)0.76016 (11)0.0142 (2)
H1010.76240.53430.74380.017*
C110.63917 (13)0.51978 (12)0.87146 (11)0.0167 (3)
H1110.68250.57150.92370.020*
H1120.54570.52780.88210.020*
C120.51439 (14)0.54320 (13)0.50676 (11)0.0170 (3)
H1210.59860.53230.47210.020*
H1220.47450.46460.51480.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.01467 (6)0.01764 (6)0.01921 (6)0.00421 (5)0.00149 (5)0.00148 (5)
O10.0104 (4)0.0124 (4)0.0161 (4)0.0004 (3)0.0030 (3)0.0007 (4)
O20.0193 (5)0.0153 (4)0.0121 (4)0.0010 (4)0.0023 (4)0.0015 (3)
O30.0095 (4)0.0237 (5)0.0187 (5)0.0009 (3)0.0024 (3)0.0020 (4)
O50.0142 (4)0.0139 (4)0.0116 (4)0.0029 (4)0.0013 (3)0.0008 (3)
O60.0235 (5)0.0183 (5)0.0114 (4)0.0012 (4)0.0001 (4)0.0004 (3)
O80.0174 (4)0.0156 (4)0.0239 (5)0.0008 (4)0.0062 (4)0.0052 (4)
O90.0131 (4)0.0227 (5)0.0187 (5)0.0042 (4)0.0016 (4)0.0057 (4)
O100.0144 (4)0.0133 (4)0.0153 (4)0.0016 (4)0.0039 (3)0.0021 (3)
O110.0161 (5)0.0174 (5)0.0296 (5)0.0010 (4)0.0021 (4)0.0046 (4)
O120.0160 (4)0.0300 (6)0.0147 (4)0.0019 (4)0.0010 (4)0.0043 (4)
C10.0124 (5)0.0120 (5)0.0123 (6)0.0003 (4)0.0004 (4)0.0001 (4)
C20.0117 (5)0.0140 (6)0.0125 (6)0.0009 (4)0.0012 (4)0.0004 (4)
C30.0093 (5)0.0145 (6)0.0140 (5)0.0001 (4)0.0003 (4)0.0011 (5)
C40.0119 (5)0.0131 (6)0.0140 (5)0.0019 (4)0.0014 (4)0.0002 (4)
C50.0113 (5)0.0124 (5)0.0142 (6)0.0007 (4)0.0002 (5)0.0000 (5)
C60.0142 (6)0.0162 (6)0.0145 (6)0.0011 (5)0.0006 (5)0.0001 (5)
C70.0114 (5)0.0142 (5)0.0132 (5)0.0031 (4)0.0014 (4)0.0002 (4)
C80.0123 (5)0.0150 (6)0.0145 (6)0.0000 (5)0.0015 (4)0.0004 (4)
C90.0103 (5)0.0164 (6)0.0151 (6)0.0018 (5)0.0009 (4)0.0018 (5)
C100.0111 (5)0.0156 (6)0.0158 (6)0.0005 (5)0.0014 (4)0.0025 (5)
C110.0161 (6)0.0174 (6)0.0166 (6)0.0013 (5)0.0014 (5)0.0002 (5)
C120.0169 (6)0.0191 (6)0.0150 (6)0.0004 (5)0.0005 (5)0.0034 (5)
Geometric parameters (Å, º) top
Br—C41.9557 (13)C2—C31.5301 (18)
O1—C11.4124 (15)C2—H211.00
O1—C71.4369 (15)C3—C41.5290 (19)
O2—C21.4326 (15)C3—H311.00
O2—H20.84C4—C51.5258 (17)
O3—C31.4300 (15)C4—H411.00
O3—H30.84C5—C61.5048 (18)
O5—C11.4172 (15)C5—H511.00
O5—C51.4427 (15)C6—H610.99
O6—C61.4284 (16)C6—H620.99
O6—H60.84C7—C121.5214 (19)
O8—C81.4114 (16)C7—C81.5381 (19)
O8—H80.84C8—C91.5238 (19)
O9—C91.4218 (16)C8—H811.00
O9—H90.84C9—C101.5274 (19)
O10—C71.4089 (16)C9—H911.00
O10—C101.4581 (16)C10—C111.5120 (19)
O11—C111.4211 (17)C10—H1011.00
O11—H110.84C11—H1110.99
O12—C121.4211 (17)C11—H1120.99
O12—H120.84C12—H1210.99
C1—C21.5402 (17)C12—H1220.99
C1—H11.00
C1—O1—C7118.63 (10)O6—C6—H61109.6
C2—O2—H2109.5C5—C6—H61109.6
C3—O3—H3109.5O6—C6—H62109.6
C1—O5—C5112.09 (10)C5—C6—H62109.6
C6—O6—H6109.5H61—C6—H62108.1
C8—O8—H8109.5O10—C7—O1113.00 (10)
C9—O9—H9109.5O10—C7—C12106.94 (11)
C7—O10—C10110.35 (10)O1—C7—C12109.03 (10)
C11—O11—H11109.5O10—C7—C8105.12 (10)
C12—O12—H12109.5O1—C7—C8105.08 (10)
O1—C1—O5109.67 (10)C12—C7—C8117.81 (11)
O1—C1—C2109.27 (10)O8—C8—C9112.23 (11)
O5—C1—C2110.10 (10)O8—C8—C7113.57 (11)
O1—C1—H1109.3C9—C8—C7100.30 (10)
O5—C1—H1109.3O8—C8—H81110.1
C2—C1—H1109.3C9—C8—H81110.1
O2—C2—C3108.13 (10)C7—C8—H81110.1
O2—C2—C1109.95 (10)O9—C9—C8115.74 (11)
C3—C2—C1113.02 (11)O9—C9—C10113.82 (11)
O2—C2—H21108.5C8—C9—C10102.58 (11)
C3—C2—H21108.5O9—C9—H91108.1
C1—C2—H21108.5C8—C9—H91108.1
O3—C3—C4111.22 (10)C10—C9—H91108.1
O3—C3—C2108.73 (11)O10—C10—C11111.19 (11)
C4—C3—C2108.72 (11)O10—C10—C9105.03 (10)
O3—C3—H31109.4C11—C10—C9114.25 (11)
C4—C3—H31109.4O10—C10—H101108.7
C2—C3—H31109.4C11—C10—H101108.7
C5—C4—C3109.03 (10)C9—C10—H101108.7
C5—C4—Br110.60 (9)O11—C11—C10112.25 (11)
C3—C4—Br109.26 (9)O11—C11—H111109.2
C5—C4—H41109.3C10—C11—H111109.2
C3—C4—H41109.3O11—C11—H112109.2
Br—C4—H41109.3C10—C11—H112109.2
O5—C5—C6107.22 (10)H111—C11—H112107.9
O5—C5—C4106.28 (10)O12—C12—C7112.36 (11)
C6—C5—C4116.61 (11)O12—C12—H121109.1
O5—C5—H51108.8C7—C12—H121109.1
C6—C5—H51108.8O12—C12—H122109.1
C4—C5—H51108.8C7—C12—H122109.1
O6—C6—C5110.27 (11)H121—C12—H122107.9
C7—O1—C1—O5107.31 (11)C10—O10—C7—C821.61 (13)
C7—O1—C1—C2131.92 (11)C1—O1—C7—O1032.23 (15)
C5—O5—C1—O159.51 (12)C1—O1—C7—C1286.54 (13)
C5—O5—C1—C260.75 (13)C1—O1—C7—C8146.31 (10)
O1—C1—C2—O250.44 (13)O10—C7—C8—O8157.59 (10)
O5—C1—C2—O2170.95 (10)O1—C7—C8—O838.11 (13)
O1—C1—C2—C370.49 (13)C12—C7—C8—O883.48 (14)
O5—C1—C2—C350.02 (14)O10—C7—C8—C937.67 (12)
O2—C2—C3—O368.45 (12)O1—C7—C8—C981.81 (11)
C1—C2—C3—O3169.60 (10)C12—C7—C8—C9156.60 (11)
O2—C2—C3—C4170.32 (10)O8—C8—C9—O975.77 (14)
C1—C2—C3—C448.37 (14)C7—C8—C9—O9163.35 (11)
O3—C3—C4—C5175.75 (11)O8—C8—C9—C10159.69 (11)
C2—C3—C4—C556.06 (13)C7—C8—C9—C1038.80 (12)
O3—C3—C4—Br63.26 (12)C7—O10—C10—C11127.72 (11)
C2—C3—C4—Br177.05 (8)C7—O10—C10—C93.65 (14)
C1—O5—C5—C6165.74 (10)O9—C9—C10—O10153.20 (10)
C1—O5—C5—C468.88 (12)C8—C9—C10—O1027.39 (13)
C3—C4—C5—O565.39 (13)O9—C9—C10—C1184.70 (14)
Br—C4—C5—O5174.44 (8)C8—C9—C10—C11149.50 (11)
C3—C4—C5—C6175.18 (11)O10—C10—C11—O1173.99 (14)
Br—C4—C5—C655.02 (13)C9—C10—C11—O11167.34 (11)
O5—C5—C6—O665.69 (13)O10—C7—C12—O12166.64 (11)
C4—C5—C6—O653.23 (15)O1—C7—C12—O1244.15 (14)
C10—O10—C7—O192.44 (12)C8—C7—C12—O1275.39 (15)
C10—O10—C7—C12147.59 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O6i0.841.852.6708 (14)166
O3—H3···O12ii0.841.922.7362 (14)165
O6—H6···O9iii0.841.842.6723 (14)173
O8—H8···O2iv0.841.902.7287 (14)171
O9—H9···O3v0.842.012.8410 (14)170
O11—H11···O8vi0.841.972.7692 (15)160
O12—H12···O20.842.092.8953 (15)160
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x1/2, y+3/2, z+1; (iii) x1/2, y+3/2, z+2; (iv) x+1/2, y+3/2, z+1; (v) x+1, y, z; (vi) x+1, y1/2, z+3/2.
(II) 1',6'-dibromo-4-fluoro-4,1',6'-trideoxysucrose monohydrate top
Crystal data top
C12H19Br2FO8·H2ODx = 1.936 Mg m3
Mr = 488.10Melting point: 368 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 60953 reflections
a = 7.6133 (1) Åθ = 1.0–30.0°
b = 9.4705 (1) ŵ = 4.90 mm1
c = 23.2227 (2) ÅT = 160 K
V = 1674.40 (3) Å3Prism, colourless
Z = 40.23 × 0.22 × 0.15 mm
F(000) = 976
Data collection top
Nonius KappaCCD
diffractometer
4893 independent reflections
Horizontally mounted graphite crystal monochromator4620 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.057
ϕ and ω scans with κ offsetsθmax = 30.0°, θmin = 2.8°
Absorption correction: numerical
(Coppens et al., 1965)
h = 1010
Tmin = 0.349, Tmax = 0.583k = 1313
58507 measured reflectionsl = 3132
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0273P)2 + 1.3147P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.061(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.47 e Å3
4891 reflectionsΔρmin = 0.82 e Å3
231 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0013 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.002 (6)
Crystal data top
C12H19Br2FO8·H2OV = 1674.40 (3) Å3
Mr = 488.10Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.6133 (1) ŵ = 4.90 mm1
b = 9.4705 (1) ÅT = 160 K
c = 23.2227 (2) Å0.23 × 0.22 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
4893 independent reflections
Absorption correction: numerical
(Coppens et al., 1965)
4620 reflections with I > 2σ(I)
Tmin = 0.349, Tmax = 0.583Rint = 0.057
58507 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061Δρmax = 0.47 e Å3
S = 1.07Δρmin = 0.82 e Å3
4891 reflectionsAbsolute structure: Flack (1983)
231 parametersAbsolute structure parameter: 0.002 (6)
0 restraints
Special details top

Experimental. Solvent used: methanol Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.502 (1) Frames collected: 893 Seconds exposure per frame: 26 Degrees rotation per frame: 1.3 Crystal-Detector distance (mm): 35.0

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

5.7500 (0.0071) x - 6.0838 (0.0090) y - 3.0192 (0.0612) z = 3.0445 (0.0129)

* 0.0000 (0.0000) C7 * 0.0000 (0.0000) C10 * 0.0000 (0.0000) O10 - 0.2562 (0.0054) C8 0.4313 (0.0054) C9

5.8393 (0.0063) x - 6.0764 (0.0093) y - 0.1826 (0.0278) z = 3.4978 (0.0090)

* 0.0523 (0.0011) C7 * 0.0346 (0.0007) C10 * -0.0558 (0.0012) O10 * -0.0310 (0.0007) C8 0.6352 (0.0031) C9

Rms deviation of fitted atoms = 0.0448

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.01041 (4)0.38845 (3)0.031072 (11)0.03334 (8)
Br20.38171 (3)0.00660 (3)0.192015 (9)0.02296 (6)
F41.26286 (18)0.12991 (17)0.04911 (6)0.0258 (3)
O10.79778 (19)0.03298 (15)0.15264 (6)0.0136 (3)
O20.8284 (2)0.31755 (17)0.17656 (7)0.0192 (3)
H20.73900.36950.17680.029*
O31.1575 (2)0.35439 (17)0.12209 (7)0.0207 (3)
H31.16380.37240.15750.031*
O50.7885 (2)0.08055 (16)0.05232 (6)0.0154 (3)
O60.9677 (2)0.08857 (19)0.06130 (7)0.0245 (4)
H60.86040.10490.06640.037*
O80.7691 (2)0.06829 (16)0.26173 (6)0.0155 (3)
H80.84080.00260.25550.023*
O91.0081 (2)0.32921 (16)0.24163 (6)0.0200 (3)
H91.06620.28920.26770.030*
O100.7967 (2)0.19569 (16)0.11453 (6)0.0161 (3)
C10.7507 (3)0.1305 (2)0.10808 (9)0.0143 (4)
H10.62250.15220.11090.017*
C20.8561 (3)0.2650 (2)0.12013 (9)0.0142 (4)
H210.82240.33920.09150.017*
C31.0527 (3)0.2317 (2)0.11360 (9)0.0150 (4)
H311.08680.15830.14250.018*
C41.0842 (3)0.1750 (2)0.05355 (10)0.0168 (4)
H411.05850.24940.02420.020*
C50.9704 (3)0.0462 (2)0.04319 (9)0.0158 (4)
H511.00470.02840.07150.019*
C60.9881 (3)0.0145 (2)0.01702 (8)0.0195 (4)
H610.89860.08920.02230.023*
H621.10520.05900.02090.023*
C70.7187 (3)0.1018 (2)0.15535 (8)0.0135 (4)
C80.7709 (3)0.1638 (2)0.21450 (8)0.0139 (4)
H810.68840.24300.22350.017*
C90.9506 (3)0.2273 (2)0.20117 (9)0.0150 (4)
H911.04010.15060.19740.018*
C100.9147 (3)0.2934 (2)0.14243 (9)0.0157 (4)
H1010.85440.38630.14770.019*
C111.0758 (3)0.3134 (2)0.10597 (10)0.0198 (4)
H1111.13660.22180.10100.024*
H1121.15750.37940.12530.024*
C120.5249 (3)0.1062 (2)0.14004 (9)0.0169 (4)
H1210.50920.07110.10020.020*
H1220.48380.20540.14120.020*
O130.5519 (2)0.5002 (2)0.16891 (7)0.0241 (3)
H1310.473 (5)0.516 (4)0.1883 (15)0.036 (9)*
H1320.511 (5)0.526 (4)0.1403 (16)0.039 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04262 (16)0.03752 (14)0.01989 (11)0.01326 (12)0.00352 (11)0.00491 (10)
Br20.01490 (9)0.03525 (12)0.01874 (10)0.00574 (9)0.00149 (8)0.00068 (10)
F40.0188 (7)0.0333 (8)0.0253 (7)0.0042 (6)0.0002 (5)0.0077 (6)
O10.0146 (7)0.0145 (7)0.0116 (6)0.0007 (5)0.0017 (5)0.0034 (5)
O20.0233 (8)0.0200 (7)0.0143 (7)0.0058 (6)0.0006 (6)0.0033 (6)
O30.0244 (8)0.0224 (8)0.0154 (7)0.0077 (6)0.0009 (6)0.0018 (6)
O50.0154 (7)0.0194 (7)0.0114 (6)0.0009 (6)0.0012 (5)0.0007 (5)
O60.0235 (8)0.0362 (10)0.0138 (7)0.0066 (7)0.0009 (6)0.0019 (6)
O80.0185 (7)0.0160 (7)0.0120 (7)0.0019 (6)0.0015 (6)0.0010 (5)
O90.0253 (8)0.0174 (7)0.0173 (7)0.0039 (7)0.0067 (7)0.0005 (6)
O100.0179 (7)0.0184 (7)0.0120 (7)0.0049 (6)0.0010 (6)0.0021 (6)
C10.0145 (9)0.0163 (9)0.0121 (8)0.0028 (8)0.0004 (7)0.0023 (7)
C20.0163 (10)0.0142 (9)0.0121 (9)0.0039 (7)0.0014 (7)0.0007 (7)
C30.0174 (9)0.0151 (9)0.0125 (9)0.0019 (7)0.0003 (7)0.0019 (7)
C40.0146 (10)0.0203 (10)0.0154 (9)0.0015 (8)0.0018 (7)0.0017 (8)
C50.0172 (10)0.0167 (9)0.0133 (9)0.0001 (7)0.0010 (7)0.0003 (7)
C60.0210 (9)0.0207 (10)0.0166 (9)0.0001 (9)0.0012 (7)0.0038 (8)
C70.0144 (9)0.0156 (9)0.0106 (8)0.0011 (7)0.0001 (7)0.0003 (7)
C80.0162 (9)0.0144 (9)0.0110 (8)0.0011 (7)0.0008 (7)0.0000 (7)
C90.0165 (9)0.0143 (8)0.0143 (9)0.0005 (7)0.0013 (7)0.0004 (7)
C100.0176 (10)0.0134 (9)0.0161 (10)0.0001 (7)0.0011 (7)0.0006 (7)
C110.0192 (10)0.0209 (10)0.0191 (10)0.0029 (8)0.0014 (8)0.0006 (8)
C120.0140 (9)0.0212 (9)0.0153 (9)0.0023 (8)0.0002 (7)0.0024 (8)
O130.0192 (7)0.0378 (10)0.0152 (7)0.0010 (8)0.0005 (6)0.0009 (8)
Geometric parameters (Å, º) top
Br1—C111.944 (2)C3—C41.514 (3)
Br2—C121.946 (2)C3—H311.00
F4—C41.429 (2)C4—C51.515 (3)
O1—C71.412 (2)C4—H411.00
O1—C11.433 (2)C5—C61.518 (3)
O2—C21.418 (2)C5—H511.00
O2—H20.84C6—H610.99
O3—C31.423 (3)C6—H620.99
O3—H30.84C7—C121.519 (3)
O5—C11.408 (3)C7—C81.546 (3)
O5—C51.438 (3)C8—C91.526 (3)
O6—C61.426 (3)C8—H811.00
O6—H60.84C9—C101.526 (3)
O8—C81.422 (2)C9—H911.00
O8—H80.84C10—C111.502 (3)
O9—C91.416 (2)C10—H1011.00
O9—H90.84C11—H1110.99
O10—C71.429 (2)C11—H1120.99
O10—C101.444 (3)C12—H1210.99
C1—C21.531 (3)C12—H1220.99
C1—H11.00O13—H1310.77 (4)
C2—C31.537 (3)O13—H1320.77 (4)
C2—H211.00
C7—O1—C1120.56 (16)O6—C6—H62108.9
C2—O2—H2109.5C5—C6—H62108.9
C3—O3—H3109.5H61—C6—H62107.7
C1—O5—C5114.08 (16)O1—C7—O10110.85 (16)
C6—O6—H6109.5O1—C7—C12115.37 (18)
C8—O8—H8109.5O10—C7—C12103.35 (16)
C9—O9—H9109.5O1—C7—C8105.89 (16)
C7—O10—C10111.08 (15)O10—C7—C8104.27 (16)
O5—C1—O1113.37 (17)C12—C7—C8116.56 (17)
O5—C1—C2109.92 (17)O8—C8—C9114.56 (17)
O1—C1—C2105.86 (16)O8—C8—C7116.18 (17)
O5—C1—H1109.2C9—C8—C7101.52 (16)
O1—C1—H1109.2O8—C8—H81108.0
C2—C1—H1109.2C9—C8—H81108.0
O2—C2—C1112.52 (17)C7—C8—H81108.0
O2—C2—C3107.95 (17)O9—C9—C10111.63 (17)
C1—C2—C3108.76 (16)O9—C9—C8114.27 (17)
O2—C2—H21109.2C10—C9—C8100.52 (16)
C1—C2—H21109.2O9—C9—H91110.0
C3—C2—H21109.2C10—C9—H91110.0
O3—C3—C4109.20 (17)C8—C9—H91110.0
O3—C3—C2111.39 (17)O10—C10—C11109.63 (17)
C4—C3—C2108.54 (17)O10—C10—C9104.45 (16)
O3—C3—H31109.2C11—C10—C9114.19 (18)
C4—C3—H31109.2O10—C10—H101109.5
C2—C3—H31109.2C11—C10—H101109.5
F4—C4—C3108.86 (17)C9—C10—H101109.5
F4—C4—C5107.01 (17)C10—C11—Br1109.98 (15)
C3—C4—C5109.97 (17)C10—C11—H111109.7
F4—C4—H41110.3Br1—C11—H111109.7
C3—C4—H41110.3C10—C11—H112109.7
C5—C4—H41110.3Br1—C11—H112109.7
O5—C5—C4110.20 (17)H111—C11—H112108.2
O5—C5—C6107.89 (17)C7—C12—Br2112.58 (14)
C4—C5—C6113.60 (18)C7—C12—H121109.1
O5—C5—H51108.3Br2—C12—H121109.1
C4—C5—H51108.3C7—C12—H122109.1
C6—C5—H51108.3Br2—C12—H122109.1
O6—C6—C5113.26 (18)H121—C12—H122107.8
O6—C6—H61108.9H131—O13—H13297 (4)
C5—C6—H61108.9
C5—O5—C1—O158.2 (2)C1—O1—C7—C8168.62 (17)
C5—O5—C1—C260.1 (2)C10—O10—C7—O1103.67 (18)
C7—O1—C1—O561.5 (2)C10—O10—C7—C12132.16 (17)
C7—O1—C1—C2177.93 (16)C10—O10—C7—C89.8 (2)
O5—C1—C2—O2177.85 (16)O1—C7—C8—O840.4 (2)
O1—C1—C2—O255.1 (2)O10—C7—C8—O8157.42 (17)
O5—C1—C2—C358.3 (2)C12—C7—C8—O889.4 (2)
O1—C1—C2—C364.5 (2)O1—C7—C8—C984.54 (18)
O2—C2—C3—O359.9 (2)O10—C7—C8—C932.48 (19)
C1—C2—C3—O3177.70 (16)C12—C7—C8—C9145.65 (18)
O2—C2—C3—C4179.81 (17)O8—C8—C9—O972.7 (2)
C1—C2—C3—C457.4 (2)C7—C8—C9—O9161.23 (17)
O3—C3—C4—F464.4 (2)O8—C8—C9—C10167.59 (16)
C2—C3—C4—F4173.98 (16)C7—C8—C9—C1041.56 (18)
O3—C3—C4—C5178.65 (17)C7—O10—C10—C11139.73 (18)
C2—C3—C4—C557.0 (2)C7—O10—C10—C917.0 (2)
C1—O5—C5—C459.0 (2)O9—C9—C10—O10158.07 (17)
C1—O5—C5—C6176.40 (17)C8—C9—C10—O1036.52 (19)
F4—C4—C5—O5174.61 (16)O9—C9—C10—C1182.2 (2)
C3—C4—C5—O556.5 (2)C8—C9—C10—C11156.26 (18)
F4—C4—C5—C664.2 (2)O10—C10—C11—Br160.1 (2)
C3—C4—C5—C6177.72 (18)C9—C10—C11—Br1176.87 (14)
O5—C5—C6—O671.7 (2)O1—C7—C12—Br261.8 (2)
C4—C5—C6—O650.8 (3)O10—C7—C12—Br2177.05 (13)
C1—O1—C7—O1078.9 (2)C8—C7—C12—Br263.4 (2)
C1—O1—C7—C1238.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O13i0.841.892.728 (3)172
O3—H3···O8ii0.842.022.851 (2)168
O6—H6···O3iii0.842.052.804 (2)149
O8—H8···O9ii0.842.012.830 (2)167
O9—H9···O2iv0.841.832.663 (2)172
O13—H131···O8v0.77 (4)2.23 (4)2.997 (2)175 (3)
O13—H132···O6vi0.77 (4)1.96 (4)2.712 (2)166 (4)
Symmetry codes: (i) x, y1, z; (ii) x+2, y1/2, z+1/2; (iii) x1/2, y1/2, z; (iv) x+2, y+1/2, z+1/2; (v) x+1, y+1/2, z+1/2; (vi) x1/2, y+1/2, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC12H21BrO10C12H19Br2FO8·H2O
Mr405.19488.10
Crystal system, space groupOrthorhombic, P212121Orthorhombic, P212121
Temperature (K)160160
a, b, c (Å)10.4516 (1), 11.3466 (1), 12.5599 (1)7.6133 (1), 9.4705 (1), 23.2227 (2)
V3)1489.48 (2)1674.40 (3)
Z44
Radiation typeMo KαMo Kα
µ (mm1)2.814.90
Crystal size (mm)0.20 × 0.20 × 0.150.23 × 0.22 × 0.15
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionNumerical
(Coppens et al., 1965)
Numerical
(Coppens et al., 1965)
Tmin, Tmax0.556, 0.6930.349, 0.583
No. of measured, independent and
observed [I > 2σ(I)] reflections
58745, 4340, 4246 58507, 4893, 4620
Rint0.0450.057
(sin θ/λ)max1)0.7040.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.042, 1.05 0.024, 0.061, 1.07
No. of reflections43404891
No. of parameters216231
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.260.47, 0.82
Absolute structureFlack (1983)Flack (1983)
Absolute structure parameter0.005 (4)0.002 (6)

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97 and PLATON (Spek, 2001).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O6i0.841.852.6708 (14)166
O3—H3···O12ii0.841.922.7362 (14)165
O6—H6···O9iii0.841.842.6723 (14)173
O8—H8···O2iv0.841.902.7287 (14)171
O9—H9···O3v0.842.012.8410 (14)170
O11—H11···O8vi0.841.972.7692 (15)160
O12—H12···O20.842.092.8953 (15)160
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x1/2, y+3/2, z+1; (iii) x1/2, y+3/2, z+2; (iv) x+1/2, y+3/2, z+1; (v) x+1, y, z; (vi) x+1, y1/2, z+3/2.
Comparison of selected geometric parameters (Å, °) for (I) and (II) with those of sucrose and sucralose top
(I)(II)sucroseasucraloseb
C1—O1—C7118.63 (10)120.56 (16)114.30 (8)119.2 (2)
O1—C1—O5109.67 (10)113.37 (17)110.49 (8)110.8 (2)
O1—C1—C2109.27 (10)105.86 (16)110.33 (8)106.3 (2)
O1—C7—O10113.00 (10)110.85 (16)111.00 (8)102.7 (2)
O1—C7—C8105.08 (10)105.89 (16)108.43 (7)112.5 (2)
O1—C7—C12109.03 (10)115.37 (18)109.93 (8)110.1 (2)
C1—O1—C7—C8-146.31 (10)168.62 (17)-159.81 (8)83.7 (2)
C1—O1—C7—O10-32.23 (15)-78.9 (2)-44.75 (11)-162.2 (2)
C1—O1—C7—C1286.54 (13)38.1 (2)73.70 (10)-46.1 (2)
C7—O1—C1—C2-131.92 (11)-177.93 (16)-129.25 (9)-147.9 (2)
C7—O1—C1—O5107.31 (11)61.5 (2)107.82 (10)91.4 (2)
O5—C5—C6—O6-65.69 (13)-71.7 (2)-56.42 (13)66.9 (2)
C4—C5—C6—O653.23 (15)50.8 (3)64.39 (13)-169.8 (2)
Notes: (a) Brown & Levy (1973); (b) Kanters et al. (1988).
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O13i0.841.892.728 (3)172.2
O3—H3···O8ii0.842.022.851 (2)167.7
O6—H6···O3iii0.842.052.804 (2)148.9
O8—H8···O9ii0.842.012.830 (2)166.7
O9—H9···O2iv0.841.832.663 (2)172.3
O13—H131···O8v0.77 (4)2.23 (4)2.997 (2)175 (3)
O13—H132···O6vi0.77 (4)1.96 (4)2.712 (2)166 (4)
Symmetry codes: (i) x, y1, z; (ii) x+2, y1/2, z+1/2; (iii) x1/2, y1/2, z; (iv) x+2, y+1/2, z+1/2; (v) x+1, y+1/2, z+1/2; (vi) x1/2, y+1/2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds