Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of the title compound, [Ru(C10H8N2S)2(C11H11N3S)](PF6)2·C2H3N, is composed of a bivalent octa­hedral RuII complex, two PF6- anions and an acetonitrile solvent mol­ecule. Two PF6- units are found on a crystallographic binary axis, therefore contributing just one half each to the asymmetric unit cell. The structure displays a peculiar stereochemistry of the cation. Three bidentate ligands around the Ru centre, together with the coordination of the non-symmetric S atom, mean that these two atoms are chiral. This would lead to four stereoisomers, but only an enantiomeric pair was found in the analyzed sample.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105004634/sk1808sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105004634/sk1808Isup2.hkl
Contains datablock I

CCDC reference: 269008

Comment top

Coordination chemistry of flexible and hemilabile ligands, containing both inert and labile groups, is an active area of research (Slone et al., 1999; Vagg, 1987). N-Heterocyclic donors are often good ligands for many transition metal centres. Hybrid S/N/S ligands consisting of inert pyridine or bipyridine binding groups, connected to labile sulfur binding sites, show S—S switching in addition to S inversion (Abel et al., 1995, and references therein). Thioether ligands containing aromatic heterocyclic N, such as di-2-pyridylsulfide or di-2-pyrimidylsulfide (dps and dprs), usually bind metals in an N,N-bidentate fashion (Bruno et al., 1995, and references therein) and sometimes adopt N-monodentate coordination (Tresoldi et al., 1991, 1992), or N,N- (De Munno et al., 1993; Teles et al. 1999) or N,N,S-bridging coordination (Anderson & Steel, 1998). The flexibility and, in a few cases, the hemilability of dps have been assessed (Tresoldi et al., 1992; De Munno et al. 1993).

Recently, we have demonstrated that dps, under appropriate conditions, binds Ru in an N,S-chelate fashion, leaving one of the pyridine rings uncoordinated (Scopelliti et al., 2001). In such species, some dynamic processes occur, as shown by the temperature dependence of the NMR spectra, but only the restricted rotation of the uncoordinated ring could be studied, whereas the total dynamic stereochemistry remained unclear. On the other hand, we have demonstrated the presence of two invertomers as enantiomeric pairs, (ΔR, ΛS) and (ΔS, ΛR), and obtained quantitative information on the activation energy of the pyramidal inversion around the coordinated S atom (Tresoldi et al., 2002), as well as of the restricted rotation of the pendant ring (Baradello et al., 2004), when the RuII centre was N,S-chelated by thioether ligands based on pyridine or pyrimidine and benzyl or phenyl derivatives. We have now turned our attention to metal complexes containing unsymmetrical NSNN thioethers, and we are interested in studying the interchange processes between different conformations and distinct coordination species. In this paper, the reaction of 2-pyridylmethyl-2'-(4-methylpyrimidyl)sulfide (pmprs) with cis-Ru(dps-N,N)2Cl2 led to the title compound, [Ru(dps-N,N)2pmprs](PF6)2·C2H3N, (I).

The structure of (I) presents two asymmetric atoms, Ru1 and S34, the conventional absolute configurations of which are Δ and R, respectively. Since the space group is centrosymmetric, a racemic mixture crystallizes in the solid state (ΔR and ΛS enantiomers; Fig. 1). The asymmetric unit consists of one cationic complex, one acetonitrile solvent molecule, one entire hexafluorophosphate unit and two further halves of the same anion located on special positions (along the binary axis). The coordination geometry of the RuII ion is, as expected, distorted octahedral, with five N atoms and atom S34 as binding sites (Table 1 and Fig. 1). The distortion provoked by an N,S short-bite ligand has already been shown in similar derivatives (Scopelliti et al., 2001). In (I), this effect is not so dramatic, since the five-membered ring presents less strain than the previously analysed four-membered N,S short-bite ligand. This is evident from the geometric comparison of the parameters N—Ru—S [81.8 (1) versus 67.8 (2)°], Ru—N [2.123 (3) versus 2.080 (5) Å] and Ru—S [2.358 (1) versus 2.424 (2) Å] in (I) and the above-mentioned structure, respectively. On the other hand, this is confirmed by an analogue of (I) with the pmprs position occupied by a different 2-pyridylmethylarylsulfide ligand (Baradello et al., 2004). In this case, the geometrical parameters are very close to those measured for (I) [Ru—S 2.370 (1) Å, Ru—N 2.108 (3) Å and N—Ru—S 81.39 (9)°]. The ring formed by the chelation is in an envelope-like conformation, as shown by the puckering parameters (Cremer & Pople, 1975) calculated using the atom sequence from Ru1 to S34 [q2 = 0.489 (4) Å and ϕ2 = −37.2 (5)°]. All these data were also compared with Ag (Wang et al., 2001) and Cu (Sillanpää et al., 1994) structures with the symmetric multidentate ligand 2,6-bis(2-pyrimidinylthiomethyl)pyrimidine, which develop (asymmetrically) the same coordination bite shown by pmprs. However, for these structures the other coordination site leads to an enhancement of the distortion. In (I), the Ru—N distances are slightly affected by the pmprs ligand, with the N atoms trans to this group being closer to the metal (Table 1). However, none of the Ru—N distances deviate much from the values reported for similar structures (~2.110 Å).

The two dps ligands display their usual `twisted N,N' inside' conformation, as shown by Bruno et al. (1995), in order to chelate the metal via the lone-pairs of the N atoms. For (I), though, the dps bite angle looks wider with respect to the previously analysed structure Which? [N···N 2.952 (5) and 2.946 (5) Å, and N—Ru—N 89.0 (1) and 89.1 (1)°, for the first and second ligands, respectively]. This is due to the short bite of the pmprs ligand allowing the widening of the dps groups. The boat-like conformation of both dps rings generated through the above-mentioned chelation is shown by the puckering parameters [for ring Ru1/N1–N13, Q = 0.839 (2) Å, θ = 88.2 (2) and ϕ = 0.7 (2)°; for ring Ru1/N14–N26, Q = 0.904 (3) Å, θ = 92.4 (2) and ϕ = 175.7 (3)°].

Since there are no structural data available for either the free or the coordinated 2-pyridylmethyl-2'-(4-methylpyrimidyl)sulfide (pmprs) ligand, ab initio and density functional theory calculations were carried out, using GAUSSIAN98 (Frisch et al., 1998); full geometry optimizations were carried out using the 6–31+G(d,p) basis set in order to obtain comparable data and to study how the molecular geometry of pmprs is modified by coordination to a metal centre. As the hybrid B3LYP method generally works better than the Hartree–Fock one in reproducing the `real' molecular geometry, we compared these calculated values with the experimental X-ray data. As expected, the gas phase conformation of pmprs looks very different from the coordinated one, because of its great conformational flexibility. Nevertheless, we observed a general agreement between the structural parameters, except for the fragment involved in coordination to the metal; the bond distances S34—C35 [1.7728 Å] and S34—C33 [1.8476 Å], and bond angles C33—S34—C35 [103.17°] and N27—C32—C33 [116.14°], can be compared with experimental values for (I) in Table 1.

The crystal packing of (I) is mainly stabilized by intermolecular hydrogen interactions, the acceptor atoms of which are F atoms of the anionic units or the N atom of the solvent molecule, while the donors are several types of C—H groups of the cationic unit. In this way, the complex molecules are mainly held together in an ordered array by the anion and the solvent molecule (Table 2). Other weak dipolar intercation interactions further stabilize the overall solid state structure.

Experimental top

Di-2-pyridylsulfide (dps), 2-pyridylmethyl-2'-(4-methylpyrimidyl)sulfide (pmprs) and cis-Ru(dps-N,N)2Cl2·2H2O were prepared according to the methods of Chachaty et al. (1976), Haviv et al. (1983) and Tresoldi et al. (2005), respectively. cis-Ru(dps-N,N)2Cl2·2H2O (0.195 g, 0.33 mmol) and pmprs (0.22 g, 3 mmol) were refluxed in ethanol–water (50 ml, 3:2) under N2 for 3 h. After filtration of the solution into water (80 ml) containing NH4PF6 (0.49 g, 1 mmol) a yellow precipitate was obtained. This was filtered, washed with water (30 ml) and dried overnight. The solid was then dissolved in acetone (15 ml), precipitated with diethyl ether (70 ml), washed with diethyl ether (30 ml) and dried over P4O10. Yellow crystals of (I) suitable for X-ray structure investigation were obtained from a solution in acetonitrile–ether (3:1) on standing for ca 3 d at 252 K. Analysis, C32H30F12N8P2RuS3 requires: C 37.91, H 3.05, N 11.05%; found: C 37.85, H 3.00, N 11.00%.

Refinement top

X-ray diffraction analysis gave a monoclinic crystal system for (I). The space group was assumed to be centrosymmetric during the data-reduction procedure, and confirmed by the subsequent analysis (Orpen et al., 1992). All H atoms were treated as riding, with alkyl C—H distances of 0.98, methyl C—H distances of 0.96 and aromatic C—H distances of 0.93 Å. Their isotropic displacement parameters were fixed by the riding-model technique to Uiso(H) = 1.5Ueq(C) for the methyl group and 1.2Ueq(C) for all others. Intensities were calculated by the profile-fitting procedure (Lehmann & Larsen, 1974). Few refinement troubles were caused, mainly by the intrinsic disorder of the two units in the special position. It was necessary to chose two sites for most of the F atoms and their complementary occupancy factors were obtained by refinement and then fixed.

Computing details top

Data collection: XSCANS (Siemens, 1989); cell refinement: XSCANS; data reduction: XPREPW (Bruker, 1997); program(s) used to solve structure: SIR2002 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XPW (Bruker, 1997); software used to prepare material for publication: PARST97 (Nardelli, 1995) and WinGX-PC (version 1.6.4.05; Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The cation of the (Δ—Ru1, R-S34) isomer of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level for all non-C atoms and at the ??% probability level for C atoms Please provide missing information. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing of (I).
Bis(di-2-pyridyl sulfide-κ2N,N')(4-methylpyrimidin-2-yl 2-pyridylmethyl sulfide-κ2N,S)ruthenium(II) bis(hexafluorophosphate) acetonitrile solvate top
Crystal data top
[Ru(C10H8N2S)2(C11H11N3S)](PF6)2·C2H3NF(000) = 4112
Mr = 1025.84Dx = 1.698 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 2yaCell parameters from 30 reflections
a = 23.685 (5) Åθ = 2.2–16.2°
b = 14.183 (2) ŵ = 0.72 mm1
c = 25.264 (8) ÅT = 298 K
β = 108.941 (16)°Irregular, yellow
V = 8027 (3) Å30.4 × 0.24 × 0.2 mm
Z = 8
Data collection top
Bruker P4
diffractometer
θmax = 25.0°, θmin = 2.1°
ω scansh = 2824
8188 measured reflectionsk = 161
7057 independent reflectionsl = 3024
4940 reflections with I > 2σ(I)3 standard reflections every 197 reflections
Rint = 0.028 intensity decay: none
Refinement top
Refinement on F230 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0418P)2 + 20.1188P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.114(Δ/σ)max = 0.006
S = 1.03Δρmax = 0.59 e Å3
7057 reflectionsΔρmin = 0.38 e Å3
572 parameters
Crystal data top
[Ru(C10H8N2S)2(C11H11N3S)](PF6)2·C2H3NV = 8027 (3) Å3
Mr = 1025.84Z = 8
Monoclinic, I2/aMo Kα radiation
a = 23.685 (5) ŵ = 0.72 mm1
b = 14.183 (2) ÅT = 298 K
c = 25.264 (8) Å0.4 × 0.24 × 0.2 mm
β = 108.941 (16)°
Data collection top
Bruker P4
diffractometer
Rint = 0.028
8188 measured reflections3 standard reflections every 197 reflections
7057 independent reflections intensity decay: none
4940 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.05030 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0418P)2 + 20.1188P]
where P = (Fo2 + 2Fc2)/3
7057 reflectionsΔρmax = 0.59 e Å3
572 parametersΔρmin = 0.38 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.603182 (16)0.31438 (3)0.149985 (14)0.03261 (10)
N10.64974 (16)0.4389 (3)0.14460 (14)0.0345 (9)
C20.7058 (2)0.4514 (4)0.1809 (2)0.0436 (12)
H20.72180.40480.20740.052*
C30.7398 (2)0.5287 (4)0.1805 (2)0.0519 (14)
H30.77840.53310.20560.062*
C40.7168 (3)0.6000 (4)0.1429 (2)0.0607 (15)
H40.73950.65310.14190.073*
C50.6591 (2)0.5909 (4)0.1067 (2)0.0515 (14)
H50.64210.63860.08120.062*
C60.6269 (2)0.5105 (3)0.10862 (18)0.0380 (11)
S70.55488 (6)0.50384 (9)0.06003 (5)0.0447 (3)
C80.5093 (2)0.4677 (3)0.09978 (18)0.0380 (11)
C90.4560 (2)0.5155 (4)0.0899 (2)0.0510 (14)
H90.44610.56460.06410.061*
C100.4180 (2)0.4905 (4)0.1179 (2)0.0550 (14)
H100.38160.52120.1110.066*
C110.4343 (2)0.4191 (4)0.1567 (2)0.0496 (13)
H110.40970.40190.17720.059*
C120.4873 (2)0.3739 (3)0.16451 (19)0.0435 (12)
H120.4980.3260.19110.052*
N130.52515 (16)0.3949 (3)0.13573 (14)0.0346 (9)
N140.62093 (16)0.3457 (3)0.23490 (15)0.0399 (10)
C150.6151 (2)0.4342 (4)0.2514 (2)0.0450 (12)
H150.60370.48080.22420.054*
C160.6252 (2)0.4597 (4)0.3060 (2)0.0564 (15)
H160.62130.52230.31520.068*
C170.6410 (3)0.3919 (5)0.3467 (2)0.0656 (17)
H170.64880.40780.38410.079*
C180.6451 (2)0.3004 (4)0.3314 (2)0.0566 (15)
H180.6540.25290.35820.068*
C190.6359 (2)0.2789 (4)0.27612 (19)0.0441 (12)
S200.64869 (6)0.16212 (10)0.25957 (5)0.0545 (4)
C210.5830 (2)0.1316 (3)0.2053 (2)0.0460 (13)
C220.5596 (3)0.0432 (4)0.2083 (3)0.0652 (17)
H220.57760.00420.23870.078*
C230.5101 (3)0.0134 (4)0.1666 (3)0.0756 (19)
H230.4950.0470.16740.091*
C240.4829 (3)0.0740 (4)0.1236 (3)0.0639 (16)
H240.44790.0570.09560.077*
C250.5089 (2)0.1607 (4)0.1228 (2)0.0466 (13)
H250.48990.20170.09370.056*
N260.55955 (16)0.1903 (3)0.16114 (15)0.0390 (9)
N270.58594 (16)0.2838 (3)0.06393 (14)0.0357 (9)
C280.5310 (2)0.2843 (3)0.02500 (19)0.0392 (11)
H280.4990.30350.0360.047*
C290.5197 (2)0.2581 (3)0.0296 (2)0.0473 (13)
H290.4810.25860.05460.057*
C300.5670 (3)0.2311 (4)0.0464 (2)0.0536 (14)
H300.56070.21270.08320.064*
C310.6234 (2)0.2315 (4)0.0082 (2)0.0477 (13)
H310.65590.21460.01920.057*
C320.6319 (2)0.2573 (3)0.04660 (19)0.0374 (11)
C330.6933 (2)0.2600 (4)0.08831 (19)0.0443 (12)
H33A0.71010.32250.08870.053*
H33B0.71860.21530.07750.053*
S340.69177 (5)0.23103 (9)0.15822 (5)0.0402 (3)
C350.6815 (2)0.1047 (3)0.1477 (2)0.0447 (12)
N360.7231 (2)0.0538 (3)0.18361 (18)0.0609 (13)
C370.7170 (3)0.0390 (5)0.1739 (3)0.082 (2)
H370.74480.07960.19740.098*
C380.6714 (3)0.0767 (4)0.1306 (3)0.0763 (19)
H380.66790.14160.12520.092*
C390.6307 (3)0.0152 (4)0.0952 (3)0.0609 (15)
N400.63615 (19)0.0774 (3)0.10443 (18)0.0490 (11)
C410.5815 (3)0.0490 (5)0.0472 (3)0.100 (3)
H41A0.5810.11670.04720.15*
H41B0.58680.02670.01320.15*
H41C0.54440.02580.04970.15*
P10.41922 (12)0.22940 (13)0.28024 (8)0.0921 (7)
F10.3824 (3)0.3195 (4)0.2536 (2)0.152 (2)
F20.4249 (3)0.2014 (4)0.2227 (2)0.171 (2)
F30.3616 (3)0.1705 (5)0.2668 (3)0.183 (3)
F40.4770 (3)0.2878 (4)0.2890 (3)0.185 (3)
F50.4173 (4)0.2610 (4)0.3378 (2)0.190 (3)
F60.4528 (3)0.1392 (4)0.3059 (3)0.185 (3)
P20.750.00392 (19)00.0774 (8)
F70.6792 (2)0.0059 (4)0.02475 (19)0.1265 (17)
F80.750.1115 (13)00.134 (9)0.4
F90.750.1024 (12)00.200 (14)0.4
F100.7486 (7)0.0045 (16)0.0603 (5)0.155 (8)0.4
F8A0.7551 (5)0.0782 (9)0.0432 (5)0.181 (7)0.6
F9A0.7585 (7)0.0758 (8)0.0376 (6)0.207 (6)0.6
P30.750.45282 (18)00.0677 (6)
F110.68651 (17)0.4510 (3)0.00798 (18)0.1045 (13)
F120.7265 (3)0.4510 (9)0.0649 (3)0.126 (4)0.63
F130.750.3387 (6)00.082 (3)0.63
F140.750.5622 (10)00.188 (8)0.63
F12A0.7205 (6)0.5352 (11)0.0424 (6)0.107 (5)0.37
F13A0.7197 (6)0.3810 (11)0.0452 (9)0.150 (7)0.37
C420.3262 (5)0.2504 (7)0.0827 (4)0.174 (5)
H42A0.34810.20950.11250.26*
H42B0.28730.22420.06440.26*
H42C0.32210.31130.09760.26*
C430.3576 (4)0.2595 (6)0.0429 (3)0.090 (2)
N440.3878 (3)0.2658 (5)0.0185 (3)0.112 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.03667 (19)0.03316 (19)0.02706 (17)0.00461 (18)0.00904 (14)0.00454 (17)
N10.039 (2)0.035 (2)0.0305 (19)0.0044 (18)0.0123 (17)0.0030 (17)
C20.040 (3)0.044 (3)0.043 (3)0.001 (2)0.008 (2)0.002 (2)
C30.043 (3)0.055 (3)0.054 (3)0.001 (3)0.010 (2)0.001 (3)
C40.062 (4)0.053 (3)0.072 (4)0.015 (3)0.029 (3)0.002 (3)
C50.058 (3)0.042 (3)0.057 (3)0.000 (3)0.022 (3)0.012 (3)
C60.046 (3)0.037 (3)0.033 (2)0.004 (2)0.015 (2)0.002 (2)
S70.0483 (7)0.0477 (7)0.0352 (6)0.0051 (6)0.0095 (5)0.0124 (6)
C80.042 (3)0.037 (3)0.032 (2)0.005 (2)0.008 (2)0.001 (2)
C90.048 (3)0.049 (3)0.053 (3)0.013 (3)0.012 (3)0.010 (3)
C100.043 (3)0.057 (3)0.067 (4)0.016 (3)0.020 (3)0.003 (3)
C110.047 (3)0.056 (3)0.051 (3)0.004 (3)0.022 (2)0.009 (3)
C120.054 (3)0.043 (3)0.035 (3)0.002 (3)0.016 (2)0.002 (2)
N130.039 (2)0.036 (2)0.0296 (19)0.0054 (18)0.0122 (17)0.0034 (17)
N140.040 (2)0.047 (2)0.030 (2)0.0058 (19)0.0082 (17)0.0021 (18)
C150.043 (3)0.048 (3)0.041 (3)0.005 (2)0.010 (2)0.002 (2)
C160.062 (4)0.062 (4)0.048 (3)0.003 (3)0.021 (3)0.017 (3)
C170.070 (4)0.093 (5)0.033 (3)0.001 (4)0.014 (3)0.009 (3)
C180.056 (3)0.079 (4)0.035 (3)0.008 (3)0.015 (2)0.011 (3)
C190.038 (3)0.060 (3)0.035 (3)0.008 (2)0.012 (2)0.004 (2)
S200.0629 (9)0.0568 (9)0.0413 (7)0.0192 (7)0.0136 (6)0.0161 (6)
C210.057 (3)0.040 (3)0.046 (3)0.010 (3)0.024 (2)0.015 (2)
C220.076 (4)0.052 (4)0.075 (4)0.005 (3)0.034 (3)0.021 (3)
C230.089 (5)0.052 (4)0.097 (5)0.014 (4)0.045 (4)0.015 (4)
C240.064 (4)0.053 (4)0.080 (4)0.014 (3)0.031 (3)0.003 (3)
C250.052 (3)0.048 (3)0.043 (3)0.002 (3)0.020 (2)0.007 (2)
N260.043 (2)0.036 (2)0.039 (2)0.004 (2)0.0149 (18)0.0037 (19)
N270.044 (2)0.033 (2)0.032 (2)0.0044 (18)0.0148 (17)0.0062 (16)
C280.040 (3)0.036 (3)0.038 (3)0.005 (2)0.009 (2)0.004 (2)
C290.057 (3)0.043 (3)0.034 (3)0.001 (3)0.004 (2)0.000 (2)
C300.080 (4)0.050 (3)0.034 (3)0.001 (3)0.023 (3)0.006 (2)
C310.058 (3)0.048 (3)0.043 (3)0.005 (3)0.024 (3)0.004 (2)
C320.046 (3)0.032 (3)0.038 (3)0.000 (2)0.019 (2)0.005 (2)
C330.045 (3)0.044 (3)0.049 (3)0.008 (2)0.023 (2)0.007 (2)
S340.0386 (7)0.0412 (7)0.0388 (7)0.0066 (6)0.0099 (5)0.0045 (6)
C350.057 (3)0.044 (3)0.040 (3)0.012 (3)0.026 (2)0.007 (2)
N360.078 (3)0.054 (3)0.049 (3)0.027 (3)0.018 (2)0.013 (2)
C370.122 (6)0.056 (4)0.074 (4)0.031 (4)0.039 (4)0.015 (4)
C380.120 (6)0.036 (3)0.094 (5)0.006 (4)0.063 (4)0.005 (3)
C390.070 (4)0.050 (4)0.075 (4)0.007 (3)0.039 (3)0.006 (3)
N400.051 (3)0.040 (3)0.054 (3)0.001 (2)0.015 (2)0.002 (2)
C410.095 (5)0.081 (5)0.119 (6)0.027 (4)0.026 (5)0.035 (5)
P10.162 (2)0.0557 (11)0.0660 (11)0.0228 (13)0.0467 (13)0.0003 (9)
F10.198 (6)0.121 (4)0.148 (4)0.024 (4)0.071 (4)0.041 (4)
F20.304 (7)0.128 (4)0.120 (4)0.031 (5)0.123 (4)0.029 (3)
F30.168 (5)0.173 (6)0.216 (7)0.070 (5)0.071 (5)0.008 (5)
F40.191 (6)0.152 (5)0.226 (7)0.081 (5)0.088 (5)0.051 (5)
F50.343 (9)0.158 (5)0.087 (3)0.028 (6)0.096 (5)0.013 (3)
F60.257 (8)0.088 (4)0.187 (6)0.030 (4)0.039 (5)0.038 (4)
P20.113 (2)0.0677 (16)0.0555 (14)00.0326 (14)0
F70.114 (3)0.158 (4)0.102 (3)0.037 (3)0.028 (3)0.024 (3)
F80.115 (13)0.068 (10)0.25 (2)00.108 (17)0
F90.19 (2)0.035 (8)0.25 (2)00.106 (18)0
F100.121 (10)0.30 (2)0.051 (6)0.095 (13)0.040 (7)0.027 (11)
F8A0.156 (10)0.187 (11)0.155 (11)0.102 (9)0.012 (8)0.111 (9)
F9A0.345 (15)0.156 (10)0.209 (11)0.134 (10)0.216 (11)0.131 (9)
P30.0703 (15)0.0638 (15)0.0841 (17)00.0458 (13)0
F110.084 (3)0.119 (3)0.136 (3)0.023 (2)0.070 (2)0.012 (3)
F120.086 (5)0.232 (11)0.070 (4)0.042 (7)0.039 (4)0.055 (6)
F130.085 (7)0.048 (5)0.137 (9)00.068 (6)0
F140.228 (19)0.079 (9)0.30 (2)00.143 (16)0
F12A0.077 (8)0.107 (11)0.118 (12)0.007 (8)0.007 (8)0.057 (10)
F13A0.102 (10)0.102 (11)0.28 (2)0.035 (9)0.111 (12)0.090 (12)
C420.210 (10)0.196 (11)0.158 (9)0.115 (9)0.119 (8)0.101 (8)
C430.082 (5)0.095 (6)0.098 (6)0.003 (4)0.033 (4)0.012 (5)
N440.086 (4)0.135 (6)0.126 (6)0.011 (4)0.051 (4)0.009 (5)
Geometric parameters (Å, º) top
Ru1—N142.095 (4)C29—C301.375 (7)
Ru1—N132.102 (4)C29—H290.93
Ru1—N262.106 (4)C30—C311.372 (7)
Ru1—N12.109 (4)C30—H300.93
Ru1—N272.123 (4)C31—C321.383 (6)
Ru1—S342.3581 (13)C31—H310.93
N1—C61.354 (5)C32—C331.494 (6)
N1—C21.357 (5)C33—S341.825 (5)
C2—C31.362 (7)C33—H33A0.97
C2—H20.93C33—H33B0.97
C3—C41.373 (7)S34—C351.816 (5)
C3—H30.93C35—N361.316 (6)
C4—C51.381 (7)C35—N401.318 (6)
C4—H40.93N36—C371.338 (8)
C5—C61.382 (7)C37—C381.370 (9)
C5—H50.93C37—H370.93
C6—S71.751 (5)C38—C391.389 (8)
S7—C81.772 (5)C38—H380.93
C8—N131.346 (5)C39—N401.332 (7)
C8—C91.383 (6)C39—C411.464 (8)
C9—C101.360 (7)C41—H41A0.96
C9—H90.93C41—H41B0.96
C10—C111.375 (7)C41—H41C0.96
C10—H100.93P1—F61.535 (6)
C11—C121.364 (7)P1—F51.536 (5)
C11—H110.93P1—F31.541 (6)
C12—N131.359 (6)P1—F21.553 (5)
C12—H120.93P1—F41.554 (6)
N14—C151.343 (6)P1—F11.570 (6)
N14—C191.366 (6)P2—F91.508 (17)
C15—C161.369 (7)P2—F101.514 (12)
C15—H150.93P2—F10i1.514 (12)
C16—C171.370 (8)P2—F81.525 (19)
C16—H160.93P2—F9A1.531 (10)
C17—C181.366 (8)P2—F9Ai1.531 (10)
C17—H170.93P2—F8A1.550 (9)
C18—C191.377 (7)P2—F8Ai1.550 (9)
C18—H180.93P2—F7i1.589 (5)
C19—S201.758 (5)P2—F71.589 (5)
S20—C211.761 (5)P3—F13A1.525 (15)
C21—N261.357 (6)P3—F13Ai1.525 (15)
C21—C221.383 (7)P3—F141.551 (15)
C22—C231.365 (8)P3—F121.552 (7)
C22—H220.93P3—F12i1.552 (7)
C23—C241.372 (8)P3—F11i1.581 (4)
C23—H230.93P3—F111.581 (4)
C24—C251.378 (7)P3—F12Ai1.585 (13)
C24—H240.93P3—F12A1.585 (13)
C25—N261.342 (6)P3—F131.619 (9)
C25—H250.93C42—C431.437 (11)
N27—C321.351 (6)C42—H42A0.96
N27—C281.352 (5)C42—H42B0.96
C28—C291.367 (6)C42—H42C0.96
C28—H280.93C43—N441.089 (9)
N14—Ru1—N1386.18 (14)S34—C33—H33B109.5
N14—Ru1—N2689.08 (15)H33A—C33—H33B108.1
N13—Ru1—N2691.97 (14)C35—S34—C3397.2 (2)
N14—Ru1—N187.34 (14)C35—S34—Ru1114.10 (17)
N13—Ru1—N189.05 (14)C33—S34—Ru195.64 (16)
N26—Ru1—N1176.20 (14)N36—C35—N40129.5 (5)
N14—Ru1—N27179.37 (16)N36—C35—S34114.0 (4)
N13—Ru1—N2793.98 (14)N40—C35—S34116.5 (4)
N26—Ru1—N2791.52 (14)C35—N36—C37113.7 (5)
N1—Ru1—N2792.05 (14)N36—C37—C38122.7 (6)
N14—Ru1—S3497.98 (11)N36—C37—H37118.7
N13—Ru1—S34174.46 (10)C38—C37—H37118.7
N26—Ru1—S3491.75 (10)C37—C38—C39118.1 (6)
N1—Ru1—S3487.50 (10)C37—C38—H38121
N27—Ru1—S3481.82 (10)C39—C38—H38121
C6—N1—C2116.4 (4)N40—C39—C38119.9 (6)
C6—N1—Ru1124.6 (3)N40—C39—C41118.2 (6)
C2—N1—Ru1118.9 (3)C38—C39—C41121.9 (6)
N1—C2—C3123.5 (5)C35—N40—C39116.2 (5)
N1—C2—H2118.2C39—C41—H41A109.5
C3—C2—H2118.2C39—C41—H41B109.5
C2—C3—C4119.6 (5)H41A—C41—H41B109.5
C2—C3—H3120.2C39—C41—H41C109.5
C4—C3—H3120.2H41A—C41—H41C109.5
C3—C4—C5118.3 (5)H41B—C41—H41C109.5
C3—C4—H4120.8F6—P1—F590.8 (4)
C5—C4—H4120.8F6—P1—F386.7 (4)
C4—C5—C6119.5 (5)F5—P1—F394.0 (4)
C4—C5—H5120.2F6—P1—F289.5 (4)
C6—C5—H5120.2F5—P1—F2176.3 (4)
N1—C6—C5122.5 (4)F3—P1—F289.7 (4)
N1—C6—S7121.1 (3)F6—P1—F494.2 (4)
C5—C6—S7116.3 (4)F5—P1—F490.3 (4)
C6—S7—C8104.6 (2)F3—P1—F4175.6 (4)
N13—C8—C9122.4 (4)F2—P1—F486.0 (4)
N13—C8—S7121.1 (3)F6—P1—F1177.7 (4)
C9—C8—S7116.4 (4)F5—P1—F189.2 (3)
C10—C9—C8119.9 (5)F3—P1—F191.0 (4)
C10—C9—H9120.1F2—P1—F190.7 (3)
C8—C9—H9120.1F4—P1—F188.2 (4)
C9—C10—C11118.8 (5)F9—P2—F1090.3 (9)
C9—C10—H10120.6F9—P2—F10i90.3 (9)
C11—C10—H10120.6F10—P2—F10i179.3 (17)
C12—C11—C10118.9 (5)F9—P2—F8180
C12—C11—H11120.6F10—P2—F889.7 (9)
C10—C11—H11120.6F10i—P2—F889.7 (9)
N13—C12—C11123.7 (5)F10—P2—F9A49.0 (8)
N13—C12—H12118.1F10i—P2—F9A131.6 (13)
C11—C12—H12118.1F8—P2—F9A137.6 (5)
C8—N13—C12116.2 (4)F9A—P2—F9Ai84.8 (9)
C8—N13—Ru1124.7 (3)F9A—P2—F8A90.5 (7)
C12—N13—Ru1119.1 (3)F9Ai—P2—F8A174.2 (9)
C15—N14—C19116.0 (4)F9—P2—F8Ai132.8 (6)
C15—N14—Ru1120.6 (3)F9A—P2—F8Ai174.2 (9)
C19—N14—Ru1123.3 (3)F9Ai—P2—F8Ai90.5 (7)
N14—C15—C16123.9 (5)F8A—P2—F8Ai94.4 (12)
N14—C15—H15118F9—P2—F7i91.0 (2)
C16—C15—H15118F10—P2—F7i94.1 (6)
C15—C16—C17119.1 (5)F10i—P2—F7i85.9 (6)
C15—C16—H16120.4F8—P2—F7i89.0 (2)
C17—C16—H16120.4F9A—P2—F7i85.6 (6)
C18—C17—C16118.8 (5)F9Ai—P2—F7i96.0 (6)
C18—C17—H17120.6F8A—P2—F7i87.2 (5)
C16—C17—H17120.6F8Ai—P2—F7i91.4 (5)
C17—C18—C19119.7 (5)F9—P2—F791.0 (2)
C17—C18—H18120.2F10—P2—F785.9 (6)
C19—C18—H18120.2F10i—P2—F794.1 (6)
N14—C19—C18122.4 (5)F8—P2—F789.0 (2)
N14—C19—S20119.6 (3)F9A—P2—F796.0 (6)
C18—C19—S20117.9 (4)F9Ai—P2—F785.6 (6)
C19—S20—C21103.9 (2)F8A—P2—F791.4 (5)
N26—C21—C22122.4 (5)F8Ai—P2—F787.2 (5)
N26—C21—S20120.8 (4)F7i—P2—F7177.9 (4)
C22—C21—S20116.6 (4)F13A—P3—F13Ai96.3 (16)
C23—C22—C21119.9 (6)F14—P3—F1290.9 (5)
C23—C22—H22120F14—P3—F12i90.9 (5)
C21—C22—H22120F12—P3—F12i178.1 (10)
C22—C23—C24118.7 (6)F13A—P3—F11i97.4 (5)
C22—C23—H23120.6F13Ai—P3—F11i81.3 (5)
C24—C23—H23120.6F14—P3—F11i90.95 (19)
C23—C24—C25118.4 (6)F12—P3—F11i83.9 (3)
C23—C24—H24120.8F12i—P3—F11i96.0 (3)
C25—C24—H24120.8F13A—P3—F1181.3 (5)
N26—C25—C24124.6 (5)F13Ai—P3—F1197.4 (5)
N26—C25—H25117.7F14—P3—F1190.95 (19)
C24—C25—H25117.7F12—P3—F1196.0 (3)
C25—N26—C21115.7 (4)F12i—P3—F1183.9 (3)
C25—N26—Ru1121.9 (3)F11i—P3—F11178.1 (4)
C21—N26—Ru1122.3 (3)F13A—P3—F12Ai174.3 (12)
C32—N27—C28116.8 (4)F13Ai—P3—F12Ai89.3 (9)
C32—N27—Ru1118.8 (3)F11i—P3—F12Ai82.4 (6)
C28—N27—Ru1124.3 (3)F11—P3—F12Ai99.0 (6)
N27—C28—C29124.0 (5)F13A—P3—F12A89.3 (9)
N27—C28—H28118F13Ai—P3—F12A174.3 (12)
C29—C28—H28118F11i—P3—F12A99.0 (6)
C28—C29—C30118.3 (5)F11—P3—F12A82.4 (6)
C28—C29—H29120.8F12Ai—P3—F12A85.1 (12)
C30—C29—H29120.8F14—P3—F13180.000 (2)
C31—C30—C29119.2 (5)F12—P3—F1389.1 (5)
C31—C30—H30120.4F12i—P3—F1389.1 (5)
C29—C30—H30120.4F11i—P3—F1389.05 (19)
C30—C31—C32119.8 (5)F11—P3—F1389.05 (19)
C30—C31—H31120.1F12Ai—P3—F13137.5 (6)
C32—C31—H31120.1F12A—P3—F13137.5 (6)
N27—C32—C31121.9 (4)C43—C42—H42A109.5
N27—C32—C33117.8 (4)C43—C42—H42B109.5
C31—C32—C33120.3 (4)H42A—C42—H42B109.5
C32—C33—S34110.9 (3)C43—C42—H42C109.5
C32—C33—H33A109.5H42A—C42—H42C109.5
S34—C33—H33A109.5H42B—C42—H42C109.5
C32—C33—H33B109.5N44—C43—C42171.0 (10)
N14—Ru1—N1—C6123.9 (4)N26—C21—C22—C231.9 (9)
N13—Ru1—N1—C637.7 (4)S20—C21—C22—C23177.5 (5)
N27—Ru1—N1—C656.3 (4)C21—C22—C23—C242.9 (9)
S34—Ru1—N1—C6138.0 (3)C22—C23—C24—C253.4 (9)
N14—Ru1—N1—C253.2 (3)C23—C24—C25—N260.8 (9)
N13—Ru1—N1—C2139.5 (3)C24—C25—N26—C215.3 (7)
N27—Ru1—N1—C2126.6 (3)C24—C25—N26—Ru1170.1 (4)
S34—Ru1—N1—C244.9 (3)C22—C21—N26—C255.8 (7)
C6—N1—C2—C33.3 (7)S20—C21—N26—C25178.8 (4)
Ru1—N1—C2—C3179.3 (4)C22—C21—N26—Ru1169.5 (4)
N1—C2—C3—C41.8 (8)S20—C21—N26—Ru15.9 (5)
C2—C3—C4—C50.5 (8)N14—Ru1—N26—C25139.8 (4)
C3—C4—C5—C61.1 (8)N13—Ru1—N26—C2553.6 (4)
C2—N1—C6—C52.7 (7)N27—Ru1—N26—C2540.4 (4)
Ru1—N1—C6—C5179.9 (4)S34—Ru1—N26—C25122.3 (4)
C2—N1—C6—S7179.5 (3)N14—Ru1—N26—C2145.2 (4)
Ru1—N1—C6—S72.3 (5)N13—Ru1—N26—C21131.3 (4)
C4—C5—C6—N10.5 (8)N27—Ru1—N26—C21134.6 (4)
C4—C5—C6—S7178.5 (4)S34—Ru1—N26—C2152.8 (4)
N1—C6—S7—C849.0 (4)N13—Ru1—N27—C32159.3 (3)
C5—C6—S7—C8133.0 (4)N26—Ru1—N27—C32108.7 (3)
C6—S7—C8—N1347.8 (4)N1—Ru1—N27—C3270.1 (3)
C6—S7—C8—C9135.0 (4)S34—Ru1—N27—C3217.1 (3)
N13—C8—C9—C101.4 (8)N13—Ru1—N27—C2824.3 (4)
S7—C8—C9—C10178.6 (4)N26—Ru1—N27—C2867.8 (4)
C8—C9—C10—C111.5 (8)N1—Ru1—N27—C28113.4 (4)
C9—C10—C11—C121.9 (8)S34—Ru1—N27—C28159.4 (4)
C10—C11—C12—N130.5 (8)C32—N27—C28—C291.3 (7)
C9—C8—N13—C123.6 (7)Ru1—N27—C28—C29175.2 (4)
S7—C8—N13—C12179.3 (3)N27—C28—C29—C301.1 (7)
C9—C8—N13—Ru1176.7 (4)C28—C29—C30—C310.2 (8)
S7—C8—N13—Ru10.4 (5)C29—C30—C31—C321.2 (8)
C11—C12—N13—C83.2 (7)C28—N27—C32—C310.2 (6)
C11—C12—N13—Ru1177.1 (4)Ru1—N27—C32—C31176.5 (3)
N14—Ru1—N13—C8126.3 (4)C28—N27—C32—C33177.6 (4)
N26—Ru1—N13—C8144.7 (4)Ru1—N27—C32—C335.7 (5)
N1—Ru1—N13—C838.9 (4)C30—C31—C32—N271.0 (7)
N27—Ru1—N13—C853.1 (4)C30—C31—C32—C33178.7 (5)
N14—Ru1—N13—C1253.3 (3)N27—C32—C33—S3433.7 (5)
N26—Ru1—N13—C1235.7 (3)C31—C32—C33—S34148.5 (4)
N1—Ru1—N13—C12140.7 (3)C32—C33—S34—C3575.9 (4)
N27—Ru1—N13—C12127.3 (3)C32—C33—S34—Ru139.4 (3)
N13—Ru1—N14—C1546.3 (4)N14—Ru1—S34—C35107.7 (2)
N26—Ru1—N14—C15138.4 (4)N26—Ru1—S34—C3518.4 (2)
N1—Ru1—N14—C1542.9 (4)N1—Ru1—S34—C35165.4 (2)
S34—Ru1—N14—C15130.0 (3)N27—Ru1—S34—C3572.9 (2)
N13—Ru1—N14—C19130.4 (4)N14—Ru1—S34—C33151.9 (2)
N26—Ru1—N14—C1938.4 (4)N26—Ru1—S34—C33118.82 (19)
N1—Ru1—N14—C19140.4 (4)N1—Ru1—S34—C3364.91 (19)
S34—Ru1—N14—C1953.2 (4)N27—Ru1—S34—C3327.53 (19)
C19—N14—C15—C162.1 (7)C33—S34—C35—N36123.0 (4)
Ru1—N14—C15—C16179.1 (4)Ru1—S34—C35—N36137.5 (3)
N14—C15—C16—C171.3 (8)C33—S34—C35—N4053.7 (4)
C15—C16—C17—C181.3 (8)Ru1—S34—C35—N4045.8 (4)
C16—C17—C18—C192.8 (8)N40—C35—N36—C370.5 (8)
C15—N14—C19—C180.4 (7)S34—C35—N36—C37176.7 (4)
Ru1—N14—C19—C18177.3 (4)C35—N36—C37—C380.3 (9)
C15—N14—C19—S20176.5 (3)N36—C37—C38—C391.1 (10)
Ru1—N14—C19—S206.6 (5)C37—C38—C39—N401.1 (9)
C17—C18—C19—N142.0 (8)C37—C38—C39—C41178.5 (6)
C17—C18—C19—S20174.1 (4)N36—C35—N40—C390.5 (8)
N14—C19—S20—C2154.7 (4)S34—C35—N40—C39176.6 (4)
C18—C19—S20—C21129.0 (4)C38—C39—N40—C350.4 (8)
C19—S20—C21—N2647.8 (4)C41—C39—N40—C35179.2 (5)
C19—S20—C21—C22136.6 (4)
Symmetry code: (i) x+3/2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···F7ii0.932.503.399 (7)163
C11—H11···F10.932.513.385 (8)156
C28—H28···N440.932.583.353 (8)141
Symmetry code: (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ru(C10H8N2S)2(C11H11N3S)](PF6)2·C2H3N
Mr1025.84
Crystal system, space groupMonoclinic, I2/a
Temperature (K)298
a, b, c (Å)23.685 (5), 14.183 (2), 25.264 (8)
β (°) 108.941 (16)
V3)8027 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.4 × 0.24 × 0.2
Data collection
DiffractometerBruker P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8188, 7057, 4940
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.114, 1.03
No. of reflections7057
No. of parameters572
No. of restraints30
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0418P)2 + 20.1188P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.59, 0.38

Computer programs: XSCANS (Siemens, 1989), XSCANS, XPREPW (Bruker, 1997), SIR2002 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), XPW (Bruker, 1997), PARST97 (Nardelli, 1995) and WinGX-PC (version 1.6.4.05; Farrugia, 1999).

Selected geometric parameters (Å, º) top
Ru1—N142.095 (4)C6—S71.751 (5)
Ru1—N132.102 (4)S7—C81.772 (5)
Ru1—N262.106 (4)C19—S201.758 (5)
Ru1—N12.109 (4)S20—C211.761 (5)
Ru1—N272.123 (4)C33—S341.825 (5)
Ru1—S342.3581 (13)S34—C351.816 (5)
N14—Ru1—N1386.18 (14)N1—Ru1—N2792.05 (14)
N14—Ru1—N2689.08 (15)N14—Ru1—S3497.98 (11)
N13—Ru1—N2691.97 (14)N13—Ru1—S34174.46 (10)
N14—Ru1—N187.34 (14)N26—Ru1—S3491.75 (10)
N13—Ru1—N189.05 (14)N1—Ru1—S3487.50 (10)
N26—Ru1—N1176.20 (14)N27—Ru1—S3481.82 (10)
N14—Ru1—N27179.37 (16)C6—S7—C8104.6 (2)
N13—Ru1—N2793.98 (14)C19—S20—C21103.9 (2)
N26—Ru1—N2791.52 (14)C35—S34—C3397.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···F7i0.932.503.399 (7)163
C11—H11···F10.932.513.385 (8)156
C28—H28···N440.932.583.353 (8)141
Symmetry code: (i) x, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds