Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010302883X/sk1689sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S010827010302883X/sk1689Isup2.hkl |
CCDC reference: 233116
In a typical procedure, papaverine hydrochloride (5 g, 13.30 mmol) was dissolved in water (150 cm3). To this solution an equimolar amount of sodium hydroxide (0.532 g) dissolved in water (25 cm3) was added dropwise under vigorous stirring. White precipitated papaverine powder was filtered off, washed with water and dried. The prepared papaverine was used in the next step of the synthesis. Sodium benzoate (5 g, 3.47 mmol) dissolved in absolute ethanol (25 cm3) was mixed with an ethanol solution (25 cm3) of zinc chloride (0.236 g; 1.73 mmol). After stirring for 30 min, the solution was filtered and then an ethanol solution (30 cm3) of papaverine (1.178 g; 3.47 mmol) was added to the filtrate. The reaction mixture was stirred for 1 h, and then filtered and left to stand at room temperature. Within a week colourless crystals appeared. Recrystallization from ethanol gave crystals suitable for X-ray diffraction.
155 reflections are missing from the dataset [up to sin(θ)/λ=0.6] as a result of the use of an IPDS one-circle imaging-plate diffractometer system. All H atoms were found in a difference map and then treated as riding, with Uiso(H) values equal to 1.2Ueq(C) [1.5Ueq(C) for the methyl groups].
Data collection: ?EXPOSE (Stoe, 1997); cell refinement: CELL (Stoe, 1997); data reduction: INTEGRATE (Stoe, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL97 and enCIFer (Smith & Johnson, 2002).
[Zn2(C7H5O2)4(C20H21NO4)2] | F(000) = 1344 |
Mr = 1293.98 | Dx = 1.382 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 8002 reflections |
a = 14.1780 (9) Å | θ = 3.0–30.3° |
b = 14.4118 (6) Å | µ = 0.84 mm−1 |
c = 15.5442 (11) Å | T = 193 K |
β = 101.799 (8)° | Block, colourless |
V = 3109.0 (3) Å3 | 0.60 × 0.45 × 0.38 mm |
Z = 2 |
IPDS Stoe diffractometer | 8890 independent reflections |
Radiation source: fine-focus sealed tube | 5836 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.057 |
Detector resolution: 150 pixels mm-1 | θmax = 30.4°, θmin = 3.0° |
D=50mm, Φ 0–250°, ΔΦ 1.0°, 1 min/rec scans | h = −20→20 |
Absorption correction: multi-scan (XPREP in SHELXTL; Sheldrick, 1996) | k = −19→18 |
Tmin = 0.659, Tmax = 0.737 | l = −22→22 |
45411 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.088 | H-atom parameters constrained |
S = 0.91 | w = 1/[σ2(Fo2) + (0.05P)2] where P = (Fo2 + 2Fc2)/3 |
8890 reflections | (Δ/σ)max < 0.001 |
402 parameters | Δρmax = 0.60 e Å−3 |
0 restraints | Δρmin = −0.69 e Å−3 |
[Zn2(C7H5O2)4(C20H21NO4)2] | V = 3109.0 (3) Å3 |
Mr = 1293.98 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 14.1780 (9) Å | µ = 0.84 mm−1 |
b = 14.4118 (6) Å | T = 193 K |
c = 15.5442 (11) Å | 0.60 × 0.45 × 0.38 mm |
β = 101.799 (8)° |
IPDS Stoe diffractometer | 8890 independent reflections |
Absorption correction: multi-scan (XPREP in SHELXTL; Sheldrick, 1996) | 5836 reflections with I > 2σ(I) |
Tmin = 0.659, Tmax = 0.737 | Rint = 0.057 |
45411 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.088 | H-atom parameters constrained |
S = 0.91 | Δρmax = 0.60 e Å−3 |
8890 reflections | Δρmin = −0.69 e Å−3 |
402 parameters |
Experimental. 155 reflections are missing from the dataset up to sin(θ)/λ=0.6. This is due to IPDS 1-circle imaging plate diffractometer system used. The missing cusp of data could be measured only after remounting the crystal in a different orientation which was not done in the experiment. Sufficient overdetermination (data/parameter ratio 22.1) has been achieved by measuring to θ = 30.4 °. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn | 0.005948 (14) | 0.101252 (15) | 0.029481 (13) | 0.01757 (6) | |
N1 | −0.00881 (10) | 0.24306 (11) | 0.04829 (9) | 0.0194 (3) | |
O1A | −0.05128 (11) | 0.10760 (11) | −0.10242 (8) | 0.0349 (3) | |
O1B | −0.06363 (11) | −0.03956 (10) | −0.14728 (8) | 0.0304 (3) | |
O2A | 0.13705 (9) | 0.08380 (10) | −0.00323 (10) | 0.0317 (3) | |
O2B | 0.12702 (10) | −0.06288 (11) | −0.05091 (11) | 0.0363 (4) | |
O3 | −0.05522 (10) | 0.66294 (10) | 0.16615 (10) | 0.0340 (3) | |
O4 | 0.09650 (9) | 0.59486 (11) | 0.26264 (10) | 0.0326 (3) | |
O5 | 0.05331 (13) | 0.17342 (16) | 0.50858 (11) | 0.0580 (6) | |
O6 | −0.07495 (13) | 0.13233 (14) | 0.36958 (12) | 0.0528 (5) | |
C1 | −0.07010 (12) | 0.04628 (13) | −0.16090 (11) | 0.0202 (4) | |
C2 | −0.10022 (12) | 0.07893 (13) | −0.25421 (11) | 0.0198 (4) | |
C3 | −0.08910 (13) | 0.17170 (14) | −0.27507 (12) | 0.0249 (4) | |
H3 | −0.0677 | 0.2154 | −0.2295 | 0.030* | |
C4 | −0.10913 (14) | 0.20095 (15) | −0.36217 (13) | 0.0294 (4) | |
H4 | −0.1005 | 0.2642 | −0.3759 | 0.035* | |
C5 | −0.14153 (14) | 0.13805 (16) | −0.42880 (12) | 0.0298 (4) | |
H5 | −0.1543 | 0.1579 | −0.4883 | 0.036* | |
C6 | −0.15544 (15) | 0.04598 (16) | −0.40873 (13) | 0.0300 (4) | |
H6 | −0.1795 | 0.0032 | −0.4544 | 0.036* | |
C7 | −0.13431 (13) | 0.01627 (15) | −0.32188 (11) | 0.0248 (4) | |
H7 | −0.1431 | −0.0471 | −0.3085 | 0.030* | |
C8 | 0.16849 (12) | 0.01396 (14) | −0.03693 (11) | 0.0226 (4) | |
C9 | 0.26473 (13) | 0.02500 (15) | −0.06287 (12) | 0.0262 (4) | |
C10 | 0.31428 (14) | 0.10844 (17) | −0.04770 (15) | 0.0359 (5) | |
H10 | 0.2877 | 0.1584 | −0.0206 | 0.043* | |
C11 | 0.40300 (18) | 0.1191 (2) | −0.0721 (2) | 0.0577 (8) | |
H11 | 0.4369 | 0.1762 | −0.0613 | 0.069* | |
C12 | 0.4411 (2) | 0.0478 (3) | −0.1115 (2) | 0.0714 (10) | |
H12 | 0.5012 | 0.0558 | −0.1285 | 0.086* | |
C13 | 0.3934 (2) | −0.0356 (3) | −0.1268 (2) | 0.0668 (9) | |
H13 | 0.4206 | −0.0850 | −0.1542 | 0.080* | |
C14 | 0.30491 (16) | −0.0476 (2) | −0.10207 (17) | 0.0439 (6) | |
H14 | 0.2721 | −0.1053 | −0.1120 | 0.053* | |
C15 | −0.08722 (12) | 0.28195 (14) | −0.00696 (12) | 0.0229 (4) | |
H15 | −0.1232 | 0.2446 | −0.0525 | 0.027* | |
C16 | −0.11559 (13) | 0.37122 (14) | 0.00050 (12) | 0.0245 (4) | |
H16 | −0.1708 | 0.3946 | −0.0388 | 0.029* | |
C17 | −0.06315 (12) | 0.42921 (13) | 0.06655 (11) | 0.0199 (3) | |
C18 | −0.09046 (13) | 0.52194 (14) | 0.08014 (12) | 0.0234 (4) | |
H18 | −0.1462 | 0.5477 | 0.0436 | 0.028* | |
C19 | −0.03652 (13) | 0.57450 (13) | 0.14606 (13) | 0.0233 (4) | |
C20 | −0.13711 (15) | 0.70835 (16) | 0.11416 (16) | 0.0368 (5) | |
H20A | −0.1323 | 0.7067 | 0.0522 | 0.055* | |
H20B | −0.1390 | 0.7730 | 0.1333 | 0.055* | |
H20C | −0.1960 | 0.6765 | 0.1214 | 0.055* | |
C21 | 0.18346 (14) | 0.56093 (17) | 0.31685 (15) | 0.0351 (5) | |
H21A | 0.1689 | 0.5067 | 0.3499 | 0.053* | |
H21B | 0.2122 | 0.6096 | 0.3580 | 0.053* | |
H21C | 0.2288 | 0.5433 | 0.2799 | 0.053* | |
C22 | 0.04915 (13) | 0.53623 (14) | 0.20043 (12) | 0.0235 (4) | |
C23 | 0.07644 (12) | 0.44758 (13) | 0.18754 (12) | 0.0219 (4) | |
H23 | 0.1336 | 0.4233 | 0.2231 | 0.026* | |
C24 | 0.02012 (11) | 0.39104 (13) | 0.12137 (11) | 0.0188 (3) | |
C25 | 0.04411 (11) | 0.29682 (13) | 0.10992 (11) | 0.0175 (3) | |
C26 | 0.12889 (12) | 0.25288 (13) | 0.17104 (11) | 0.0200 (3) | |
H26B | 0.1861 | 0.2932 | 0.1747 | 0.024* | |
H26A | 0.1434 | 0.1924 | 0.1465 | 0.024* | |
C27 | 0.10990 (12) | 0.23810 (14) | 0.26276 (12) | 0.0227 (4) | |
C28 | 0.17714 (14) | 0.26173 (16) | 0.33709 (13) | 0.0311 (4) | |
H28 | 0.2354 | 0.2914 | 0.3314 | 0.037* | |
C29 | 0.15971 (16) | 0.24215 (18) | 0.42079 (14) | 0.0386 (5) | |
H29 | 0.2060 | 0.2593 | 0.4715 | 0.048 (7)* | |
C30 | 0.07611 (15) | 0.19829 (18) | 0.43013 (13) | 0.0363 (5) | |
C31 | 0.1233 (2) | 0.1793 (3) | 0.58484 (17) | 0.0767 (11) | |
H31A | 0.1821 | 0.1482 | 0.5760 | 0.115* | |
H31B | 0.1000 | 0.1493 | 0.6331 | 0.115* | |
H31C | 0.1374 | 0.2447 | 0.5994 | 0.115* | |
C32 | −0.1370 (2) | 0.0952 (3) | 0.2976 (2) | 0.0832 (12) | |
H32A | −0.1665 | 0.1455 | 0.2588 | 0.125* | |
H32B | −0.1875 | 0.0596 | 0.3174 | 0.125* | |
H32C | −0.1010 | 0.0543 | 0.2656 | 0.125* | |
C33 | 0.00667 (15) | 0.17600 (16) | 0.35513 (14) | 0.0330 (5) | |
C34 | 0.02320 (13) | 0.19656 (15) | 0.27280 (12) | 0.0266 (4) | |
H34 | −0.0247 | 0.1824 | 0.2222 | 0.032* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn | 0.02110 (9) | 0.01342 (11) | 0.01778 (9) | −0.00049 (8) | 0.00302 (6) | −0.00289 (8) |
N1 | 0.0192 (7) | 0.0169 (9) | 0.0212 (7) | −0.0001 (5) | 0.0021 (5) | −0.0028 (6) |
O1A | 0.0590 (9) | 0.0233 (9) | 0.0170 (6) | 0.0057 (7) | −0.0049 (6) | −0.0062 (6) |
O1B | 0.0489 (8) | 0.0199 (9) | 0.0191 (6) | −0.0020 (6) | −0.0005 (6) | 0.0021 (5) |
O2A | 0.0279 (7) | 0.0288 (9) | 0.0422 (8) | −0.0002 (5) | 0.0158 (6) | −0.0049 (6) |
O2B | 0.0268 (7) | 0.0302 (9) | 0.0554 (10) | −0.0091 (6) | 0.0165 (7) | −0.0085 (7) |
O3 | 0.0361 (7) | 0.0141 (8) | 0.0470 (9) | 0.0047 (6) | −0.0029 (6) | −0.0070 (6) |
O4 | 0.0305 (7) | 0.0211 (8) | 0.0406 (8) | −0.0010 (6) | −0.0058 (6) | −0.0139 (6) |
O5 | 0.0507 (10) | 0.0994 (17) | 0.0270 (8) | 0.0160 (10) | 0.0150 (7) | 0.0113 (9) |
O6 | 0.0552 (10) | 0.0660 (14) | 0.0456 (10) | −0.0160 (9) | 0.0302 (8) | −0.0084 (9) |
C1 | 0.0201 (8) | 0.0201 (11) | 0.0200 (8) | 0.0013 (6) | 0.0035 (6) | −0.0009 (7) |
C2 | 0.0208 (7) | 0.0201 (11) | 0.0185 (8) | 0.0010 (6) | 0.0038 (6) | −0.0020 (6) |
C3 | 0.0303 (9) | 0.0188 (11) | 0.0244 (9) | −0.0003 (7) | 0.0027 (7) | −0.0011 (7) |
C4 | 0.0396 (11) | 0.0214 (12) | 0.0273 (10) | 0.0001 (8) | 0.0068 (8) | 0.0048 (8) |
C5 | 0.0363 (10) | 0.0323 (13) | 0.0203 (9) | 0.0036 (8) | 0.0049 (8) | 0.0051 (8) |
C6 | 0.0376 (10) | 0.0293 (13) | 0.0212 (9) | −0.0016 (8) | 0.0017 (8) | −0.0058 (8) |
C7 | 0.0331 (9) | 0.0199 (11) | 0.0198 (8) | −0.0020 (7) | 0.0018 (7) | −0.0014 (7) |
C8 | 0.0220 (8) | 0.0250 (11) | 0.0206 (8) | −0.0007 (7) | 0.0040 (6) | 0.0024 (7) |
C9 | 0.0246 (9) | 0.0294 (12) | 0.0253 (9) | −0.0014 (7) | 0.0071 (7) | 0.0021 (8) |
C10 | 0.0315 (10) | 0.0340 (14) | 0.0442 (12) | −0.0064 (9) | 0.0120 (8) | 0.0045 (10) |
C11 | 0.0396 (13) | 0.065 (2) | 0.0733 (19) | −0.0193 (12) | 0.0228 (13) | 0.0077 (15) |
C12 | 0.0384 (14) | 0.102 (3) | 0.085 (2) | −0.0120 (16) | 0.0388 (15) | −0.001 (2) |
C13 | 0.0486 (15) | 0.084 (3) | 0.078 (2) | 0.0057 (15) | 0.0372 (15) | −0.0181 (18) |
C14 | 0.0380 (12) | 0.0464 (17) | 0.0520 (14) | −0.0006 (10) | 0.0204 (11) | −0.0121 (11) |
C15 | 0.0222 (8) | 0.0192 (11) | 0.0238 (9) | 0.0007 (7) | −0.0035 (6) | −0.0060 (7) |
C16 | 0.0229 (8) | 0.0218 (11) | 0.0253 (9) | 0.0022 (7) | −0.0033 (7) | −0.0022 (7) |
C17 | 0.0211 (8) | 0.0156 (10) | 0.0225 (8) | −0.0010 (6) | 0.0033 (6) | −0.0009 (6) |
C18 | 0.0231 (8) | 0.0171 (10) | 0.0280 (9) | 0.0024 (7) | 0.0002 (7) | 0.0002 (7) |
C19 | 0.0274 (9) | 0.0121 (10) | 0.0302 (9) | 0.0010 (6) | 0.0051 (7) | −0.0019 (7) |
C20 | 0.0372 (11) | 0.0200 (13) | 0.0509 (13) | 0.0086 (8) | 0.0031 (9) | 0.0003 (9) |
C21 | 0.0292 (10) | 0.0341 (14) | 0.0379 (11) | −0.0024 (8) | −0.0032 (8) | −0.0152 (9) |
C22 | 0.0250 (8) | 0.0165 (11) | 0.0270 (9) | −0.0034 (7) | 0.0006 (7) | −0.0055 (7) |
C23 | 0.0218 (8) | 0.0180 (11) | 0.0241 (9) | −0.0006 (7) | 0.0005 (6) | −0.0025 (7) |
C24 | 0.0209 (7) | 0.0149 (10) | 0.0202 (7) | −0.0018 (6) | 0.0034 (6) | −0.0015 (7) |
C25 | 0.0182 (7) | 0.0152 (10) | 0.0191 (8) | −0.0013 (6) | 0.0039 (6) | −0.0034 (6) |
C26 | 0.0198 (8) | 0.0160 (10) | 0.0236 (8) | 0.0018 (6) | 0.0026 (6) | −0.0030 (7) |
C27 | 0.0240 (8) | 0.0186 (11) | 0.0242 (9) | 0.0071 (7) | 0.0022 (7) | −0.0013 (7) |
C28 | 0.0253 (9) | 0.0388 (14) | 0.0265 (10) | 0.0070 (8) | −0.0010 (7) | −0.0007 (8) |
C29 | 0.0354 (11) | 0.0548 (17) | 0.0218 (10) | 0.0149 (10) | −0.0031 (8) | −0.0039 (9) |
C30 | 0.0393 (11) | 0.0470 (16) | 0.0248 (10) | 0.0160 (10) | 0.0118 (8) | 0.0033 (9) |
C31 | 0.0652 (18) | 0.135 (4) | 0.0298 (13) | 0.022 (2) | 0.0093 (13) | 0.0179 (17) |
C32 | 0.070 (2) | 0.110 (3) | 0.081 (2) | −0.050 (2) | 0.0434 (18) | −0.040 (2) |
C33 | 0.0366 (10) | 0.0330 (13) | 0.0329 (11) | 0.0039 (9) | 0.0157 (9) | −0.0025 (9) |
C34 | 0.0297 (9) | 0.0247 (12) | 0.0253 (9) | 0.0024 (7) | 0.0054 (7) | −0.0050 (7) |
Zn—O2A | 2.0404 (12) | C12—H12 | 0.9500 |
Zn—O1A | 2.0470 (13) | C13—C14 | 1.396 (3) |
Zn—O1Bi | 2.0494 (14) | C13—H13 | 0.9500 |
Zn—O2Bi | 2.0562 (13) | C14—H14 | 0.9500 |
Zn—N1 | 2.0812 (16) | C15—C16 | 1.360 (3) |
Zn—Zni | 3.0533 (4) | C15—H15 | 0.9500 |
N1—C25 | 1.337 (2) | C16—C17 | 1.412 (3) |
N1—C15 | 1.377 (2) | C16—H16 | 0.9500 |
O1A—C1 | 1.257 (2) | C17—C24 | 1.418 (2) |
O1B—C1 | 1.255 (2) | C17—C18 | 1.419 (3) |
O1B—Zni | 2.0494 (14) | C18—C19 | 1.374 (3) |
O2A—C8 | 1.258 (2) | C18—H18 | 0.9500 |
O2B—C8 | 1.252 (2) | C19—C22 | 1.440 (3) |
O2B—Zni | 2.0561 (13) | C20—H20A | 0.9800 |
O3—C19 | 1.351 (2) | C20—H20B | 0.9800 |
O3—C20 | 1.430 (2) | C20—H20C | 0.9800 |
O4—C22 | 1.354 (2) | C21—H21A | 0.9800 |
O4—C21 | 1.430 (2) | C21—H21B | 0.9800 |
O5—C30 | 1.372 (2) | C21—H21C | 0.9800 |
O5—C31 | 1.384 (3) | C22—C23 | 1.361 (3) |
O6—C33 | 1.376 (3) | C23—C24 | 1.422 (2) |
O6—C32 | 1.381 (4) | C23—H23 | 0.9500 |
C1—C2 | 1.501 (2) | C24—C25 | 1.420 (3) |
C2—C3 | 1.392 (3) | C25—C26 | 1.510 (2) |
C2—C7 | 1.396 (2) | C26—C27 | 1.519 (2) |
C3—C4 | 1.391 (3) | C26—H26B | 0.9900 |
C3—H3 | 0.9500 | C26—H26A | 0.9900 |
C4—C5 | 1.382 (3) | C27—C28 | 1.382 (3) |
C4—H4 | 0.9500 | C27—C34 | 1.404 (3) |
C5—C6 | 1.386 (3) | C28—C29 | 1.402 (3) |
C5—H5 | 0.9500 | C28—H28 | 0.9500 |
C6—C7 | 1.389 (3) | C29—C30 | 1.377 (3) |
C6—H6 | 0.9500 | C29—H29 | 0.9500 |
C7—H7 | 0.9500 | C30—C33 | 1.401 (3) |
C8—C9 | 1.508 (2) | C31—H31A | 0.9800 |
C9—C10 | 1.388 (3) | C31—H31B | 0.9800 |
C9—C14 | 1.390 (3) | C31—H31C | 0.9800 |
C10—C11 | 1.395 (3) | C32—H32A | 0.9800 |
C10—H10 | 0.9500 | C32—H32B | 0.9800 |
C11—C12 | 1.363 (5) | C32—H32C | 0.9800 |
C11—H11 | 0.9500 | C33—C34 | 1.380 (3) |
C12—C13 | 1.377 (5) | C34—H34 | 0.9500 |
O2A—Zn—O1A | 87.17 (6) | C15—C16—H16 | 120.0 |
O2A—Zn—O1Bi | 87.24 (6) | C17—C16—H16 | 120.0 |
O1A—Zn—O1Bi | 156.69 (6) | C16—C17—C24 | 117.22 (17) |
O2A—Zn—O2Bi | 156.84 (6) | C16—C17—C18 | 123.13 (17) |
O1A—Zn—O2Bi | 89.17 (7) | C24—C17—C18 | 119.65 (16) |
O1Bi—Zn—O2Bi | 87.14 (6) | C19—C18—C17 | 120.20 (17) |
O2A—Zn—N1 | 106.20 (6) | C19—C18—H18 | 119.9 |
O1A—Zn—N1 | 93.79 (6) | C17—C18—H18 | 119.9 |
O1Bi—Zn—N1 | 109.50 (6) | O3—C19—C18 | 125.93 (17) |
O2Bi—Zn—N1 | 96.86 (6) | O3—C19—C22 | 114.04 (17) |
O2A—Zn—Zni | 78.73 (4) | C18—C19—C22 | 120.03 (17) |
O1A—Zn—Zni | 75.87 (4) | O3—C20—H20A | 109.5 |
O1Bi—Zn—Zni | 80.85 (4) | O3—C20—H20B | 109.5 |
O2Bi—Zn—Zni | 78.19 (4) | H20A—C20—H20B | 109.5 |
N1—Zn—Zni | 168.48 (4) | O3—C20—H20C | 109.5 |
C25—N1—C15 | 118.31 (16) | H20A—C20—H20C | 109.5 |
C25—N1—Zn | 127.73 (12) | H20B—C20—H20C | 109.5 |
C15—N1—Zn | 113.80 (12) | O4—C21—H21A | 109.5 |
C1—O1A—Zn | 132.46 (14) | O4—C21—H21B | 109.5 |
C1—O1B—Zni | 125.47 (12) | H21A—C21—H21B | 109.5 |
C8—O2A—Zn | 128.39 (12) | O4—C21—H21C | 109.5 |
C8—O2B—Zni | 128.57 (13) | H21A—C21—H21C | 109.5 |
C19—O3—C20 | 118.42 (16) | H21B—C21—H21C | 109.5 |
C22—O4—C21 | 116.69 (16) | O4—C22—C23 | 125.19 (17) |
C30—O5—C31 | 119.2 (2) | O4—C22—C19 | 114.55 (17) |
C33—O6—C32 | 117.54 (19) | C23—C22—C19 | 120.26 (17) |
O1B—C1—O1A | 125.01 (17) | C22—C23—C24 | 120.63 (17) |
O1B—C1—C2 | 117.92 (16) | C22—C23—H23 | 119.7 |
O1A—C1—C2 | 117.04 (17) | C24—C23—H23 | 119.7 |
C3—C2—C7 | 118.95 (17) | C17—C24—C25 | 119.14 (15) |
C3—C2—C1 | 120.17 (16) | C17—C24—C23 | 119.18 (17) |
C7—C2—C1 | 120.77 (17) | C25—C24—C23 | 121.67 (16) |
C4—C3—C2 | 120.50 (19) | N1—C25—C24 | 122.03 (16) |
C4—C3—H3 | 119.8 | N1—C25—C26 | 117.76 (16) |
C2—C3—H3 | 119.8 | C24—C25—C26 | 120.15 (15) |
C5—C4—C3 | 120.1 (2) | C25—C26—C27 | 112.22 (13) |
C5—C4—H4 | 120.0 | C25—C26—H26B | 109.2 |
C3—C4—H4 | 120.0 | C27—C26—H26B | 109.2 |
C4—C5—C6 | 119.99 (18) | C25—C26—H26A | 109.2 |
C4—C5—H5 | 120.0 | C27—C26—H26A | 109.2 |
C6—C5—H5 | 120.0 | H26B—C26—H26A | 107.9 |
C5—C6—C7 | 120.09 (19) | C28—C27—C34 | 118.82 (17) |
C5—C6—H6 | 120.0 | C28—C27—C26 | 121.72 (17) |
C7—C6—H6 | 120.0 | C34—C27—C26 | 119.42 (16) |
C6—C7—C2 | 120.37 (19) | C27—C28—C29 | 120.3 (2) |
C6—C7—H7 | 119.8 | C27—C28—H28 | 119.9 |
C2—C7—H7 | 119.8 | C29—C28—H28 | 119.9 |
O2B—C8—O2A | 125.90 (16) | C30—C29—C28 | 120.6 (2) |
O2B—C8—C9 | 117.73 (17) | C30—C29—H29 | 119.7 |
O2A—C8—C9 | 116.36 (17) | C28—C29—H29 | 119.7 |
C10—C9—C14 | 119.18 (19) | O5—C30—C29 | 125.3 (2) |
C10—C9—C8 | 120.01 (18) | O5—C30—C33 | 115.3 (2) |
C14—C9—C8 | 120.81 (19) | C29—C30—C33 | 119.42 (18) |
C9—C10—C11 | 120.2 (2) | O5—C31—H31A | 109.5 |
C9—C10—H10 | 119.9 | O5—C31—H31B | 109.5 |
C11—C10—H10 | 119.9 | H31A—C31—H31B | 109.5 |
C12—C11—C10 | 120.1 (3) | O5—C31—H31C | 109.5 |
C12—C11—H11 | 120.0 | H31A—C31—H31C | 109.5 |
C10—C11—H11 | 120.0 | H31B—C31—H31C | 109.5 |
C11—C12—C13 | 120.7 (2) | O6—C32—H32A | 109.5 |
C11—C12—H12 | 119.6 | O6—C32—H32B | 109.5 |
C13—C12—H12 | 119.6 | H32A—C32—H32B | 109.5 |
C12—C13—C14 | 119.8 (3) | O6—C32—H32C | 109.5 |
C12—C13—H13 | 120.1 | H32A—C32—H32C | 109.5 |
C14—C13—H13 | 120.1 | H32B—C32—H32C | 109.5 |
C9—C14—C13 | 120.0 (3) | O6—C33—C34 | 123.9 (2) |
C9—C14—H14 | 120.0 | O6—C33—C30 | 116.14 (18) |
C13—C14—H14 | 120.0 | C34—C33—C30 | 119.93 (19) |
C16—C15—N1 | 123.15 (16) | C33—C34—C27 | 120.88 (19) |
C16—C15—H15 | 118.4 | C33—C34—H34 | 119.6 |
N1—C15—H15 | 118.4 | C27—C34—H34 | 119.6 |
C15—C16—C17 | 120.07 (17) |
Symmetry code: (i) −x, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O3ii | 0.95 | 2.53 | 3.364 (2) | 147 |
C4—H4···O4ii | 0.95 | 2.68 | 3.312 (2) | 125 |
C5—H5···O6iii | 0.95 | 2.70 | 3.454 (2) | 137 |
Symmetry codes: (ii) −x, −y+1, −z; (iii) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | [Zn2(C7H5O2)4(C20H21NO4)2] |
Mr | 1293.98 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 193 |
a, b, c (Å) | 14.1780 (9), 14.4118 (6), 15.5442 (11) |
β (°) | 101.799 (8) |
V (Å3) | 3109.0 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.84 |
Crystal size (mm) | 0.60 × 0.45 × 0.38 |
Data collection | |
Diffractometer | IPDS Stoe diffractometer |
Absorption correction | Multi-scan (XPREP in SHELXTL; Sheldrick, 1996) |
Tmin, Tmax | 0.659, 0.737 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 45411, 8890, 5836 |
Rint | 0.057 |
(sin θ/λ)max (Å−1) | 0.711 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.088, 0.91 |
No. of reflections | 8890 |
No. of parameters | 402 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.60, −0.69 |
Computer programs: ?EXPOSE (Stoe, 1997), CELL (Stoe, 1997), INTEGRATE (Stoe, 1997), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 2000), SHELXL97 and enCIFer (Smith & Johnson, 2002).
Zn—O2A | 2.0404 (12) | Zn—O2Bi | 2.0562 (13) |
Zn—O1A | 2.0470 (13) | Zn—N1 | 2.0812 (16) |
Zn—O1Bi | 2.0494 (14) | Zn—Zni | 3.0533 (4) |
O2A—Zn—O1A | 87.17 (6) | O1A—Zn—N1 | 93.79 (6) |
O2A—Zn—O1Bi | 87.24 (6) | O1Bi—Zn—N1 | 109.50 (6) |
O1A—Zn—O1Bi | 156.69 (6) | O2Bi—Zn—N1 | 96.86 (6) |
O2A—Zn—O2Bi | 156.84 (6) | O1B—C1—O1A | 125.01 (17) |
O1A—Zn—O2Bi | 89.17 (7) | O2B—C8—O2A | 125.90 (16) |
O2A—Zn—N1 | 106.20 (6) | C25—C26—C27 | 112.22 (13) |
Symmetry code: (i) −x, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O3ii | 0.95 | 2.53 | 3.364 (2) | 147 |
C4—H4···O4ii | 0.95 | 2.68 | 3.312 (2) | 125 |
C5—H5···O6iii | 0.95 | 2.70 | 3.454 (2) | 137 |
Symmetry codes: (ii) −x, −y+1, −z; (iii) x, y, z−1. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
Papaverine [1-(3,4-Dimethoxyphenyl)methyl-6,7-dimethoxyisoquinoline] is an alkaloid used as a vasodilator in cardiac and kidney surgery (Ali et al., 1997; Zacherl et al., 2002). When applied to human organisms, it can interact with a number of metal ions present in the body. One way to understand these metal–drug interactions is to study structures of metal complexes containing the drug as a ligand. There are a number of examples of such structural studies (Cini, 2000), although reports dealing with properties of metal complexes of papaverine are scarce (e.g. Sabirov et al., 1994; Melník et al., 1996; Györyová et al., 2002; Williams et al., 2003). The crystal structures of papaverine and its hydrochloric salt have already been described (Reynolds et al., 1974; Marek et al., 1996). Moreover, the papaverinium cation as the counter-ion in a cobalt-containing complex has been structurally characterized (Sabirov et al., 1994). However, the Cambridge Structural Database (Allen, 2002) does not contain an entry of a crystal structure with papaverine as a ligand. The present study fills this gap; we describe here the structure of a zinc(II) benzoate complex, (I), of papaverine.
The molecular structure of complex (I) consists of discrete centrosymmetric [Zn2(C6H5COO)4(C20H21NO4)2] dimers of the paddle-wheel cage type, with an inversion centre located at the mid-point of the Zn···Zn vector. This known structural type was first described in 1953 for copper acetate monohydrate (van Nieker & Schoening, 1953) and has since been observed for a variety of transition metals (Mehrotra & Bohra, 1983). In the structure of (I), the pair of ZnII atoms is bridged by four syn–syn benzoate ligands. The O atoms of these ligands are placed in the basal plane of a tetragonal pyramid around each ZnII atom (τ = 0.0; Addison et al., 1984), while the apical position is occupied by the N atom of the papaverine molecule. The Zn atom is shifted by 0.412 (1) Å from the basal plane toward the apical position. Among ZnII carboxylate complexes, a similar coordination type was found in some aliphatic carboxylates, for example, acetate (Singh et al., 1997) and crotonate (Clegg et al., 1986; Clegg et al., 1995).
The average Zn—O bond length [2.048 Å; Table 1] is slightly longer than those observed for structurally characterized paddle-wheel zinc(II) complexes of formula [Zn2(RCOO)4L2], with average values of 2.043 Å (where RCOO is crotonate and L is quinoline; Clegg et al., 1986], 2.037 Å (where RCOO is crotonate and L is 4-cyanopyridine; Clegg et al., 1995), 2.038 and 2.041 Å (where RCOO is acetate and L is pyridine; Singh et al., 1997), and 2.034, 2.039 or 2.042 Å [where RCOO is indomethacin and L is 1-methylpyrrolidinone, pyridine or dimethylacetamide; Zhou et al., 2000). As a consequence, the Zn···Zn separation [3.053 (1) Å] in (I) is longer than those in the above-mentioned complexes, which exhibit Zn···Zn separatios of less than? 3 Å.
The geometric parameters in the papaverine ligand are close to those observed for the free base (Marek et al., 1996). The most remarkable differences were observed in the O5—C31 [1.384 (3) Å] and O6—C32 [1.381 (4) Å] bond lengths, which are shorter than the respective values in free papaverine [1.415 (5) Å (x 2); Marek et al., 1996]. This difference may be due to the strongly anisotropic displacement parameters within this peripheral groups. Moreover, as a result of the coordination of papaverine, a change in the orientation of the phenyl and isochinoline rings is observed. The C25—C26—C27 angle [112.2 (1)°] changes only slightly [115.2 (3)° in the free base, 112.2° in the hydrochloride and 113.8 (8)° in the cobalt complex containing the papaverinium cation]. More important changes were observed in the torsion angles. The C28—C27—C26—C25 torsion angle is −134.1 (2)°, while the angles in free papaverine and papaverine hydrochloride are 117.9 (4) and 80.5°, respectively (Reynolds et al., 1974; Marek et al., 1996). The value of this torsion angle in the cobalt complex containing the papaverinium cation is 63 (1)° (Sabirov et al., 1994). Similarly, a difference was observed in the C27—C26—C25—N1 torsion angle [−106.6 (2)°, c.f 112.7 (3)° in the free base, 84.8° in the hydrochloric salt and −112.8 (9)° in the cation in the cobalt complex. This change of the mutual orientation of both rings may be a result of both steric hindrance of benzoate ligands and non-bonding interactions.
From the composition of complex (I), it is obvious that no conventional hydrogen bonds can be expected in the structure. The molecules are held together only by C—H···O and van der Waals interactions. The most important C—H···O intermolecular contacts shorter than the sum of the van der Waals radii are shown in Fig. 2 and listed in Table 2. These C—H···O intermolecular interactions connect the dimers into sheets parallel to the bc plane.