Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compounds, C20H25N2O2S+·I-, (I), and C29H25BrN2O2S, (II), respectively, both crystallize in space group P\overline 1. The pyrrole ring subtends an angle with the sulfonyl group of 33.6° in (I) and 21.5° in (II). The phenyl ring of the sulfonyl substituent makes a dihedral angle with the best plane of the indole moiety of 81.6° in (I) and 67.2° in (II). The lengthening or shortening of the C-N bond distances in both compounds is due to the electron-withdrawing character of the phenyl­sulfonyl group. The S atoms are in distorted tetrahedral configurations. The molecular structures are stabilized by C-H...O and C-H...I interactions in (I), and by C-H...O and C-H...N interactions in (II).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102018760/sk1573sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102018760/sk1573Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102018760/sk1573IIsup3.hkl
Contains datablock II

CCDC references: 201272; 201273

Comment top

Indoles are known for their important chemical, medicinal and physiological activities. They are of biological interest as antitumour-active substances. Structural studies of some derivatives of indole have been useful in understanding the molecular mechanisms controlling anxiety, convulsions, memory, learning and sleep in animals. Indoles have been of interest for many years, since a large number of natural products contain these heterocyclic nuclei, and they are found in a number of pharmaceutical products, fragrances and dyes (Padwa et al., 1999). Most of them are found to possess antimicrobial, anti-inflammatory (El-Sayed et al., 1986) and muscle relaxant properties. A variety of [b]annellated indoles are of biological interest as antitumour-active substances (Schollmeyer et al., 1995). Spiro indole derivatives exhibit antibacterial and antifungal properties (Sehgal et al., 1994). Against this background and in order to obtain detailed information on molecular conformation in the solid state, X-ray studies of the title compounds, (I) and (II), have been carried out and the results are presented here. \sch

Figs. 1 and 2 show the molecules of (I) and (II) with their atomic numbering schemes. The two compounds are discussed in parallel below, for ease of comparison. Selected geometric parameters are given in Tables 1 and 3.

The indole ring system is not strictly planar. The angular disposition of the bonds about the S atom shows significant deviation from that of a regular tetrahedron, with the largest deviations being in the O—S—O [O2—S—O1 119.69 (14)° in (I) and 120.5 (2)° in (II)] and O—S—N angles [O1—S—N1 106.57 (11)° in (I) and 107.4 (2)° in (II)]. This widening of the angles may be due to repulsive interactions between the two short SO bonds, similar to what is observed in related structures (Rodriguez et al., 1995).

The S—N bond distances [S—N1 1.665 (9) Å in (I) and 1.677 (4) Å in (II)] lie within the expected range of 1.63–1.69 Å (Kálmán et al., 1981). The average S—O, S—C, and S—N distances are 1.435, 1.776 and 1.674 Å, respectively, in (I), and 1.409, 1.746 and 1.676 Å, respectively, in (II); these are comparable with the values found in N-phenylsulfonamides (Gomes et al., 1993). The narrowing of the N1—S—C1 angle to 106.32 (11)° in (I), and of N1—S—C9 to 106.3 (2) in (II), from the ideal tetrahedral value is attributed to the Thorpe-Ingold effect (Bassindale, 1984).

The O1—S—N1—C10 and O1—S—C1—C6 torsion angles in (I), and the O1—S—N1—C1 and O1—S—C9—C10 torsion angles in (II), describe the conformation of phenylsulfonyl group with respect to the indole system, and the best planes of the indole and phenyl rings form dihedral angles of 81.6° in (I) and 67.2° in (II), as observed in similar structures (Sankaranarayanan et al., 2000).

The difference in C—N bond lengths may be due to the electron-withdrawing character of the phenylsulfonyl group (Govindasamy et al., 1998). The angular distortion of the benzene ring of the indole moiety is a characteristic property. The substitution of the phenylsulfonyl group at N1 results in an enhancement of the C—N bond lengths. The sum of the angles around N1 is 360° for (I) and 359.7° for (II), indicating sp2 hybridization.

The positions of the methyl atom C16 on C14 in (I), and of the Br atom on C2 in (II), do not deviate significantly from the least-squares planes through the pyrrole ring. The average value of the bond lengths of all the six-membered rings is 1.391 Å, but there are significant deviations among the individual values. In (I), the angles at C8 and C11 are 118.3 and 116.7°, respectively, and around C13 and C10 they are 121.3 and 122.5°, respectively. In (II), the angles around C8 and C5 are 120.4 and 121.1°, respectively, and around C7 and C4 they are 116.8 and 118.0°, respectively. This may be due to the fusion of the pyrrole ring to the six-membered benzene ring.

The C14—C16 bond length of 1.499 (3) Å in (I), and the C2—Br bond length of 1.873 (4) Å in (II), are comparable with values found in the literature (Allen et al., 1987). The strain is due to angular distortion rather than bond-length distortion. A similar effect has also been observed by Sankaranarayanan et al. (2000). The dihedral angles between the pyrrole and benzene rings are 1.79° in (I) and 2.18° in (II).

The orientation of the indole substituent is influenced by a weak C11—H11···O1 interaction in (I), defined by the C11—C10—N1—S torsion angle, and a C7—H7···O2 interaction in (II), defined by the C7—C8—N1—S torsion angle, while the orientation of the phenyl ring bound to the sulfonyl group is governed by a C6—H6···O1 interaction in (I), defined by the O1—S—C1—C6 torsion angle, and by a C14—H14···O2 interaction in (II), defined by the O2—S—C9—C14 torsion angle. In addition to van der Waals interactions, the packing of the molecules in the unit cell is governed by C—H···O and C—H···I interactions in (I), and C—H···O and C—H···N interactions in (II). Details of these interactions are given in Tables 2 and 4.

Experimental top

The preparation of compound (I) was carried out as follows. To a solution of 1-phenylsulfonyl-3-methyl-2-(N,N-dimethylamino)methylindole (1.64 g, 5 mmol) in dry tetrahydrofuran (50 ml) under nitrogen, n-BuLi (6.25 ml, 1.6M in hexane, 5 mmol) and trimethylethylenediamine (0.2 ml) were added, and the mixture was stirred at 195 K for 30 min. To the cherry-red reaction mixture, methyl iodide (0.95 ml, 15 mmol) was added. After stirring at 195 K for 2 h, the reaction mixture was slowly heated to room temperature, and after 1 h, it was quenched with a saturated solution of NH4Cl (20 ml). It was then extracted with dichloromethane (3 × 50 ml) and dried (MgSO4). Removal of the solvent followed by column chromatographic purification [silica gel, ethyl acetate-hexane (1:9)] afforded the pure quaternary salt, (I). The preparation of compound (II) was carried out as follows. A solution of 1-phenylsulfonyl-2-bromomethyl-3-bromo-indole (4.29 g, 10 mmol) and N-benzyl-p-toludine (2 equivalents) in dry dimethylformamide (25 ml) containing finely powdered K2CO3 (200 mg) was stirred at room temperature for 12 h. The reaction mixture was then poured onto ice (200 g) and the solid which formed was filtered and washed with an excess of water. The crude product was dried over CaCl2 and recrystallized from ethyl acetate-hexane(1:9) to give compound (II).

Refinement top

In both compounds, all H atoms were fixed geometrically and allowed to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: SMART (Siemens, 1996) for (I); CAD-4 Software (Enraf-Nonius, 1989) for (II). Cell refinement: SAINT (Siemens, 1996) for (I); CAD-4 Software for (II). Data reduction: SAINT for (I); CAD-4 Software for (II). For both compounds, program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the molecule of (II) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
(I) Trimethyl[3-methyl-1-(o-tolenesulfonyl)indol-2-ylmethyl]ammonium iodide top
Crystal data top
C20H25N2O2S+·IZ = 2
Mr = 484.38F(000) = 488
Triclinic, P1Dx = 1.520 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0259 (1) ÅCell parameters from 4122 reflections
b = 12.2874 (2) Åθ = 1.6–28.2°
c = 13.0484 (3) ŵ = 1.63 mm1
α = 80.316 (1)°T = 293 K
β = 79.508 (1)°Block, yellow
γ = 74.462 (1)°0.48 × 0.42 × 0.40 mm
V = 1058.64 (3) Å3
Data collection top
Siemens SMART CCD area-detector
diffractometer
5062 independent reflections
Radiation source: fine-focus sealed tube4494 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 28.2°, θmin = 1.6°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 96
Tmin = 0.472, Tmax = 0.522k = 1616
7395 measured reflectionsl = 1617
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.052P)2 + 0.0768P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.002
5062 reflectionsΔρmax = 0.84 e Å3
226 parametersΔρmin = 0.55 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0213 (13)
Crystal data top
C20H25N2O2S+·Iγ = 74.462 (1)°
Mr = 484.38V = 1058.64 (3) Å3
Triclinic, P1Z = 2
a = 7.0259 (1) ÅMo Kα radiation
b = 12.2874 (2) ŵ = 1.63 mm1
c = 13.0484 (3) ÅT = 293 K
α = 80.316 (1)°0.48 × 0.42 × 0.40 mm
β = 79.508 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
5062 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
4494 reflections with I > 2σ(I)
Tmin = 0.472, Tmax = 0.522Rint = 0.024
7395 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 0.99Δρmax = 0.84 e Å3
5062 reflectionsΔρmin = 0.55 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.15238 (2)0.514750 (14)0.782778 (12)0.04768 (9)
S0.19305 (9)0.06052 (5)0.85595 (4)0.03867 (13)
N10.2278 (3)0.17371 (15)0.77157 (14)0.0354 (4)
N20.3992 (3)0.30834 (17)0.93723 (15)0.0391 (4)
O10.0154 (3)0.08328 (18)0.89554 (16)0.0560 (5)
O20.3355 (3)0.03789 (15)0.92727 (15)0.0544 (5)
C10.2534 (4)0.05538 (18)0.7812 (2)0.0429 (5)
C20.4368 (5)0.0870 (2)0.7178 (3)0.0581 (7)
C30.4711 (6)0.1877 (3)0.6745 (4)0.0809 (11)
H30.59130.21210.63160.097*
C40.3332 (8)0.2525 (3)0.6932 (4)0.0868 (13)
H40.36290.31990.66360.104*
C50.1542 (6)0.2194 (3)0.7541 (4)0.0769 (11)
H50.06080.26290.76480.092*
C60.1125 (5)0.1202 (3)0.8000 (4)0.0574 (7)
H60.00820.09710.84290.069*
C70.5923 (5)0.0201 (3)0.6968 (4)0.0925 (14)
H7A0.71220.06230.65890.139*
H7B0.62020.00650.76220.139*
H7C0.54440.05140.65560.139*
C80.1425 (6)0.3416 (3)0.5229 (4)0.0451 (5)
H80.19020.40080.48170.054*
C90.2110 (2)0.2931 (1)0.6188 (1)0.0358 (4)
C100.1336 (5)0.2052 (3)0.6802 (3)0.0350 (4)
C110.0100 (4)0.1631 (2)0.6496 (2)0.0470 (5)
H110.06250.10600.69170.056*
C120.0709 (5)0.2106 (3)0.5528 (2)0.0557 (7)
H120.16280.18270.52850.067*
C130.0024 (5)0.2991 (3)0.4912 (2)0.0539 (7)
H130.04400.33010.42770.065*
C140.3526 (3)0.31675 (18)0.67330 (17)0.0360 (4)
C150.3631 (3)0.24486 (17)0.76521 (16)0.0329 (4)
C160.4601 (5)0.4091 (2)0.6336 (2)0.0514 (6)
H16A0.36740.48200.63820.077*
H16B0.51880.40290.56170.077*
H16C0.56310.40160.67550.077*
C170.4935 (3)0.23823 (19)0.84584 (18)0.0376 (4)
H17A0.61170.26290.81080.045*
H17B0.53680.15910.87480.045*
C180.5555 (5)0.2868 (3)1.0086 (2)0.0631 (8)
H18A0.50500.33231.06520.095*
H18B0.67360.30680.96940.095*
H18C0.58740.20781.03660.095*
C190.3450 (4)0.4333 (2)0.8993 (2)0.0457 (5)
H19A0.25010.44810.85110.069*
H19B0.46270.45680.86430.069*
H19C0.28740.47490.95800.069*
C200.2141 (5)0.2773 (3)0.9968 (2)0.0643 (8)
H20A0.24560.19821.02510.096*
H20B0.11640.29060.95050.096*
H20C0.16170.32301.05320.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.04048 (11)0.05981 (13)0.04467 (12)0.01184 (7)0.00632 (7)0.01245 (7)
S0.0486 (3)0.0345 (2)0.0357 (3)0.0166 (2)0.0111 (2)0.0040 (2)
N10.0438 (10)0.0324 (8)0.0330 (9)0.0150 (7)0.0118 (7)0.0032 (7)
N20.0462 (10)0.0428 (10)0.0331 (9)0.0166 (8)0.0088 (8)0.0058 (8)
O10.0562 (11)0.0584 (11)0.0497 (11)0.0221 (9)0.0050 (8)0.0031 (8)
O20.0790 (14)0.0455 (9)0.0474 (10)0.0241 (9)0.0320 (10)0.0096 (8)
C10.0503 (13)0.0311 (10)0.0517 (13)0.0123 (9)0.0219 (11)0.0021 (9)
C20.0513 (15)0.0435 (13)0.082 (2)0.0032 (11)0.0204 (14)0.0167 (13)
C30.075 (2)0.0593 (18)0.110 (3)0.0022 (17)0.021 (2)0.037 (2)
C40.120 (4)0.0453 (16)0.110 (3)0.0114 (19)0.051 (3)0.0273 (19)
C50.108 (3)0.0540 (17)0.090 (3)0.0414 (19)0.041 (2)0.0020 (17)
C60.0715 (18)0.0483 (14)0.0633 (17)0.0322 (13)0.0222 (14)0.0047 (12)
C70.0457 (17)0.086 (2)0.149 (4)0.0172 (17)0.016 (2)0.055 (3)
C80.0566 (14)0.0438 (12)0.0312 (11)0.0081 (11)0.0082 (10)0.0003 (9)
C90.0426 (11)0.0318 (9)0.0307 (10)0.0068 (8)0.0017 (8)0.0051 (8)
C100.0401 (11)0.0343 (9)0.0309 (10)0.0091 (8)0.0084 (8)0.0015 (8)
C110.0487 (13)0.0476 (13)0.0491 (14)0.0173 (11)0.0175 (11)0.0022 (10)
C120.0548 (15)0.0645 (16)0.0550 (16)0.0158 (13)0.0264 (13)0.0059 (13)
C130.0593 (16)0.0618 (16)0.0395 (13)0.0085 (13)0.0197 (12)0.0003 (11)
C140.0437 (11)0.0322 (9)0.0325 (10)0.0118 (8)0.0017 (8)0.0050 (8)
C150.0376 (10)0.0313 (9)0.0319 (10)0.0117 (8)0.0041 (8)0.0053 (8)
C160.0652 (16)0.0479 (13)0.0461 (14)0.0298 (12)0.0054 (12)0.0029 (11)
C170.0396 (11)0.0385 (10)0.0372 (11)0.0103 (9)0.0073 (9)0.0088 (9)
C180.076 (2)0.0657 (17)0.0529 (16)0.0035 (15)0.0382 (15)0.0126 (13)
C190.0505 (13)0.0397 (11)0.0501 (14)0.0112 (10)0.0120 (11)0.0088 (10)
C200.077 (2)0.0757 (19)0.0499 (15)0.0452 (17)0.0200 (14)0.0232 (14)
Geometric parameters (Å, º) top
S—O11.429 (2)C8—H80.9300
S—O21.4311 (18)C9—C101.403 (4)
S—N11.6659 (18)C9—C141.437 (3)
S—C11.775 (2)C10—C111.393 (3)
N1—C101.416 (2)C11—C121.390 (4)
N1—C151.438 (3)C11—H110.9300
N2—C201.496 (3)C12—C131.396 (4)
N2—C191.499 (3)C12—H120.9300
N2—C181.509 (3)C13—H130.9300
N2—C171.535 (3)C14—C151.366 (3)
C1—C61.394 (3)C14—C161.499 (3)
C1—C21.395 (4)C15—C171.495 (3)
C2—C31.391 (4)C16—H16A0.9600
C2—C71.497 (3)C16—H16B0.9600
C3—C41.376 (6)C16—H16C0.9600
C3—H30.9300C17—H17A0.9700
C4—C51.360 (5)C17—H17B0.9700
C4—H40.9300C18—H18A0.9600
C5—C61.386 (6)C18—H18B0.9600
C5—H50.9300C18—H18C0.9600
C6—H60.9300C19—H19A0.9600
C7—H7A0.9600C19—H19B0.9600
C7—H7B0.9600C19—H19C0.9600
C7—H7C0.9600C20—H20A0.9600
C8—C131.381 (3)C20—H20B0.9600
C8—C91.403 (5)C20—H20C0.9600
O1—S—O2119.69 (14)C9—C10—N1107.2 (3)
O1—S—N1106.57 (11)C12—C11—C10116.7 (2)
O2—S—N1107.13 (10)C12—C11—H11121.7
O1—S—C1108.44 (13)C10—C11—H11121.7
O2—S—C1107.96 (11)C11—C12—C13121.7 (3)
N1—S—C1106.32 (11)C11—C12—H12119.2
C10—N1—C15107.92 (15)C13—C12—H12119.2
C10—N1—S120.47 (13)C8—C13—C12121.3 (2)
C15—N1—S131.13 (15)C8—C13—H13119.4
C20—N2—C19107.5 (2)C12—C13—H13119.4
C20—N2—C18110.3 (2)C15—C14—C9108.42 (18)
C19—N2—C18108.2 (2)C15—C14—C16128.0 (2)
C20—N2—C17112.73 (19)C9—C14—C16123.54 (19)
C19—N2—C17111.33 (18)C14—C15—N1108.23 (18)
C18—N2—C17106.7 (2)C14—C15—C17126.9 (2)
C6—C1—C2122.3 (2)N1—C15—C17124.91 (19)
C6—C1—S114.56 (18)C14—C16—H16A109.5
C2—C1—S122.7 (2)C14—C16—H16B109.5
C3—C2—C1115.9 (3)H16A—C16—H16B109.5
C3—C2—C7120.4 (3)C14—C16—H16C109.5
C1—C2—C7123.8 (2)H16A—C16—H16C109.5
C4—C3—C2122.2 (4)H16B—C16—H16C109.5
C4—C3—H3118.9C15—C17—N2116.17 (18)
C2—C3—H3118.9C15—C17—H17A108.2
C5—C4—C3121.1 (3)N2—C17—H17A108.2
C5—C4—H4119.5C15—C17—H17B108.2
C3—C4—H4119.5N2—C17—H17B108.2
C4—C5—C6119.3 (4)H17A—C17—H17B107.4
C4—C5—H5120.4N2—C18—H18A109.5
C6—C5—H5120.4N2—C18—H18B109.5
C5—C6—C1119.3 (4)H18A—C18—H18B109.5
C5—C6—H6120.3N2—C18—H18C109.5
C1—C6—H6120.3H18A—C18—H18C109.5
C2—C7—H7A109.5H18B—C18—H18C109.5
C2—C7—H7B109.5N2—C19—H19A109.5
H7A—C7—H7B109.5N2—C19—H19B109.5
C2—C7—H7C109.5H19A—C19—H19B109.5
H7A—C7—H7C109.5N2—C19—H19C109.5
H7B—C7—H7C109.5H19A—C19—H19C109.5
C13—C8—C9118.3 (3)H19B—C19—H19C109.5
C13—C8—H8120.9N2—C20—H20A109.5
C9—C8—H8120.9N2—C20—H20B109.5
C8—C9—C10119.5 (3)H20A—C20—H20B109.5
C8—C9—C14132.18 (10)N2—C20—H20C109.5
C10—C9—C14108.25 (10)H20A—C20—H20C109.5
C11—C10—C9122.5 (3)H20B—C20—H20C109.5
C11—C10—N1130.34 (15)
O1—S—N1—C1061.93 (18)C14—C9—C10—N10.6 (3)
O2—S—N1—C10168.84 (16)C15—N1—C10—C11179.3 (2)
C1—S—N1—C1053.60 (18)S—N1—C10—C117.7 (3)
O1—S—N1—C15127.0 (2)C15—N1—C10—C90.51 (16)
O2—S—N1—C152.2 (2)S—N1—C10—C9172.42 (10)
C1—S—N1—C15117.5 (2)C9—C10—C11—C121.5 (3)
O1—S—C1—C617.68 (19)N1—C10—C11—C12178.6 (2)
O2—S—C1—C6113.38 (16)C10—C11—C12—C132.4 (4)
N1—S—C1—C6131.95 (15)C9—C8—C13—C120.3 (3)
O1—S—C1—C2169.2 (2)C11—C12—C13—C81.5 (5)
O2—S—C1—C259.7 (2)C8—C9—C14—C15179.4 (3)
N1—S—C1—C255.0 (2)C10—C9—C14—C150.46 (18)
C6—C1—C2—C30.2 (4)C8—C9—C14—C161.4 (3)
S—C1—C2—C3172.3 (2)C10—C9—C14—C16177.46 (19)
C6—C1—C2—C7179.4 (2)C9—C14—C15—N10.1 (2)
S—C1—C2—C76.8 (4)C16—C14—C15—N1177.7 (2)
C1—C2—C3—C40.1 (5)C9—C14—C15—C17179.01 (19)
C7—C2—C3—C4179.1 (3)C16—C14—C15—C173.2 (4)
C2—C3—C4—C51.0 (6)C10—N1—C15—C140.2 (2)
C3—C4—C5—C61.6 (4)S—N1—C15—C14171.68 (17)
C4—C5—C6—C11.2 (7)C10—N1—C15—C17179.40 (18)
C2—C1—C6—C50.3 (3)S—N1—C15—C177.5 (3)
S—C1—C6—C5173.4 (3)C14—C15—C17—N294.1 (3)
C13—C8—C9—C101.2 (5)N1—C15—C17—N286.9 (3)
C13—C8—C9—C14179.9 (2)C20—N2—C17—C1557.8 (3)
C8—C9—C10—C110.2 (4)C19—N2—C17—C1563.1 (3)
C14—C9—C10—C11179.3 (2)C18—N2—C17—C15179.0 (2)
C8—C9—C10—N1179.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19A···I10.962.983.882 (3)157
C20—H20A···O20.962.413.078 (4)127
C17—H17B···O20.972.262.928 (3)125
C6—H6···O10.932.412.837 (2)108
C11—H11···O10.932.693.191 (3)114
(II) Benzyl[3-bromo-1-(phenylsulfonyl)indol-2-ylmethyl]tolylamine top
Crystal data top
C29H25BrN2O2SZ = 2
Mr = 545.48F(000) = 560
Triclinic, P1Dx = 1.471 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 9.742 (5) ÅCell parameters from 25 reflections
b = 12.211 (5) Åθ = 1.9–25.0°
c = 12.446 (5) ŵ = 1.78 mm1
α = 61.362 (5)°T = 293 K
β = 99.119 (5)°Block, yellow
γ = 108.610 (5)°0.48 × 0.34 × 0.28 mm
V = 1231.5 (10) Å3
Data collection top
Enraf-Nonius CAD-4
diffractometer
2645 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 25.0°, θmin = 1.9°
ω scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 1413
Tmin = 0.481, Tmax = 0.635l = 1414
4619 measured reflections3 standard reflections every 120 min
4340 independent reflections intensity decay: <2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.052P)2 + 0.0768P]
where P = (Fo2 + 2Fc2)/3
4340 reflections(Δ/σ)max = 0.007
317 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C29H25BrN2O2Sγ = 108.610 (5)°
Mr = 545.48V = 1231.5 (10) Å3
Triclinic, P1Z = 2
a = 9.742 (5) ÅMo Kα radiation
b = 12.211 (5) ŵ = 1.78 mm1
c = 12.446 (5) ÅT = 293 K
α = 61.362 (5)°0.48 × 0.34 × 0.28 mm
β = 99.119 (5)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2645 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.020
Tmin = 0.481, Tmax = 0.6353 standard reflections every 120 min
4619 measured reflections intensity decay: <2%
4340 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 0.89Δρmax = 0.40 e Å3
4340 reflectionsΔρmin = 0.44 e Å3
317 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.62726 (6)0.72945 (5)0.20377 (5)0.0632 (2)
S0.24246 (14)0.64916 (11)0.54329 (12)0.0567 (3)
O10.1236 (4)0.6136 (3)0.4735 (4)0.0727 (10)
O20.2565 (4)0.5640 (3)0.6693 (3)0.0790 (11)
N10.3940 (4)0.6731 (3)0.4776 (3)0.0486 (9)
N20.2357 (4)0.8348 (3)0.2337 (4)0.0534 (10)
C10.4108 (5)0.7055 (4)0.3537 (4)0.0449 (11)
C20.5445 (5)0.6996 (4)0.3447 (4)0.0443 (10)
C30.6186 (5)0.6654 (4)0.4591 (4)0.0456 (11)
C40.7565 (5)0.6485 (4)0.4965 (4)0.0537 (12)
H40.81880.65610.44230.064*
C50.7969 (6)0.6205 (5)0.6146 (5)0.0663 (14)
H50.88840.60920.64140.080*
C60.7047 (7)0.6085 (5)0.6949 (5)0.0719 (15)
H60.73660.59080.77450.086*
C70.5661 (6)0.6218 (4)0.6620 (5)0.0646 (14)
H70.50430.61190.71770.078*
C80.5236 (5)0.6506 (4)0.5409 (4)0.0485 (11)
C90.2488 (5)0.7989 (4)0.5319 (4)0.0493 (11)
C100.1484 (6)0.8605 (5)0.4619 (5)0.0677 (14)
H100.08030.82510.41730.081*
C110.1481 (7)0.9755 (6)0.4574 (5)0.0824 (17)
H110.07991.01800.40940.099*
C120.2474 (7)1.0269 (5)0.5229 (5)0.0773 (17)
H120.24641.10410.52010.093*
C130.3472 (7)0.9665 (5)0.5920 (5)0.0807 (17)
H130.41501.00270.63610.097*
C140.3501 (6)0.8513 (5)0.5980 (5)0.0706 (15)
H140.41920.80970.64570.085*
C150.2963 (5)0.7299 (4)0.2567 (4)0.0542 (12)
H15A0.33660.74980.18090.065*
H15B0.21780.65020.27940.065*
C160.0842 (5)0.8115 (5)0.1920 (5)0.0633 (13)
H16A0.04790.88060.18330.076*
H16B0.02740.73060.25470.076*
C170.0610 (5)0.8043 (5)0.0731 (5)0.0592 (13)
C180.0058 (6)0.6882 (6)0.0703 (6)0.0832 (18)
H180.04190.61390.14210.100*
C190.0198 (8)0.6808 (7)0.0396 (7)0.101 (2)
H190.06220.60120.04010.122*
C200.0281 (7)0.7894 (7)0.1457 (7)0.0879 (19)
H200.01600.78430.21900.105*
C210.0934 (6)0.9049 (7)0.1453 (6)0.0787 (16)
H210.12780.97890.21790.094*
C220.1090 (5)0.9126 (5)0.0362 (5)0.0638 (13)
H220.15270.99260.03680.077*
C230.3265 (5)0.9644 (4)0.1802 (4)0.0468 (11)
C240.2789 (5)1.0641 (5)0.1725 (5)0.0617 (13)
H240.18571.04570.19740.074*
C250.3678 (6)1.1891 (5)0.1285 (5)0.0628 (13)
H250.33281.25340.12460.075*
C260.5059 (6)1.2221 (4)0.0904 (4)0.0553 (12)
C270.5511 (5)1.1243 (5)0.0954 (4)0.0559 (12)
H270.64361.14390.06840.067*
C280.4643 (5)0.9979 (4)0.1390 (4)0.0482 (11)
H280.49910.93450.14070.058*
C290.6054 (7)1.3593 (5)0.0429 (5)0.0810 (17)
H29A0.57691.41150.03890.122*
H29B0.70331.35780.04260.122*
H29C0.59931.39560.09480.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0785 (4)0.0635 (3)0.0559 (3)0.0306 (3)0.0025 (3)0.0267 (3)
S0.0587 (8)0.0391 (6)0.0652 (8)0.0018 (5)0.0160 (6)0.0211 (6)
O10.051 (2)0.061 (2)0.107 (3)0.0095 (16)0.013 (2)0.051 (2)
O20.095 (3)0.0491 (19)0.071 (2)0.0154 (19)0.031 (2)0.0047 (18)
N10.053 (2)0.041 (2)0.052 (2)0.0117 (17)0.0025 (18)0.0218 (17)
N20.047 (2)0.053 (2)0.070 (3)0.0193 (19)0.0052 (19)0.033 (2)
C10.056 (3)0.033 (2)0.047 (3)0.012 (2)0.001 (2)0.020 (2)
C20.057 (3)0.032 (2)0.044 (2)0.013 (2)0.000 (2)0.0170 (19)
C30.053 (3)0.032 (2)0.045 (3)0.008 (2)0.000 (2)0.0148 (19)
C40.058 (3)0.038 (2)0.059 (3)0.013 (2)0.009 (2)0.020 (2)
C50.063 (3)0.050 (3)0.069 (4)0.016 (3)0.015 (3)0.019 (3)
C60.095 (4)0.063 (3)0.050 (3)0.027 (3)0.017 (3)0.022 (3)
C70.085 (4)0.048 (3)0.054 (3)0.019 (3)0.003 (3)0.017 (2)
C80.060 (3)0.031 (2)0.046 (3)0.008 (2)0.003 (2)0.0152 (19)
C90.052 (3)0.042 (2)0.048 (3)0.003 (2)0.011 (2)0.020 (2)
C100.067 (3)0.080 (4)0.080 (4)0.027 (3)0.014 (3)0.055 (3)
C110.103 (5)0.089 (4)0.082 (4)0.057 (4)0.013 (4)0.046 (4)
C120.120 (5)0.052 (3)0.063 (4)0.017 (3)0.013 (4)0.030 (3)
C130.099 (5)0.073 (4)0.082 (4)0.011 (4)0.006 (4)0.054 (3)
C140.080 (4)0.069 (3)0.066 (3)0.023 (3)0.013 (3)0.036 (3)
C150.058 (3)0.051 (3)0.058 (3)0.018 (2)0.010 (2)0.030 (2)
C160.046 (3)0.069 (3)0.075 (4)0.016 (2)0.001 (3)0.034 (3)
C170.044 (3)0.065 (3)0.074 (4)0.020 (2)0.011 (3)0.036 (3)
C180.078 (4)0.078 (4)0.089 (4)0.017 (3)0.028 (3)0.046 (3)
C190.104 (5)0.083 (5)0.132 (6)0.036 (4)0.053 (5)0.071 (5)
C200.084 (5)0.114 (6)0.096 (5)0.049 (4)0.030 (4)0.067 (5)
C210.064 (4)0.101 (5)0.074 (4)0.036 (3)0.012 (3)0.037 (4)
C220.052 (3)0.068 (3)0.079 (4)0.024 (3)0.014 (3)0.039 (3)
C230.050 (3)0.051 (3)0.047 (3)0.022 (2)0.012 (2)0.028 (2)
C240.054 (3)0.060 (3)0.083 (4)0.023 (3)0.009 (3)0.035 (3)
C250.076 (4)0.060 (3)0.067 (3)0.030 (3)0.005 (3)0.032 (3)
C260.070 (3)0.052 (3)0.042 (3)0.023 (2)0.005 (2)0.017 (2)
C270.048 (3)0.059 (3)0.055 (3)0.024 (2)0.002 (2)0.017 (2)
C280.057 (3)0.049 (3)0.045 (2)0.027 (2)0.004 (2)0.021 (2)
C290.095 (4)0.053 (3)0.086 (4)0.014 (3)0.005 (3)0.027 (3)
Geometric parameters (Å, º) top
Br—C21.873 (4)C13—H130.9300
S—O11.416 (4)C14—H140.9300
S—O21.421 (4)C15—H15A0.9700
S—N11.677 (4)C15—H15B0.9700
S—C91.747 (4)C16—C171.501 (7)
N1—C81.410 (6)C16—H16A0.9700
N1—C11.419 (5)C16—H16B0.9700
N2—C231.419 (5)C17—C221.379 (7)
N2—C161.469 (6)C17—C181.374 (7)
N2—C151.466 (5)C18—C191.395 (9)
C1—C21.352 (6)C18—H180.9300
C1—C151.493 (6)C19—C201.357 (9)
C2—C31.421 (6)C19—H190.9300
C3—C41.396 (6)C20—C211.351 (8)
C3—C81.394 (6)C20—H200.9300
C4—C51.362 (7)C21—C221.387 (8)
C4—H40.9300C21—H210.9300
C5—C61.374 (8)C22—H220.9300
C5—H50.9300C23—C281.378 (6)
C6—C71.384 (8)C23—C241.393 (6)
C6—H60.9300C24—C251.373 (7)
C7—C81.397 (7)C24—H240.9300
C7—H70.9300C25—C261.367 (7)
C9—C101.361 (7)C25—H250.9300
C9—C141.379 (7)C26—C271.372 (6)
C10—C111.379 (7)C26—C291.514 (7)
C10—H100.9300C27—C281.379 (6)
C11—C121.359 (8)C27—H270.9300
C11—H110.9300C28—H280.9300
C12—C131.346 (8)C29—H29A0.9600
C12—H120.9300C29—H29B0.9600
C13—C141.382 (7)C29—H29C0.9600
O1—S—O2120.5 (2)N2—C15—C1115.8 (4)
O1—S—N1107.4 (2)N2—C15—H15A108.3
O2—S—N1105.3 (2)C1—C15—H15A108.3
O1—S—C9109.0 (2)N2—C15—H15B108.3
O2—S—C9107.4 (2)C1—C15—H15B108.3
N1—S—C9106.30 (19)H15A—C15—H15B107.4
C8—N1—C1108.1 (4)N2—C16—C17114.8 (4)
C8—N1—S124.7 (3)N2—C16—H16A108.6
C1—N1—S126.9 (3)C17—C16—H16A108.6
C23—N2—C16117.7 (4)N2—C16—H16B108.6
C23—N2—C15118.2 (4)C17—C16—H16B108.6
C16—N2—C15112.1 (4)H16A—C16—H16B107.6
C2—C1—N1106.6 (4)C22—C17—C18117.7 (5)
C2—C1—C15127.7 (4)C22—C17—C16121.5 (5)
N1—C1—C15125.5 (4)C18—C17—C16120.8 (5)
C1—C2—C3111.2 (4)C17—C18—C19120.5 (6)
C1—C2—Br126.4 (3)C17—C18—H18119.7
C3—C2—Br122.4 (3)C19—C18—H18119.7
C4—C3—C8121.1 (4)C20—C19—C18120.3 (6)
C4—C3—C2133.0 (4)C20—C19—H19119.8
C8—C3—C2105.8 (4)C18—C19—H19119.8
C5—C4—C3118.0 (5)C21—C20—C19120.2 (6)
C5—C4—H4121.0C21—C20—H20119.9
C3—C4—H4121.0C19—C20—H20119.9
C4—C5—C6121.1 (5)C20—C21—C22119.7 (6)
C4—C5—H5119.4C20—C21—H21120.1
C6—C5—H5119.4C22—C21—H21120.1
C5—C6—C7122.6 (5)C17—C22—C21121.5 (5)
C5—C6—H6118.7C17—C22—H22119.2
C7—C6—H6118.7C21—C22—H22119.2
C8—C7—C6116.8 (5)C28—C23—C24117.0 (4)
C8—C7—H7121.6C28—C23—N2123.4 (4)
C6—C7—H7121.6C24—C23—N2119.5 (4)
C7—C8—C3120.4 (5)C25—C24—C23120.9 (5)
C7—C8—N1131.3 (5)C25—C24—H24119.5
C3—C8—N1108.2 (4)C23—C24—H24119.5
C10—C9—C14120.3 (5)C26—C25—C24122.3 (5)
C10—C9—S119.3 (4)C26—C25—H25118.9
C14—C9—S120.3 (4)C24—C25—H25118.9
C9—C10—C11119.7 (5)C25—C26—C27116.6 (5)
C9—C10—H10120.2C25—C26—C29122.8 (5)
C11—C10—H10120.2C27—C26—C29120.6 (5)
C10—C11—C12120.1 (6)C26—C27—C28122.4 (5)
C10—C11—H11119.9C26—C27—H27118.8
C12—C11—H11119.9C28—C27—H27118.8
C13—C12—C11120.3 (5)C23—C28—C27120.7 (4)
C13—C12—H12119.8C23—C28—H28119.6
C11—C12—H12119.8C27—C28—H28119.6
C12—C13—C14120.8 (5)C26—C29—H29A109.5
C12—C13—H13119.6C26—C29—H29B109.5
C14—C13—H13119.6H29A—C29—H29B109.5
C9—C14—C13118.8 (5)C26—C29—H29C109.5
C9—C14—H14120.6H29A—C29—H29C109.5
C13—C14—H14120.6H29B—C29—H29C109.5
O1—S—N1—C8149.1 (3)C14—C9—C10—C110.2 (8)
O2—S—N1—C819.5 (4)S—C9—C10—C11176.7 (4)
C9—S—N1—C894.2 (4)C9—C10—C11—C120.2 (9)
O1—S—N1—C123.8 (4)C10—C11—C12—C130.5 (9)
O2—S—N1—C1153.4 (3)C11—C12—C13—C140.3 (9)
C9—S—N1—C192.8 (4)C10—C9—C14—C130.3 (8)
C8—N1—C1—C21.2 (4)S—C9—C14—C13176.6 (4)
S—N1—C1—C2172.6 (3)C12—C13—C14—C90.0 (9)
C8—N1—C1—C15176.6 (4)C23—N2—C15—C168.1 (5)
S—N1—C1—C152.7 (6)C16—N2—C15—C1149.9 (4)
N1—C1—C2—C30.6 (5)C2—C1—C15—N2127.4 (5)
C15—C1—C2—C3175.9 (4)N1—C1—C15—N258.2 (6)
N1—C1—C2—Br178.7 (3)C23—N2—C16—C1780.3 (5)
C15—C1—C2—Br3.5 (6)C15—N2—C16—C1762.0 (5)
C1—C2—C3—C4179.2 (4)N2—C16—C17—C2269.1 (6)
Br—C2—C3—C41.4 (6)N2—C16—C17—C18109.2 (5)
C1—C2—C3—C80.2 (5)C22—C17—C18—C191.9 (8)
Br—C2—C3—C8179.6 (3)C16—C17—C18—C19176.4 (5)
C8—C3—C4—C51.8 (6)C17—C18—C19—C202.2 (10)
C2—C3—C4—C5177.1 (4)C18—C19—C20—C211.8 (10)
C3—C4—C5—C60.3 (7)C19—C20—C21—C221.2 (9)
C4—C5—C6—C71.1 (8)C18—C17—C22—C211.3 (8)
C5—C6—C7—C81.1 (7)C16—C17—C22—C21177.0 (5)
C6—C7—C8—C30.3 (6)C20—C21—C22—C171.0 (8)
C6—C7—C8—N1178.3 (4)C16—N2—C23—C28134.0 (4)
C4—C3—C8—C71.8 (6)C15—N2—C23—C285.9 (6)
C2—C3—C8—C7177.4 (4)C16—N2—C23—C2448.8 (6)
C4—C3—C8—N1179.8 (4)C15—N2—C23—C24171.3 (4)
C2—C3—C8—N11.0 (4)C28—C23—C24—C251.6 (7)
C1—N1—C8—C7176.7 (4)N2—C23—C24—C25175.7 (4)
S—N1—C8—C79.2 (6)C23—C24—C25—C260.0 (8)
C1—N1—C8—C31.4 (4)C24—C25—C26—C271.5 (8)
S—N1—C8—C3172.6 (3)C24—C25—C26—C29179.4 (5)
O1—S—C9—C100.8 (5)C25—C26—C27—C281.5 (7)
O2—S—C9—C10132.9 (4)C29—C26—C27—C28179.4 (4)
N1—S—C9—C10114.7 (4)C24—C23—C28—C271.7 (6)
O1—S—C9—C14176.1 (4)N2—C23—C28—C27175.6 (4)
O2—S—C9—C1444.0 (5)C26—C27—C28—C230.1 (7)
N1—S—C9—C1468.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···N20.932.873.268 (7)107
C14—H14···O20.932.813.025 (6)95
C7—H7···O20.932.352.876 (7)116

Experimental details

(I)(II)
Crystal data
Chemical formulaC20H25N2O2S+·IC29H25BrN2O2S
Mr484.38545.48
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)293293
a, b, c (Å)7.0259 (1), 12.2874 (2), 13.0484 (3)9.742 (5), 12.211 (5), 12.446 (5)
α, β, γ (°)80.316 (1), 79.508 (1), 74.462 (1)61.362 (5), 99.119 (5), 108.610 (5)
V3)1058.64 (3)1231.5 (10)
Z22
Radiation typeMo KαMo Kα
µ (mm1)1.631.78
Crystal size (mm)0.48 × 0.42 × 0.400.48 × 0.34 × 0.28
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
ψ scan
(North et al., 1968)
Tmin, Tmax0.472, 0.5220.481, 0.635
No. of measured, independent and
observed [I > 2σ(I)] reflections
7395, 5062, 4494 4619, 4340, 2645
Rint0.0240.020
(sin θ/λ)max1)0.6660.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.087, 0.99 0.045, 0.146, 0.89
No. of reflections50624340
No. of parameters226317
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 0.550.40, 0.44

Computer programs: SMART (Siemens, 1996), CAD-4 Software (Enraf-Nonius, 1989), SAINT (Siemens, 1996), CAD-4 Software, SAINT, SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97 and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) for (I) top
S—O11.429 (2)N1—C151.438 (3)
S—O21.4311 (18)N2—C201.496 (3)
S—N11.6659 (18)N2—C191.499 (3)
S—C11.775 (2)N2—C181.509 (3)
N1—C101.416 (2)
O1—S—O2119.69 (14)N1—S—C1106.32 (11)
O1—S—N1106.57 (11)C10—N1—C15107.92 (15)
O2—S—N1107.13 (10)C10—N1—S120.47 (13)
O1—S—C1108.44 (13)C15—N1—S131.13 (15)
O2—S—C1107.96 (11)C20—N2—C19107.5 (2)
O1—S—N1—C1061.93 (18)O1—S—C1—C617.68 (19)
O2—S—N1—C10168.84 (16)O1—S—C1—C2169.2 (2)
C1—S—N1—C1053.60 (18)O2—S—C1—C259.7 (2)
O1—S—N1—C15127.0 (2)C15—N1—C10—C11179.3 (2)
O2—S—N1—C152.2 (2)S—N1—C10—C117.7 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C19—H19A···I10.962.983.882 (3)157
C20—H20A···O20.962.413.078 (4)127
C17—H17B···O20.972.262.928 (3)125
C6—H6···O10.932.412.837 (2)108
C11—H11···O10.932.693.191 (3)114
Selected geometric parameters (Å, º) for (II) top
Br—C21.873 (4)S—C91.747 (4)
S—O11.416 (4)N1—C81.410 (6)
S—O21.421 (4)N1—C11.419 (5)
S—N11.677 (4)N2—C151.466 (5)
O1—S—O2120.5 (2)O2—S—C9107.4 (2)
O1—S—N1107.4 (2)N1—S—C9106.30 (19)
O2—S—N1105.3 (2)C8—N1—S124.7 (3)
O1—S—C9109.0 (2)C1—N1—S126.9 (3)
O1—S—N1—C8149.1 (3)S—N1—C8—C79.2 (6)
O2—S—N1—C819.5 (4)O1—S—C9—C100.8 (5)
O1—S—N1—C123.8 (4)O2—S—C9—C10132.9 (4)
O2—S—N1—C1153.4 (3)O2—S—C9—C1444.0 (5)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C10—H10···N20.932.873.268 (7)107
C14—H14···O20.932.813.025 (6)95
C7—H7···O20.932.352.876 (7)116
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds