Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Two hydrated complexes of monomeric dihydroxy­acetone (DHA; the simplest ketose), viz. the calcium bromide complex bis­([mu]-dihydroxy­acetone)bis­[tetra­aqua­calcium(II)] tetra­brom­ide (isomorphous with the chlor­ide compound reported previously), [Ca2(C3H6O3)2(H2O)8]Br4, (2e), and the cadmium chloride complex poly[[bis­([mu]-dihydroxy­acetone)­bis­[bis­(dihy­droxy­acetone)cadmium(II)]] [diaqua­tetra­deca-[mu]-chlorido-di­chloridohexa­cadmium(II)] tetra­hydrate], {[Cd2(C3H6O3)6][Cd6Cl16(H2O)2]·4H2O}n, (2f), are described. The Ca2+ or Cd2+ ions are bridged by the carbonyl O atoms from two DHA mol­ecules to form centrosymmetric dimers, with Ca...Ca distances of 4.334 (2) and 4.300 (2) Å in (2e), and a Cd...Cd distance of 4.195 (1) Å in (2f). Almost identical in shape, the eight-coordinate polyhedra of the Ca2+ and Cd2+ ions are composed of 2n O atoms from n DHA mol­ecules [n = 2 in (2e) and n = 4 in (2f)] and are completed by four water mol­ecules in (2e). DHA mol­ecules chelate the cations via both the hydroxyl and carbonyl groups and exist in an extended conformation, with both hydroxyl groups being synperiplanar to the carbonyl O atom. The crystal structures are stabilized by similar extensive O-H...X (X = Cl or Br) and O-H...O hydrogen-bond networks involving all hydroxyl groups and the water mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108002527/sk3189sup1.cif
Contains datablocks global, 2e, 2f

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108002527/sk31892esup2.hkl
Contains datablock 2e

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108002527/sk31892fsup3.hkl
Contains datablock 2f

CCDC references: 682797; 682798

Comment top

The solid-state study of dihydroxyacetone, DHA (1,3-dihydroxy-2-propanone), the simplest ketose, was undertaken as part of the structural characterization of the intermediates on a chemical pathway, based on the synthesis described by Ferroni et al. (1999) and then modified (Ślepokura & Lis, 2004a; Ślepokura, 2008), leading from dihydroxyacetone to its phosphate ester, dihydroxyacetone phosphate, DHAP, which is a biochemical intermediate of great biological and chemical (synthetic) importance (Gijsen et al., 1996; Koeller & Wong, 2000; Machajewski & Wong, 2000; Fessner & Helaine, 2001). Previously, we have reported the crystal and molecular structures of the series of compounds occurring in the first six steps of the investigated pathway (Ślepokura & Lis, 2004a,b, 2006; Ślepokura, 2008).

DHA (ketotriose), along with D-glyceraldehyde (aldotriose), are the basis of carbohydrate chemistry. Nevertheless, until 2004, the dimeric structure of D-glyceraldehyde, described in 1973 by Senma et al. (1973), was the only crystal structure of a triose given in the literature. In contrast with five- and six-carbon sugars, trioses and tetroses were poorly characterized in terms of their solid-state structure [see, for example, the Cambridge Structural Database (CSD), Version? (Allen, 2002)]. It is known that the commercial solid dihydroxyacetone, which is 100% in dimeric form, dissociates in water solution into a mixture of two monomeric forms: a free carbonyl (ketone, K) and a hydrate (gem-diol, H) in a ratio of 4:1 (Davis, 1973; Ślepokura & Lis, 2004a). Kobayashi et al. (1976) stated that in the melted state DHA also exists as a mixture of monomeric and dimeric molecules, the monomer being predominant. Nevertheless, the solid-state structure of dihydroxyacetone had not been reported until very recently, when we described its crystal and molecular structures in dimeric form, DHA-dimer, C6H12O6 [three polymorphous forms, (1a–c)], as well as in monomeric form [DHA, C3H6O3, (2c)], along with two calcium chloride complexes of DHA, [Ca2Cl2(DHA)4(H2O)2]Cl2, (2a), and [Ca2(DHA)2(H2O)8]Cl4, (2 b) (Ślepokura & Lis, 2004a).

Analysis of the dihydroxyacetone calcium chloride complexes, (2a) and (2 b), revealed very specific interactions between DHA molecules and Ca2+ cations. Although, from the structural point of view, calcium complexation by α-hydroxycarboxylates is well known, calcium complexation by α-hydroxyketones has only rarely been reported. The first crystallographic structural characterization of such a complex reported in the literature was the calcium complex of hydroxyacetophenone (phenacyl alcohol; Doxsee et al., 1993). The α-hydroxyketone moiety occurs in a number of important pharmaceutical compounds (including corticosteroids and tetracycline antibiotics) and there have been reports suggesting the potential interaction of such pharmaceuticals with Ca2+ cations in vivo (Monder et al., 1988; Lambs et al., 1988).

The analysis of the structures of the compounds (2a–c) reported by us previously (Ślepokura & Lis, 2004a) and those presented here, (2 e) and (2f), reveals a great similarity in the DHA molecules, regardless of whether they are coordinated to a metal centre or not. The overall molecular structure of monomeric dihydroxyacetone in the solid state is very rigid and hence almost identical in all its known compounds. The most important structural feature of all the DHA molecules is their planarity. The molecules exist in an extended (in-plane) conformation. with all of the non-H atoms lying in one plane, and with the hydroxyl H atoms being nearly coplanar in most cases. Both hydroxyl groups in compounds (2a–f) are in a synperiplanar (sp) orientation in relation to the carbonyl O atom. The molecular structures of the crystallographically independent DHA molecules, two in the calcium bromide complex (2 e) and three in the cadmium chloride complex (2f), are shown in Fig. 1. The relevant torsion angles for all of them are listed in Tables 1 and 4. It is to be noted here that the synperiplanar orientation of the DHA hydroxyl and carbonyl groups was proposed by Yaylayan & Ismail (1995) on the basis of solution FT–IR spectroscopy. The planarity of the α-hydroxyketone moiety in the solid state has been observed in some steroids, e.g. cortisone and its derivatives, sugar derivatives [of what?], methyl 2-acetamido-2-deoxy-β-D-hexafuranosid-5-ulose (CSD refcode? Compound reference?), and hydroxyacetophenone complexed to the Ca2+ cation (Doxsee et al., 1993). However, the steroid crystal structures show that when the two α-hydroxyl groups relative to the ketone functionality are present, one of them adopts the antiperiplanar (ap) orientation.

The crystal structure of (2 e) is isomorphous with that of (2 b) and consists of [Ca2(DHA)2(H2O)8]4+ cations with Br- anions located between them. The crystal structure of (2f) is built up from [Cd2(DHA)6]4+ cations, inorganic polymeric [Cd3Cl8(H2O)]n2n- anions described below and non-coordinated water of hydration. Two crystallographically independent Ca2+ cations in (2 e) form two independent but chemically identical complex cations in a manner shown in Fig. 2. Two symmetry-related Ca2+ or Cd2+ ions are linked by two carbonyl O bridges from two symmetry-related DHA molecules to form centrosymmetric dimers, with Ca···Ca distances of 4.334 (2) and 4.300 (2) Å in the two crystallographically independent dimers in (2 e) and a Cd···Cd distance of 4.195 (1) Å in (2f). As found in (2a) and (2 b) (Ślepokura & Lis, 2004a), the DHA molecules of the complex cations described here act as bridging as well as chelating ligands for two symmetry-related complex-forming metal centres (Figs. 2 and 3). Thus, the eight-coordinate polyhedra of each Ca2+ cation in (2 e) and one of the Cd2+ cations (Cd1) in (2f) are composed of O atoms from the differing number of DHA molecules coordinating to them [four O atoms from two DHA in (2 e) and eight O atoms from four DHA in (2f)]. The coordination environments of the Ca2+ cations in (2 e) are completed by four water molecules. The coordination polyhedra of the Ca2+ and Cd2+ metal centres may be described as distorted square antiprisms, with the longest of all the M···O distances being the bridging distance M···O2 (for geometry of the metal coordination spheres, see Tables 2 and 5). The same mode of coordination of the α-hydroxyketone moiety to Ca2+ or Cd2+ cations is observed in all the DHA complexes presented here and reported previously (Ślepokura & Lis, 2004a), as well as in hydroxyacetophenone complexed with CaCl2 (Doxsee et al., 1993). This coordination pattern is typical for the α-chelation mode, which is a characteristic mode for the interactions of α-hydroxyacids with Ca2+ ions (Einspahr & Bugg, 1981). In all the DHA complexes, there is a strong tendency for the Ca2+ ion to lie in the plane of the α-hydroxycarbonyl group, and therefore in the plane of the DHA molecules. The Ca2+ cations are restricted to a narrow region, with Ca···O—C angles of about 110–130°, typical for the α-chelation mode: 120.4 (2)–122.7 (2)° in (2 e) and 117.8 (2)–122.4 (2)° in (2f).

The characteristic structural units of all the known DHA complexes are the complex cations, although these may be of three different types. Identical cations with a 1:1 Ca2+:DHA ratio (type I) are formed in the isomorphous crystal structures (2 b) and (2 e). Cations with a 1:2 Ca2+:DHA ratio (type II) are present in the CaCl2 complex, (2a). [It is to be noted here that the model obtained for the crystal structure of the CaBr2 complex, (2 d), reveals a similar complex cation.] The third type of dimeric cation is formed in the case of Cd centres, with a 1:3 C d2+:DHA ratio (type III). In all types of complex cation, the ligands (DHA and/or water molecules) are located on two almost perpendicular planes, intersecting each other along the line linking the two M2+ ions. The first of these is always built up from the two M2+ ions and two bridging DHA molecules to form the core of the dimeric complex cation. In general, the core plane is almost planar (deviations from the least-squares planes are less than 0.2 Å) in all the dimeric complex cations described. The second plane is composed of the same two M2+ ions and the other, chelating, DHA molecules and/or water molecules [Cl- exceptionally in (2a)]. This plane is quite well defined in the complex cation of type II. The same plane in complex cations of types I (eight water molecules) and III (four DHA molecules) is much less well defined, with O6W water molecules in (2 b) and (2 e) being displaced from the plane by 0.4–0.5 Å, and with some of the atoms in (2f) deviating by 0.2–0.3 Å. The intersection angles between the two planes are 87.9 (1) and 88.1 (1)° in the two crystallographically independent complex cations formed by Ca1 and Ca2 in (2 e), and 83.3 (1)° in (2f).

The huge similarity in the building of Ca2+ and Cd2+ complex cations in (2a), (2 b), (2 e) and (2f) may have some biological justification. It is known that Cd2+ ions, despite their different chemical nature, may mimic Ca2+ ions in terms of their interactions with the sugar moiety, e.g. in nucleotide anions (Goodgame et al., 1975). Cadmium toxicity is also well known to cause kidney and liver dysfunction and brittle bones. Cadmium competes with calcium both in calcium channels and in intracellular calcium-binding proteins (Richardt et al., 1986; Hinkle et al., 1987).

As observed in the previously presented DHA complexes, as well as in free DHA crystals (Ślepokura & Lis, 2004a), all hydroxyl groups of the DHA molecules of the calcium bromide, (2 e), and cadmium chloride, (2f), complexes are involved in medium-strong and weak hydrogen bonds of diverse type, mainly as donors, but also as acceptors (Figs. 4–6; Tables 3 and 6). Adjacent complex dimers are linked to each other by two kinds of interactions, direct (between the dimers) and indirect (through the halide or/and water bridges). Although the overall crystal packing mode of (2f) seems to be different from that observed in the calcium halide complexes, due to the presence of polymeric inorganic anions, in fact they reveal great similarity, mainly in the geometry of the interdimeric interactions described in detail below.

Two of the calcium halide complexes, (2 b) and (2 e), are isomorphous and an analogous, almost identical, pattern of O—H···O, O—H···X and C—H···X hydrogen bonds is observed in their crystal structures. In general, both hydroxyl groups of the DHA molecules in the CaX2 complexes, (2a), (2 b) and (2 e), form one O–H···X contact, except for one of the –OH groups in (2a), which is involved in interdimeric O—H···O interactions instead. The same halide anion is simultaneously linked to the other DHA or water molecule from an adjacent complex dimer. The DHA···X interactions are almost linear in most cases, which means that the halide anions lie almost in planes, in which the DHA molecules are located. Thus, the O—H···X network links adjacent cationic dimers via Cl- or Br- bridges. The water molecules are involved in similar O—H···X interactions linking adjacent complex cations. In (2 e), all the Br- anions act as bridges between every three adjacent complex cations, forming different types of interdimeric O—H···Br···H—O interactions: water···Br···water (for Br1, Br2 and Br4), DHA···Br···water (Br1, Br3 and Br4) or DHA···Br···DHA (Br3). Thus, a three-dimensional network of furcated five- (for Br2, Br3 and Br4) or six-centred (for Br1) O—H···Br hydrogen bonds is formed. Additionally, each dimer is stabilized by intradimeric water···water O—H···O interactions (Fig. 4 and Table 3).

The chief characteristic of the packing mode in the cadmium chloride complex, (2f), is a three-dimensional network of O—H···O hydrogen bonds (Fig. 5 and Table 6). The counterions for the dimeric cations in (2f) are the inorganic polymeric anionic [Cd3Cl8(H2O)]n2n- ribbons along the a axis, the structure of which consists of edge-sharing CdCl6 (for Cd2 and Cd4) and CdCl5(H2O) (for Cd3) octahedra. Each ribbon is built up from two antiparallel chains by sharing the edges of the respective octahedra from the two chains in a manner shown in Fig. 3. The Cd—Cl distances are in the ranges 2.535 (1)–2.759 (1) and 2.541 (1)–2.792 (1) Å for the CdCl6 units (Cd2 and Cd4), and 2.552 (1)–2.678 (1) Å for the hydrated unit (Cd3) (Table 5). Since all the Cl- ions are coordinated to the Cd2+ cations forming the anionic ribbon, the role of the O—H···Cl interactions also present in the crystal structure is to link the organometallic and inorganic parts with each other. Thus, each complex cation is linked to the inorganic [Cd3Cl8(H2O)]n2n- ribbon by means of three O—H···Cl interactions formed by two DHA molecules and one water molecule. Nevertheless, one can see several common features in all the calcium halide and cadmium chloride DHA complexes. Water molecules O2W and O3W in (2f) adopt the role played by Cl- and Br- ions in the crystal structures of the CaX2 complexes. Adjacent dimeric cations are linked to each other by O—H···O2W···H—O (DHA···water···DHA) water bridges and interdimeric C—H···O (DHA···DHA) contacts to form columns along the a axis (Fig. 6). Adjacent organometallic columns are joined to each other by DHA···O3W···DHA and DHA···O2W···O3W···DHA interactions. Thus, water molecule O3W acts as an interdimeric as well as an inter-column bridge. Furthermore, it is involved in O1W—H2W···O3Wi interactions joining the organometallic and inorganic parts of the compound, and hence is crucial for stabilizing the crystal structure of (2f). The DHA molecules within one complex cation of (2f) (located on the same plane) interact with each other by means of bifurcated three-centred intradimeric O—H···O hydrogen bonds (O1—H1···O22i and O1—H1···O32i, shown in Fig. 5 as O1iii–H1iii···O22@ and O1iii–H1iii···O32@).

Related literature top

For related literature, see: Allen (2002); Davis (1973); Doxsee et al. (1993); Einspahr & Bugg (1981); Ferroni et al. (1999); Fessner & Helaine (2001); Gijsen et al. (1996); Goodgame et al. (1975); Hinkle et al. (1987); Kobayashi et al. (1976); Koeller & Wong (2000); Lambs et al. (1988); Machajewski & Wong (2000); Monder et al. (1988); Richardt et al. (1986); Senma et al. (1973); Yaylayan & Ismail (1995); Ślepokura (2008); Ślepokura & Lis (2004a, 2004b, 2006).

Experimental top

Large colourless plates of (2 e) were obtained by slow evaporation of an aqueous solution containing a 1:0.5 molar ratio mixture of commercial CaBr2·2H2O (131 mg) and DHA-dimer (50 mg) at 277 K. The specimen used for X-ray diffraction measurements was obtained by cutting an appropriate fragment from a large crystal of (2 e). When starting from substrate ratios of 1:1 and 1:2, another complex of DHA with CaBr2 was formed, denoted (2 d). Differential scanning calorimetry experiments on crystals of (2 d) revealed a phase transition at about 200 K. It proceeds differently during cooling and heating of the crystals and reveals a series of several broad transitions. Nevertheless, the diffraction patterns obtained from the same or/and different crystals of (2 d) at different temperatures were always similar, regardless of the speed of change of the temperature. Analysis of the Ewald sphere revealed the systematic occurrence of weak reflections, trebling the cell volume. Most probably, these weak reflections result from modulation rather than from superstructure. Omitting all the weak reflections gave only an approximate model of the compound, with the formula [Ca2(DHA)4(H2O)4]Br4·0.6H2O, and this is not presented in this paper.

Slow evaporation at 277 K of aqueous solutions containing different mixtures of CdCl2·2.5H2O and commercial DHA-dimer (molar ratios 1:0.5, 1:1 and 1:2) always gave large colourless parallelepipeds (with a tendency to twinning) of a cadmium complex of DHA of the same composition, [Cd2(DHA)6][Cd6Cl16(H2O)2]·4H2O, (2f). A small single-crystal from the 1:1 sample (63.4 mg C dC l2·2.5H2O and 50 mg DHA-dimer) was chosen for X-ray diffraction data collection.

Refinement top

Since the calcium bromide complex (2 e) is isomorphous with the calcium chloride complex (2 b), the cell setting of (2 e) was related to that in (2 b), which resulted in non-standard axial order. The refinement of the structure of (2 e) was started using the heavy-atom coordinates from (2 b). Two of the Br- ions in (2 e) are slightly disordered into the Br1, Br10 and Br2, Br20 positions, with the occupancy factors being 0.975 (6) and 0.025 (6) for Br1 and Br10, respectively, and 0.982 (3) and 0.018 (3) for Br2 and Br20, respectively. Due to the low occupancy of Br10 and Br20, only the Br1 and Br2 positions are discussed. All of the non-H atoms were refined anisotropically, except for the low-occupied positions of the disordered atoms in (2 e), i.e. Br10 and Br20.

All H atoms in (2 d) and (2 e) [Should this be (2 e) and (2f)?] were found in difference Fourier maps. In the final refinement cycles, all O-bonded H atoms in (2 e) were refined isotropically, while the remaining H atoms in (2 e) and (2f) were positioned geometrically and treated as riding atoms, with C—H = 0.99 Å and O—H = 0.84 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O). Water H atoms in (2f) were refined with Uiso = 1.5Ueq(O).

Computing details top

For both compounds, data collection: CrysAlis CCD in KM-4 CCD Software (Oxford Diffraction, 2004); cell refinement: CrysAlis RED in KM-4 CCD Software (Oxford Diffraction, 2004); data reduction: CrysAlis RED in KM-4 CCD Software (Oxford Diffraction, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structures of the crystallographically independent DHA molecules (a) in (2 e) and (b) in (2f). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular structures of the two crystallographically independent dimeric [Ca2(DHA)2(H2O)8]4+ cations in (2 e), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms are shown as small spheres of arbitrary radii. Symmetry codes are listed in Table 2.
[Figure 3] Fig. 3. The molecular structures of the dimeric [Cd2(DHA)6]4+ cation and polymeric [Cd3Cl8(H2O)]n2n- anion in (2f), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms are shown as small spheres of arbitrary radii. The intra-ribbon O1W—H1W···Cl2 contacts in the anion are shown as dashed lines. Symmetry codes are listed in Table 5.
[Figure 4] Fig. 4. The arrangement of the complex dimers in (2 e), with the Br-bridged interdimeric O—H···Br···H—O linkages of the dimers shown as dashed lines. Symmetry codes are given in Table 3.
[Figure 5] Fig. 5. The arrangement of the complex dimers in (2f), with the water-bridged interdimeric interactions shown as dashed lines and the direct C12—H12B···O3ii interactions shown as dotted lines. Symmetry codes are given in Table 6. Additionally, an `at' sign (@) denotes atoms generated by the symmetry operator (-x + 1/2, y - 1/2, -z + 1/2).
[Figure 6] Fig. 6. The crystal packing modes in the structures of (a) (2 e) and (b) (2f).
(2e) bis(µ-dihydroxyacetone)bis[tetraaquacalcium(II)] tetrabromide top
Crystal data top
[Ca2(C3H6O3)2(H2O)8]Br4V = 1202.9 (5) Å3
Mr = 724.08Z = 2
Triclinic, P1F(000) = 712
Hall symbol: -P 1Dx = 1.999 Mg m3
a = 9.225 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.143 (2) ŵ = 7.17 mm1
c = 14.504 (3) ÅT = 100 K
α = 90.73 (3)°Plate, colourless
β = 100.01 (3)°0.41 × 0.36 × 0.17 mm
γ = 92.84 (3)°
Data collection top
Kuma KM4 κ-geometry
diffractometer with Sapphire CCD camera
6788 independent reflections
Radiation source: Enhance (Mo) X-ray Source5914 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 30.0°, θmin = 3.3°
Absorption correction: analytical
(CrysAlis RED in KM-4 CCD Software; Oxford Diffraction, 2004)
h = 1212
Tmin = 0.100, Tmax = 0.283k = 129
18605 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0226P)2 + 1.5084P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
6788 reflectionsΔρmax = 0.56 e Å3
326 parametersΔρmin = 0.51 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0042 (3)
Crystal data top
[Ca2(C3H6O3)2(H2O)8]Br4γ = 92.84 (3)°
Mr = 724.08V = 1202.9 (5) Å3
Triclinic, P1Z = 2
a = 9.225 (2) ÅMo Kα radiation
b = 9.143 (2) ŵ = 7.17 mm1
c = 14.504 (3) ÅT = 100 K
α = 90.73 (3)°0.41 × 0.36 × 0.17 mm
β = 100.01 (3)°
Data collection top
Kuma KM4 κ-geometry
diffractometer with Sapphire CCD camera
6788 independent reflections
Absorption correction: analytical
(CrysAlis RED in KM-4 CCD Software; Oxford Diffraction, 2004)
5914 reflections with I > 2σ(I)
Tmin = 0.100, Tmax = 0.283Rint = 0.035
18605 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.057H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.56 e Å3
6788 reflectionsΔρmin = 0.51 e Å3
326 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ca10.63285 (5)0.70145 (5)0.53599 (3)0.00952 (9)
Ca20.86425 (5)0.14340 (5)0.06977 (3)0.00968 (9)
Br10.08780 (13)0.18346 (14)0.60201 (4)0.0187 (2)0.975 (6)
Br100.055 (3)0.151 (2)0.5945 (10)0.008 (4)*0.025 (6)
Br20.51783 (6)0.55834 (7)0.83392 (3)0.01355 (13)0.982 (4)
Br200.480 (4)0.517 (4)0.8217 (17)0.023 (6)*0.018 (4)
Br30.54270 (2)1.05372 (2)0.786199 (15)0.01241 (6)
Br41.02493 (2)0.62171 (2)0.200618 (15)0.01209 (6)
O10.46396 (18)0.80712 (18)0.62929 (12)0.0138 (3)
O20.39955 (17)0.55151 (17)0.54709 (11)0.0112 (3)
O30.1726 (2)0.37366 (19)0.53995 (14)0.0195 (4)
O110.66830 (19)0.02448 (18)0.06410 (13)0.0156 (3)
O210.90772 (17)0.10635 (16)0.00636 (11)0.0106 (3)
O310.98118 (18)0.34748 (18)0.07075 (13)0.0154 (3)
C10.3257 (2)0.7400 (2)0.64072 (17)0.0132 (4)
C20.3080 (2)0.5927 (2)0.59223 (15)0.0110 (4)
C30.1756 (3)0.4967 (3)0.60107 (18)0.0175 (5)
C110.6734 (2)0.1713 (2)0.03371 (17)0.0126 (4)
C210.8140 (2)0.1973 (2)0.00252 (15)0.0099 (4)
C310.8346 (2)0.3368 (2)0.05349 (17)0.0138 (4)
O1W0.4665 (2)0.7297 (2)0.39579 (13)0.0192 (4)
O2W0.7011 (2)0.53261 (19)0.66324 (13)0.0140 (3)
O3W0.8466 (2)0.8183 (2)0.63258 (15)0.0232 (4)
O4W0.6571 (3)0.9509 (2)0.49154 (17)0.0277 (5)
O5W0.7991 (2)0.18762 (19)0.09965 (12)0.0139 (3)
O6W1.0636 (2)0.0472 (2)0.18447 (13)0.0183 (4)
O7W0.6744 (2)0.3330 (2)0.04917 (14)0.0191 (4)
O8W0.7946 (2)0.1919 (2)0.22102 (13)0.0202 (4)
H10.492 (4)0.860 (4)0.671 (3)0.031 (10)*
H30.102 (4)0.320 (4)0.551 (3)0.037 (10)*
H1A0.24470.80170.61330.016*
H1B0.32230.72880.70810.016*
H3A0.18150.46440.66650.021*
H3B0.08490.55090.58370.021*
H110.607 (4)0.020 (4)0.094 (3)0.026 (9)*
H310.985 (4)0.413 (4)0.105 (3)0.032 (10)*
H11A0.66980.23990.08650.015*
H11B0.58820.18690.01630.015*
H31A0.76420.33600.11340.017*
H31B0.81630.42190.01500.017*
H1W0.466 (5)0.777 (5)0.351 (3)0.053 (13)*
H2W0.403 (4)0.666 (4)0.381 (3)0.038 (11)*
H3W0.786 (5)0.530 (4)0.691 (3)0.036 (10)*
H4W0.663 (5)0.539 (4)0.703 (3)0.038 (11)*
H5W0.895 (5)0.786 (5)0.682 (3)0.053 (13)*
H6W0.871 (4)0.889 (5)0.626 (3)0.037 (11)*
H7W0.601 (5)0.993 (5)0.458 (3)0.044 (12)*
H8W0.710 (5)0.998 (5)0.507 (3)0.047 (14)*
H9W0.859 (5)0.239 (5)0.118 (3)0.058 (14)*
H10W0.725 (5)0.216 (4)0.123 (3)0.040 (11)*
H11W1.093 (4)0.096 (5)0.226 (3)0.041 (11)*
H12W1.132 (4)0.005 (4)0.170 (2)0.027 (9)*
H13W0.639 (4)0.364 (4)0.001 (3)0.018 (8)*
H14W0.640 (5)0.387 (5)0.088 (3)0.051 (12)*
H15W0.854 (5)0.183 (5)0.270 (3)0.050 (12)*
H16W0.719 (5)0.170 (4)0.232 (3)0.039 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0096 (2)0.00916 (18)0.0096 (2)0.00049 (14)0.00141 (15)0.00070 (15)
Ca20.00818 (19)0.01002 (18)0.0113 (2)0.00057 (14)0.00264 (15)0.00216 (15)
Br10.0156 (3)0.0215 (3)0.01675 (15)0.0085 (3)0.00141 (15)0.00596 (15)
Br20.01202 (18)0.0156 (2)0.01324 (14)0.00064 (15)0.00322 (10)0.00132 (11)
Br30.01319 (11)0.01305 (10)0.01134 (10)0.00063 (7)0.00352 (8)0.00033 (8)
Br40.01207 (10)0.01260 (10)0.01153 (10)0.00160 (7)0.00157 (8)0.00117 (8)
O10.0131 (8)0.0130 (7)0.0149 (8)0.0030 (6)0.0028 (6)0.0058 (6)
O20.0123 (8)0.0113 (7)0.0105 (7)0.0003 (6)0.0035 (6)0.0007 (6)
O30.0158 (9)0.0173 (8)0.0270 (10)0.0096 (7)0.0123 (7)0.0093 (7)
O110.0119 (8)0.0158 (8)0.0222 (9)0.0036 (6)0.0104 (7)0.0065 (7)
O210.0097 (7)0.0095 (7)0.0130 (8)0.0025 (5)0.0027 (6)0.0007 (6)
O310.0126 (8)0.0109 (7)0.0237 (9)0.0018 (6)0.0052 (7)0.0068 (7)
C10.0117 (10)0.0136 (10)0.0155 (11)0.0015 (8)0.0059 (8)0.0010 (8)
C20.0114 (10)0.0145 (10)0.0063 (9)0.0002 (8)0.0006 (7)0.0016 (8)
C30.0163 (11)0.0168 (11)0.0214 (12)0.0029 (9)0.0104 (9)0.0066 (9)
C110.0101 (10)0.0130 (10)0.0152 (11)0.0027 (8)0.0032 (8)0.0016 (8)
C210.0102 (10)0.0100 (9)0.0091 (10)0.0013 (7)0.0002 (7)0.0021 (7)
C310.0114 (10)0.0111 (9)0.0190 (11)0.0036 (8)0.0022 (8)0.0039 (8)
O1W0.0221 (9)0.0176 (8)0.0144 (9)0.0073 (7)0.0048 (7)0.0059 (7)
O2W0.0119 (8)0.0180 (8)0.0119 (8)0.0006 (6)0.0014 (7)0.0027 (6)
O3W0.0283 (10)0.0130 (9)0.0222 (10)0.0050 (7)0.0108 (8)0.0036 (7)
O4W0.0222 (10)0.0156 (9)0.0374 (13)0.0074 (8)0.0153 (9)0.0108 (8)
O5W0.0099 (8)0.0164 (8)0.0145 (8)0.0008 (6)0.0007 (6)0.0015 (6)
O6W0.0172 (9)0.0213 (9)0.0150 (9)0.0067 (7)0.0004 (7)0.0033 (7)
O7W0.0190 (9)0.0212 (9)0.0165 (9)0.0078 (7)0.0039 (7)0.0010 (7)
O8W0.0125 (9)0.0338 (10)0.0146 (9)0.0009 (7)0.0028 (7)0.0040 (8)
Geometric parameters (Å, º) top
Ca1—O12.458 (2)C3—H3B0.99
Ca1—O22.524 (2)O11—C111.419 (3)
Ca1—O2i2.574 (2)O11—H110.77 (4)
Ca1—O3i2.387 (2)O21—C211.221 (3)
Ca1—O1W2.351 (2)O21—Ca2ii2.5505 (17)
Ca1—O2W2.439 (2)O31—C311.416 (3)
Ca1—O3W2.405 (2)O31—Ca2ii2.4025 (18)
Ca1—O4W2.388 (2)O31—H310.78 (4)
Ca1—Ca1i4.334 (2)C11—C211.492 (3)
Ca2—O112.420 (2)C11—H11A0.99
Ca2—O212.512 (2)C11—H11B0.99
Ca2—O21ii2.550 (2)C21—C311.503 (3)
Ca2—O31ii2.402 (2)C31—H31A0.99
Ca2—O5W2.450 (2)C31—H31B0.99
Ca2—O6W2.380 (2)O1W—H1W0.78 (5)
Ca2—O7W2.380 (2)O1W—H2W0.80 (4)
Ca2—O8W2.431 (2)O2W—H3W0.82 (4)
Ca2—Ca2ii4.300 (2)O2W—H4W0.73 (4)
O1—C11.425 (3)O3W—H5W0.84 (5)
O1—H10.77 (4)O3W—H6W0.69 (4)
O2—C21.225 (3)O4W—H7W0.77 (5)
O2—Ca1i2.5740 (18)O4W—H8W0.64 (5)
O3—C31.419 (3)O5W—H9W0.82 (5)
O3—Ca1i2.3867 (19)O5W—H10W0.74 (4)
O3—H30.84 (4)O6W—H11W0.77 (4)
C1—C21.500 (3)O6W—H12W0.83 (4)
C1—H1A0.99O7W—H13W0.78 (4)
C1—H1B0.99O7W—H14W0.85 (5)
C2—C31.493 (3)O8W—H15W0.82 (5)
C3—H3A0.99O8W—H16W0.78 (4)
O1W—Ca1—O3i94.51 (7)C1—O1—Ca1124.54 (13)
O1W—Ca1—O4W72.42 (8)C1—O1—H1109 (3)
O3i—Ca1—O4W93.81 (8)Ca1—O1—H1122 (3)
O1W—Ca1—O3W141.91 (7)C2—O2—Ca1122.66 (14)
O3i—Ca1—O3W77.91 (7)C2—O2—Ca1i120.83 (14)
O4W—Ca1—O3W70.95 (8)Ca1—O2—Ca1i116.45 (6)
O1W—Ca1—O2W142.93 (7)C3—O3—Ca1i127.14 (14)
O3i—Ca1—O2W91.42 (7)C3—O3—H3104 (3)
O4W—Ca1—O2W143.62 (8)Ca1i—O3—H3126 (3)
O3W—Ca1—O2W75.06 (7)O1—C1—C2108.4 (2)
O1W—Ca1—O191.85 (7)O1—C1—H1A110.0
O3i—Ca1—O1170.43 (6)C2—C1—H1A110.0
O4W—Ca1—O181.29 (8)O1—C1—H1B110.0
O3W—Ca1—O192.68 (7)C2—C1—H1B110.0
O2W—Ca1—O187.79 (7)H1A—C1—H1B108.4
O1W—Ca1—O272.42 (7)O2—C2—C1121.2 (2)
O3i—Ca1—O2125.88 (6)O2—C2—C3120.8 (2)
O4W—Ca1—O2128.07 (7)C1—C2—C3118.0 (2)
O3W—Ca1—O2141.39 (7)O3—C3—C2107.6 (2)
O2W—Ca1—O274.51 (6)O3—C3—H3A110.2
O1—Ca1—O263.01 (6)C2—C3—H3A110.2
O1W—Ca1—O2i74.11 (7)O3—C3—H3B110.2
O3i—Ca1—O2i62.36 (6)C2—C3—H3B110.2
O4W—Ca1—O2i136.73 (7)H3A—C3—H3B108.5
O3W—Ca1—O2i129.80 (7)C11—O11—Ca2125.62 (13)
O2W—Ca1—O2i76.50 (6)C11—O11—H11105 (3)
O1—Ca1—O2i126.52 (6)Ca2—O11—H11125 (3)
O2—Ca1—O2i63.55 (6)C21—O21—Ca2122.23 (14)
O1W—Ca1—Ca1i70.22 (6)C21—O21—Ca2ii120.35 (14)
O3i—Ca1—Ca1i93.77 (5)Ca2—O21—Ca2ii116.28 (6)
O4W—Ca1—Ca1i142.32 (6)C31—O31—Ca2ii124.21 (13)
O3W—Ca1—Ca1i146.64 (6)C31—O31—H31106 (3)
O2W—Ca1—Ca1i72.89 (5)Ca2ii—O31—H31122 (3)
O1—Ca1—Ca1i95.11 (5)O11—C11—C21107.5 (2)
O2—Ca1—Ca1i32.12 (4)O11—C11—H11A110.2
O2i—Ca1—Ca1i31.43 (4)C21—C11—H11A110.2
O6W—Ca2—O7W140.44 (7)O11—C11—H11B110.2
O6W—Ca2—O31ii82.60 (7)C21—C11—H11B110.2
O7W—Ca2—O31ii82.32 (7)H11A—C11—H11B108.5
O6W—Ca2—O11106.71 (7)O21—C21—C11121.2 (2)
O7W—Ca2—O1186.08 (7)O21—C21—C31120.9 (2)
O31ii—Ca2—O11168.40 (6)C11—C21—C31117.9 (2)
O6W—Ca2—O8W73.78 (7)O31—C31—C21108.3 (2)
O7W—Ca2—O8W71.61 (7)O31—C31—H31A110.0
O31ii—Ca2—O8W95.67 (7)C21—C31—H31A110.0
O11—Ca2—O8W80.73 (7)O31—C31—H31B110.0
O6W—Ca2—O5W140.38 (7)C21—C31—H31B110.0
O7W—Ca2—O5W74.42 (7)H31A—C31—H31B108.4
O31ii—Ca2—O5W86.22 (7)Ca1—O1W—H1W136 (3)
O11—Ca2—O5W90.54 (7)Ca1—O1W—H2W117 (3)
O8W—Ca2—O5W145.37 (7)H1W—O1W—H2W105 (4)
O6W—Ca2—O2179.11 (7)Ca1—O2W—H3W122 (3)
O7W—Ca2—O21137.71 (7)Ca1—O2W—H4W116 (3)
O31ii—Ca2—O21126.87 (6)H3W—O2W—H4W100 (4)
O11—Ca2—O2162.93 (6)Ca1—O3W—H5W127 (3)
O8W—Ca2—O21125.32 (7)Ca1—O3W—H6W123 (4)
O5W—Ca2—O2177.67 (6)H5W—O3W—H6W110 (5)
O6W—Ca2—O21ii71.18 (6)Ca1—O4W—H7W127 (3)
O7W—Ca2—O21ii130.99 (6)Ca1—O4W—H8W127 (4)
O31ii—Ca2—O21ii63.18 (6)H7W—O4W—H8W106 (5)
O11—Ca2—O21ii125.86 (6)Ca2—O5W—H9W110 (3)
O8W—Ca2—O21ii140.86 (7)Ca2—O5W—H10W123 (3)
O5W—Ca2—O21ii69.84 (6)H9W—O5W—H10W107 (4)
O21—Ca2—O21ii63.72 (6)Ca2—O6W—H11W118 (3)
O6W—Ca2—Ca2ii72.44 (5)Ca2—O6W—H12W122 (2)
O7W—Ca2—Ca2ii145.20 (6)H11W—O6W—H12W110 (4)
O31ii—Ca2—Ca2ii94.76 (5)Ca2—O7W—H13W121 (2)
O11—Ca2—Ca2ii94.68 (5)Ca2—O7W—H14W131 (3)
O8W—Ca2—Ca2ii142.92 (6)H13W—O7W—H14W107 (4)
O5W—Ca2—Ca2ii70.78 (5)Ca2—O8W—H15W122 (3)
O21—Ca2—Ca2ii32.13 (4)Ca2—O8W—H16W122 (3)
O21ii—Ca2—Ca2ii31.59 (4)H15W—O8W—H16W106 (4)
O1W—Ca1—O1—C167.17 (17)O7W—Ca2—O11—C11152.38 (18)
O4W—Ca1—O1—C1139.08 (18)O31ii—Ca2—O11—C11151.7 (3)
O3W—Ca1—O1—C1150.66 (17)O8W—Ca2—O11—C11135.64 (19)
O2W—Ca1—O1—C175.73 (17)O5W—Ca2—O11—C1178.03 (18)
O2—Ca1—O1—C12.01 (15)O21—Ca2—O11—C112.19 (16)
O2i—Ca1—O1—C14.35 (19)O21ii—Ca2—O11—C1112.8 (2)
Ca1i—Ca1—O1—C13.13 (17)Ca2ii—Ca2—O11—C117.27 (18)
O1W—Ca1—O2—C2102.08 (17)O6W—Ca2—O21—C21117.90 (18)
O3i—Ca1—O2—C2175.23 (16)O7W—Ca2—O21—C2144.9 (2)
O4W—Ca1—O2—C252.7 (2)O31ii—Ca2—O21—C21170.05 (16)
O3W—Ca1—O2—C255.8 (2)O11—Ca2—O21—C212.61 (16)
O2W—Ca1—O2—C294.93 (17)O8W—Ca2—O21—C2156.90 (19)
O1—Ca1—O2—C20.59 (16)O5W—Ca2—O21—C2194.43 (17)
O2i—Ca1—O2—C2177.3 (2)O21ii—Ca2—O21—C21167.8 (2)
Ca1i—Ca1—O2—C2177.3 (2)Ca2ii—Ca2—O21—C21167.8 (2)
O1W—Ca1—O2—Ca1i80.61 (8)O6W—Ca2—O21—Ca2ii74.26 (8)
O3i—Ca1—O2—Ca1i2.08 (10)O7W—Ca2—O21—Ca2ii122.97 (9)
O4W—Ca1—O2—Ca1i130.04 (9)O31ii—Ca2—O21—Ca2ii2.21 (10)
O3W—Ca1—O2—Ca1i121.52 (10)O11—Ca2—O21—Ca2ii170.45 (9)
O2W—Ca1—O2—Ca1i82.37 (8)O8W—Ca2—O21—Ca2ii135.26 (8)
O1—Ca1—O2—Ca1i177.90 (9)O5W—Ca2—O21—Ca2ii73.41 (8)
O2i—Ca1—O2—Ca1i0.0O21ii—Ca2—O21—Ca2ii0.0
Ca1—O1—C1—C23.8 (2)Ca2—O11—C11—C215.5 (3)
Ca1—O2—C2—C3176.63 (16)Ca2—O21—C21—C116.8 (3)
Ca1i—O2—C2—C30.6 (3)Ca2ii—O21—C21—C11174.20 (15)
Ca1—O2—C2—C12.9 (3)Ca2—O21—C21—C31170.94 (15)
Ca1i—O2—C2—C1179.88 (15)Ca2ii—O21—C21—C313.6 (3)
O1—C1—C2—O24.2 (3)O11—C11—C21—O217.7 (3)
O1—C1—C2—C3175.4 (2)O11—C11—C21—C31170.1 (2)
Ca1i—O3—C3—C213.5 (3)Ca2ii—O31—C31—C2120.0 (3)
O2—C2—C3—O38.1 (3)O21—C21—C31—O319.6 (3)
C1—C2—C3—O3172.3 (2)C11—C21—C31—O31172.6 (2)
O6W—Ca2—O11—C1165.78 (19)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Br30.77 (4)2.39 (4)3.150 (2)169 (4)
O3—H3···Br10.84 (4)2.33 (4)3.159 (2)172 (4)
O11—H11···Br3i0.77 (4)2.48 (4)3.222 (2)162 (3)
O31—H31···Br40.78 (4)2.43 (4)3.206 (2)173 (4)
O1W—H1W···Br3iii0.78 (5)2.53 (5)3.312 (2)175 (4)
O1W—H2W···O2Wi0.80 (4)2.06 (4)2.828 (3)161 (4)
O2W—H4W···Br20.73 (4)2.52 (4)3.244 (2)177 (4)
O2W—H3W···Br4iv0.82 (4)2.57 (4)3.340 (2)157 (3)
O3W—H6W···Br1v0.69 (4)2.73 (4)3.412 (2)169 (4)
O3W—H5W···Br4iv0.84 (5)2.47 (5)3.288 (2)163 (4)
O4W—H8W···Br1v0.64 (5)2.64 (5)3.276 (3)169 (5)
O4W—H7W···O1iii0.77 (5)2.28 (5)2.979 (3)152 (4)
O5W—H10W···Br2vi0.74 (4)2.73 (4)3.396 (2)151 (4)
O5W—H9W···Br4vii0.82 (5)2.49 (5)3.298 (2)170 (4)
O6W—H11W···Br1viii0.77 (4)2.64 (4)3.328 (2)150 (4)
O6W—H12W···O5Wii0.83 (4)2.10 (4)2.840 (3)149 (3)
O7W—H13W···Br2vi0.78 (4)2.54 (4)3.321 (2)175 (3)
O7W—H14W···Br2viii0.85 (5)2.50 (5)3.322 (2)164 (4)
O8W—H15W···Br1viii0.82 (5)2.59 (5)3.387 (2)165 (4)
O8W—H16W···Br3i0.78 (4)2.66 (4)3.401 (2)160 (4)
C1—H1B···Br20.992.873.526 (3)125
C3—H3A···Br4ix0.993.003.602 (3)121
C11—H11A···Br2i0.992.953.794 (3)144
C11—H11B···Br3vi0.993.053.710 (3)125
C31—H31A···Br2x0.993.133.785 (3)125
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y, z; (iii) x+1, y+2, z+1; (iv) x, y, z+1; (v) x+1, y+1, z; (vi) x, y1, z1; (vii) x, y1, z; (viii) x+1, y, z+1; (ix) x1, y, z+1; (x) x, y, z1.
(2f) poly[{bis(µ-dihydroxyacetone)bis[bis(dihydroxyacetone)cadmium(II)} [diaquatetradeca-µ-chlorido-dichloridohexacadmium(II)] tetrahydrate] top
Crystal data top
[Cd2(C3H6O3)6][Cd6Cl16(H2O)2]·4H2OZ = 2
Mr = 2114.96F(000) = 2008
Monoclinic, P21/nDx = 2.594 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.170 (3) ŵ = 3.94 mm1
b = 17.119 (3) ÅT = 100 K
c = 14.225 (3) ÅParallelepiped, colourless
β = 95.42 (3)°0.19 × 0.08 × 0.04 mm
V = 2707.9 (10) Å3
Data collection top
Kuma KM4 κ-geometry
diffractometer with Sapphire CCD camera
7856 independent reflections
Radiation source: Enhance (Mo) X-ray Source5800 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 30.0°, θmin = 3.3°
Absorption correction: analytical
(CrysAlis RED in KM-4 CCD Software; Oxford Diffraction, 2004)
h = 1512
Tmin = 0.550, Tmax = 0.850k = 2424
38913 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: difference Fourier map
wR(F2) = 0.036H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.006P)2]
where P = (Fo2 + 2Fc2)/3
7856 reflections(Δ/σ)max = 0.001
322 parametersΔρmax = 1.02 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Cd2(C3H6O3)6][Cd6Cl16(H2O)2]·4H2OV = 2707.9 (10) Å3
Mr = 2114.96Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.170 (3) ŵ = 3.94 mm1
b = 17.119 (3) ÅT = 100 K
c = 14.225 (3) Å0.19 × 0.08 × 0.04 mm
β = 95.42 (3)°
Data collection top
Kuma KM4 κ-geometry
diffractometer with Sapphire CCD camera
7856 independent reflections
Absorption correction: analytical
(CrysAlis RED in KM-4 CCD Software; Oxford Diffraction, 2004)
5800 reflections with I > 2σ(I)
Tmin = 0.550, Tmax = 0.850Rint = 0.051
38913 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.036H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 1.02 e Å3
7856 reflectionsΔρmin = 0.60 e Å3
322 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.319672 (18)0.465334 (12)0.498216 (16)0.01027 (5)
Cd20.572487 (18)0.087048 (13)0.424834 (16)0.01031 (5)
Cd30.24097 (2)0.070741 (11)0.425621 (17)0.00993 (5)
Cd40.091810 (18)0.088855 (13)0.421726 (16)0.01013 (5)
Cl10.72384 (6)0.07307 (4)0.30044 (5)0.01171 (15)
Cl20.54850 (6)0.23422 (4)0.42923 (6)0.01488 (15)
Cl30.42159 (6)0.07355 (4)0.55909 (5)0.01058 (16)
Cl40.39153 (6)0.06458 (4)0.30073 (5)0.01283 (15)
Cl50.24202 (6)0.08493 (4)0.44422 (5)0.00965 (15)
Cl60.06281 (6)0.07522 (4)0.29948 (5)0.01170 (15)
Cl70.08956 (6)0.07314 (4)0.55509 (5)0.01012 (15)
Cl80.08331 (7)0.23712 (4)0.41625 (6)0.01763 (16)
O10.43080 (17)0.37363 (11)0.58599 (15)0.0141 (5)
O20.19595 (17)0.36586 (11)0.55523 (14)0.0131 (4)
O30.04632 (16)0.25986 (12)0.63366 (15)0.0150 (4)
O110.27611 (16)0.54872 (12)0.62401 (14)0.0151 (4)
O210.49360 (16)0.54035 (11)0.57673 (14)0.0112 (4)
O310.69068 (17)0.60571 (13)0.64531 (16)0.0199 (5)
O120.12527 (17)0.51076 (10)0.45451 (16)0.0125 (4)
O220.32487 (16)0.58577 (11)0.41791 (14)0.0122 (4)
O320.35247 (16)0.73406 (12)0.36360 (15)0.0135 (4)
C10.3760 (2)0.31223 (16)0.6330 (2)0.0120 (6)
C20.2424 (2)0.31707 (16)0.6096 (2)0.0108 (6)
C30.1713 (2)0.25687 (16)0.6567 (2)0.0132 (6)
C110.3643 (2)0.58764 (18)0.6860 (2)0.0139 (6)
C210.4838 (2)0.57800 (15)0.6492 (2)0.0102 (6)
C310.5926 (2)0.61543 (17)0.7005 (2)0.0144 (6)
C120.1151 (2)0.59239 (16)0.4349 (2)0.0111 (6)
C220.2328 (2)0.62430 (16)0.4086 (2)0.0100 (6)
C320.2339 (2)0.70740 (16)0.3737 (2)0.0147 (7)
O1W0.2660 (2)0.20634 (12)0.43647 (16)0.0155 (5)
O2W0.0408 (2)0.55934 (13)0.67754 (17)0.0179 (5)
O3W0.8866 (2)0.69741 (14)0.69807 (17)0.0230 (5)
H10.50520.37360.60190.021*
H30.02990.24500.57770.023*
H1A0.39590.31700.70210.014*
H1B0.40600.26120.61250.014*
H3A0.20020.20450.63990.016*
H3B0.18780.26290.72590.016*
H110.20780.55560.64280.023*
H310.75240.62630.67310.030*
H11A0.36610.56510.75020.017*
H11B0.34430.64380.68970.017*
H31A0.57750.67170.71030.017*
H31B0.61090.59060.76300.017*
H120.07540.48620.41780.019*
H320.38580.74730.41660.020*
H12A0.09130.62020.49130.013*
H12B0.05180.60120.38240.013*
H32A0.18520.71100.31200.018*
H32B0.19660.74170.41880.018*
H1W0.336 (3)0.2157 (19)0.434 (2)0.023*
H2W0.232 (3)0.233 (2)0.401 (3)0.023*
H3W0.043 (3)0.539 (2)0.724 (3)0.027*
H4W0.008 (3)0.597 (2)0.687 (3)0.027*
H5W0.953 (3)0.719 (2)0.666 (3)0.035*
H6W0.872 (3)0.706 (2)0.748 (3)0.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01022 (9)0.00908 (9)0.01143 (10)0.00043 (8)0.00061 (7)0.00044 (9)
Cd20.00842 (10)0.01160 (11)0.01089 (12)0.00070 (8)0.00087 (9)0.00080 (9)
Cd30.00799 (10)0.01115 (10)0.01064 (11)0.00033 (8)0.00080 (9)0.00086 (10)
Cd40.00818 (10)0.01145 (11)0.01078 (12)0.00005 (8)0.00103 (9)0.00050 (9)
Cl10.0098 (3)0.0161 (4)0.0094 (4)0.0008 (3)0.0015 (3)0.0009 (3)
Cl20.0164 (3)0.0114 (3)0.0166 (4)0.0000 (3)0.0003 (3)0.0011 (3)
Cl30.0094 (3)0.0118 (4)0.0105 (4)0.0002 (3)0.0003 (3)0.0007 (3)
Cl40.0093 (3)0.0198 (4)0.0094 (4)0.0007 (3)0.0009 (3)0.0003 (3)
Cl50.0089 (3)0.0095 (3)0.0105 (4)0.0005 (3)0.0006 (3)0.0004 (3)
Cl60.0094 (3)0.0170 (4)0.0086 (4)0.0019 (3)0.0003 (3)0.0006 (3)
Cl70.0091 (3)0.0120 (4)0.0092 (4)0.0000 (2)0.0008 (3)0.0008 (3)
Cl80.0232 (4)0.0122 (4)0.0184 (4)0.0012 (3)0.0068 (3)0.0014 (3)
O10.0071 (9)0.0157 (11)0.0191 (13)0.0022 (8)0.0004 (9)0.0074 (9)
O20.0132 (10)0.0120 (10)0.0135 (11)0.0002 (8)0.0016 (9)0.0004 (9)
O30.0095 (9)0.0169 (11)0.0190 (12)0.0020 (8)0.0028 (9)0.0020 (10)
O110.0125 (9)0.0180 (11)0.0150 (11)0.0030 (8)0.0023 (8)0.0042 (9)
O210.0131 (9)0.0116 (10)0.0090 (10)0.0015 (8)0.0012 (8)0.0012 (9)
O310.0129 (10)0.0287 (13)0.0182 (13)0.0057 (9)0.0022 (9)0.0094 (10)
O120.0125 (10)0.0080 (10)0.0165 (12)0.0026 (7)0.0011 (9)0.0019 (9)
O220.0107 (9)0.0113 (10)0.0149 (11)0.0010 (8)0.0020 (8)0.0010 (9)
O320.0120 (10)0.0142 (10)0.0143 (11)0.0024 (8)0.0020 (9)0.0009 (9)
C10.0126 (14)0.0107 (14)0.0124 (15)0.0006 (11)0.0005 (12)0.0010 (12)
C20.0125 (13)0.0082 (13)0.0117 (15)0.0015 (11)0.0004 (12)0.0043 (12)
C30.0110 (13)0.0120 (14)0.0165 (17)0.0026 (11)0.0011 (12)0.0008 (13)
C110.0162 (14)0.0162 (15)0.0093 (16)0.0006 (12)0.0018 (12)0.0004 (13)
C210.0163 (14)0.0063 (14)0.0077 (14)0.0009 (10)0.0008 (11)0.0029 (12)
C310.0134 (14)0.0172 (15)0.0123 (16)0.0014 (11)0.0003 (12)0.0019 (13)
C120.0117 (13)0.0107 (13)0.0105 (15)0.0013 (11)0.0002 (11)0.0008 (12)
C220.0145 (14)0.0121 (13)0.0032 (15)0.0003 (11)0.0001 (12)0.0043 (12)
C320.0093 (13)0.0127 (15)0.0225 (18)0.0002 (11)0.0039 (13)0.0020 (13)
O1W0.0144 (11)0.0153 (11)0.0166 (13)0.0008 (8)0.0007 (10)0.0010 (9)
O2W0.0200 (11)0.0166 (12)0.0172 (13)0.0025 (9)0.0028 (10)0.0024 (11)
O3W0.0242 (12)0.0274 (13)0.0185 (13)0.0084 (10)0.0075 (11)0.0070 (11)
Geometric parameters (Å, º) top
Cd1—O12.296 (2)O3—C31.405 (3)
Cd1—O22.383 (2)O3—H30.84
Cd1—O112.375 (2)C1—C21.499 (4)
Cd1—O212.502 (2)C1—H1A0.99
Cd1—O122.335 (2)C1—H1B0.99
Cd1—O222.360 (2)C2—C31.498 (4)
Cd1—O21i2.432 (2)C3—H3A0.99
Cd1—O31i2.370 (2)C3—H3B0.99
Cd1—Cd1i4.1954 (11)O11—C111.424 (3)
Cd2—Cl12.5713 (10)O11—H110.84
Cd2—Cl22.5350 (9)O21—C211.229 (3)
Cd2—Cl32.6740 (11)O21—Cd1i2.4324 (19)
Cd2—Cl42.5839 (11)O31—C311.417 (3)
Cd2—Cl3ii2.7591 (9)O31—H310.84
Cd2—Cl5ii2.6523 (12)C11—C211.488 (4)
Cd3—O1W2.341 (2)C11—H11A0.99
Cd3—Cl32.6370 (11)C11—H11B0.99
Cd3—Cl42.5613 (10)C21—C311.501 (4)
Cd3—Cl52.6780 (8)C31—H31A0.99
Cd3—Cl62.5516 (11)C31—H31B0.99
Cd3—Cl72.6158 (11)O12—C121.427 (3)
Cd4—Cl62.5746 (10)O12—H120.84
Cd4—Cl72.6551 (12)O22—C221.218 (3)
Cd4—Cl82.5414 (9)O32—C321.421 (3)
Cd4—Cl1iii2.5726 (11)O32—H320.84
Cd4—Cl5iv2.6572 (11)C12—C221.504 (4)
Cd4—Cl7iv2.7925 (9)C12—H12A0.99
Cd2—Cd33.7147 (10)C12—H12B0.99
Cd3—Cd43.7252 (10)C22—C321.507 (4)
Cd4—Cd2iii3.7544 (10)C32—H32A0.99
Cl1—Cd4v2.5726 (11)C32—H32B0.99
Cl3—Cd2ii2.7591 (9)O1W—H1W0.80 (3)
Cl5—Cd2ii2.6523 (12)O1W—H2W0.76 (4)
Cl5—Cd4iv2.6572 (11)O2W—H3W0.74 (4)
Cl7—Cd4iv2.7925 (9)O2W—H4W0.77 (3)
O1—C11.416 (3)O3W—H5W0.98 (4)
O1—H10.84O3W—H6W0.76 (4)
O2—C21.221 (3)
O22—Cd1—O31i91.88 (8)Cd3—Cl7—Cd489.94 (3)
O22—Cd1—O2146.14 (6)Cd3—Cl7—Cd4iv93.92 (2)
O31i—Cd1—O286.78 (7)Cd4—Cl7—Cd4iv100.53 (2)
O22—Cd1—O21i76.20 (6)C1—O1—H1109.5
O31i—Cd1—O21i64.91 (7)C2—O2—Cd1118.61 (17)
O2—Cd1—O21i132.02 (7)C3—O3—H3109.5
O22—Cd1—O2173.39 (7)O1—C1—C2108.6 (2)
O31i—Cd1—O21128.36 (7)O1—C1—H1A110.0
O2—Cd1—O21131.73 (7)C2—C1—H1A110.0
O21i—Cd1—O2163.53 (8)O1—C1—H1B110.0
Cl2—Cd2—Cl1100.80 (2)C2—C1—H1B110.0
Cl2—Cd2—Cl495.00 (2)H1A—C1—H1B108.3
Cl1—Cd2—Cl492.22 (3)O2—C2—C1122.2 (3)
Cl2—Cd2—Cl5ii94.22 (2)O2—C2—C3122.8 (2)
Cl1—Cd2—Cl5ii87.78 (3)C1—C2—C3114.9 (2)
Cl4—Cd2—Cl5ii170.61 (2)O3—C3—C2115.3 (2)
Cl2—Cd2—Cl389.60 (2)O3—C3—H3A108.4
Cl1—Cd2—Cl3169.50 (2)C2—C3—H3A108.4
Cl4—Cd2—Cl388.28 (3)O3—C3—H3B108.4
Cl5ii—Cd2—Cl390.03 (3)C2—C3—H3B108.4
Cl2—Cd2—Cl3ii171.91 (2)H3A—C3—H3B107.5
Cl1—Cd2—Cl3ii87.25 (2)C11—O11—H11109.5
Cl4—Cd2—Cl3ii85.37 (2)C21—O21—Cd1i122.45 (17)
Cl5ii—Cd2—Cl3ii85.25 (2)C21—O21—Cd1121.09 (17)
Cl3—Cd2—Cl3ii82.33 (2)Cd1i—O21—Cd1116.47 (8)
O1W—Cd3—Cl695.56 (6)C31—O31—H31109.5
O1W—Cd3—Cl490.26 (6)O11—C11—C21108.7 (2)
Cl6—Cd3—Cl491.89 (3)O11—C11—H11A109.9
O1W—Cd3—Cl791.09 (6)C21—C11—H11A109.9
Cl6—Cd3—Cl788.94 (3)O11—C11—H11B109.9
Cl4—Cd3—Cl7178.34 (2)C21—C11—H11B109.9
O1W—Cd3—Cl381.72 (6)H11A—C11—H11B108.3
Cl6—Cd3—Cl3176.93 (2)O21—C21—C11120.5 (2)
Cl4—Cd3—Cl389.56 (3)O21—C21—C31120.0 (3)
Cl7—Cd3—Cl389.68 (3)C11—C21—C31119.6 (2)
O1W—Cd3—Cl5168.73 (6)O31—C31—C21108.3 (2)
Cl6—Cd3—Cl595.46 (2)O31—C31—H31A110.0
Cl4—Cd3—Cl591.75 (2)C21—C31—H31A110.0
Cl7—Cd3—Cl586.74 (2)O31—C31—H31B110.0
Cl3—Cd3—Cl587.20 (2)C21—C31—H31B110.0
Cl8—Cd4—Cl1iii96.56 (2)H31A—C31—H31B108.4
Cl8—Cd4—Cl692.32 (2)C12—O12—H12109.5
Cl1iii—Cd4—Cl694.76 (3)C22—O22—Cd1117.81 (18)
Cl8—Cd4—Cl795.45 (2)C32—O32—H32109.5
Cl1iii—Cd4—Cl7167.66 (2)O12—C12—C22110.4 (2)
Cl6—Cd4—Cl787.60 (3)O12—C12—H12A109.6
Cl8—Cd4—Cl5iv94.31 (2)C22—C12—H12A109.6
Cl1iii—Cd4—Cl5iv87.65 (3)O12—C12—H12B109.6
Cl6—Cd4—Cl5iv172.64 (2)C22—C12—H12B109.6
Cl7—Cd4—Cl5iv88.60 (3)H12A—C12—H12B108.1
Cl8—Cd4—Cl7iv174.54 (3)O22—C22—C12121.7 (3)
Cl1iii—Cd4—Cl7iv88.43 (2)O22—C22—C32120.9 (2)
Cl6—Cd4—Cl7iv89.46 (2)C12—C22—C32117.4 (2)
Cl7—Cd4—Cl7iv79.47 (2)O32—C32—C22111.9 (2)
Cl5iv—Cd4—Cl7iv83.65 (2)O32—C32—H32A109.2
Cd2—Cl1—Cd4v93.75 (3)C22—C32—H32A109.2
Cd3—Cl3—Cd288.76 (3)O32—C32—H32B109.2
Cd3—Cl3—Cd2ii92.99 (2)C22—C32—H32B109.2
Cd2—Cl3—Cd2ii97.67 (2)H32A—C32—H32B107.9
Cd3—Cl4—Cd292.43 (3)Cd3—O1W—H1W108 (2)
Cd2ii—Cl5—Cd4iv90.00 (3)Cd3—O1W—H2W120 (3)
Cd2ii—Cl5—Cd394.52 (2)H1W—O1W—H2W106 (4)
Cd4iv—Cl5—Cd395.67 (2)H3W—O2W—H4W103 (4)
Cd3—Cl6—Cd493.22 (3)H5W—O3W—H6W127 (4)
Cl2—Cd2—Cl1—Cd4v86.87 (3)Cl5—Cd3—Cl7—Cd499.65 (2)
Cl4—Cd2—Cl1—Cd4v177.61 (2)O1W—Cd3—Cl7—Cd4iv168.02 (6)
Cl5ii—Cd2—Cl1—Cd4v7.00 (2)Cl6—Cd3—Cl7—Cd4iv96.44 (2)
Cl3—Cd2—Cl1—Cd4v85.09 (14)Cl3—Cd3—Cl7—Cd4iv86.31 (2)
Cl3ii—Cd2—Cl1—Cd4v92.35 (2)Cl5—Cd3—Cl7—Cd4iv0.91 (2)
O1W—Cd3—Cl3—Cd282.97 (6)Cl8—Cd4—Cl7—Cd388.02 (2)
Cl4—Cd3—Cl3—Cd27.35 (2)Cl1iii—Cd4—Cl7—Cd3105.46 (11)
Cl7—Cd3—Cl3—Cd2174.13 (2)Cl6—Cd4—Cl7—Cd34.08 (2)
Cl5—Cd3—Cl3—Cd299.12 (2)Cl5iv—Cd4—Cl7—Cd3177.78 (2)
O1W—Cd3—Cl3—Cd2ii179.41 (6)Cl7iv—Cd4—Cl7—Cd393.98 (3)
Cl4—Cd3—Cl3—Cd2ii90.27 (2)Cl8—Cd4—Cl7—Cd4iv178.00 (2)
Cl7—Cd3—Cl3—Cd2ii88.26 (2)Cl1iii—Cd4—Cl7—Cd4iv11.48 (12)
Cl5—Cd3—Cl3—Cd2ii1.50 (2)Cl6—Cd4—Cl7—Cd4iv89.90 (2)
Cl2—Cd2—Cl3—Cd387.72 (2)Cl5iv—Cd4—Cl7—Cd4iv83.80 (2)
Cl1—Cd2—Cl3—Cd3100.17 (14)Cl7iv—Cd4—Cl7—Cd4iv0.0
Cl4—Cd2—Cl3—Cd37.29 (2)O22—Cd1—O2—C2167.90 (19)
Cl5ii—Cd2—Cl3—Cd3178.05 (2)O31i—Cd1—O2—C2103.5 (2)
Cl3ii—Cd2—Cl3—Cd392.85 (2)O21i—Cd1—O2—C252.0 (2)
Cl2—Cd2—Cl3—Cd2ii179.42 (2)O21—Cd1—O2—C238.0 (2)
Cl1—Cd2—Cl3—Cd2ii7.32 (15)Cd1—O2—C2—C3174.0 (2)
Cl4—Cd2—Cl3—Cd2ii85.56 (2)Cd1—O2—C2—C17.1 (4)
Cl5ii—Cd2—Cl3—Cd2ii85.20 (2)O1—C1—C2—O22.6 (4)
Cl3ii—Cd2—Cl3—Cd2ii0.0O1—C1—C2—C3178.3 (2)
O1W—Cd3—Cl4—Cd274.11 (6)O2—C2—C3—O30.3 (4)
Cl6—Cd3—Cl4—Cd2169.68 (2)C1—C2—C3—O3178.7 (2)
Cl3—Cd3—Cl4—Cd27.61 (2)O22—Cd1—O21—C2197.2 (2)
Cl5—Cd3—Cl4—Cd294.80 (2)O31i—Cd1—O21—C21176.15 (19)
Cl2—Cd2—Cl4—Cd381.94 (3)O2—Cd1—O21—C2156.3 (2)
Cl1—Cd2—Cl4—Cd3177.02 (2)O21i—Cd1—O21—C21179.8 (2)
Cl3—Cd2—Cl4—Cd37.51 (2)O22—Cd1—O21—Cd1i82.56 (9)
Cl3ii—Cd2—Cl4—Cd389.95 (2)O31i—Cd1—O21—Cd1i3.65 (13)
O1W—Cd3—Cl5—Cd2ii12.2 (3)O2—Cd1—O21—Cd1i123.92 (9)
Cl6—Cd3—Cl5—Cd2ii179.98 (2)O21i—Cd1—O21—Cd1i0.0
Cl4—Cd3—Cl5—Cd2ii87.91 (3)Cd1i—O21—C21—C11172.57 (18)
Cl7—Cd3—Cl5—Cd2ii91.40 (3)Cd1—O21—C21—C117.2 (3)
Cl3—Cd3—Cl5—Cd2ii1.57 (2)Cd1i—O21—C21—C316.7 (3)
O1W—Cd3—Cl5—Cd4iv78.2 (3)Cd1—O21—C21—C31173.50 (18)
Cl6—Cd3—Cl5—Cd4iv89.57 (3)O11—C11—C21—O210.8 (4)
Cl4—Cd3—Cl5—Cd4iv178.36 (2)O11—C11—C21—C31178.5 (2)
Cl7—Cd3—Cl5—Cd4iv0.95 (3)O21—C21—C31—O316.4 (4)
Cl3—Cd3—Cl5—Cd4iv88.88 (3)C11—C21—C31—O31172.9 (2)
O1W—Cd3—Cl6—Cd486.75 (6)O31i—Cd1—O22—C22102.8 (2)
Cl4—Cd3—Cl6—Cd4177.19 (2)O2—Cd1—O22—C2215.8 (3)
Cl7—Cd3—Cl6—Cd44.25 (2)O21i—Cd1—O22—C22166.4 (2)
Cl5—Cd3—Cl6—Cd490.87 (2)O21—Cd1—O22—C22127.5 (2)
Cl8—Cd4—Cl6—Cd391.17 (3)Cd1—O22—C22—C128.2 (3)
Cl1iii—Cd4—Cl6—Cd3172.05 (2)Cd1—O22—C22—C32169.2 (2)
Cl7—Cd4—Cl6—Cd34.19 (2)O12—C12—C22—O2210.0 (4)
Cl7iv—Cd4—Cl6—Cd383.67 (2)O12—C12—C22—C32172.5 (2)
O1W—Cd3—Cl7—Cd491.43 (6)O22—C22—C32—O325.6 (4)
Cl6—Cd3—Cl7—Cd44.11 (2)C12—C22—C32—O32171.9 (2)
Cl3—Cd3—Cl7—Cd4173.14 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x1, y, z; (iv) x, y, z+1; (v) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O22i0.842.072.822 (3)150
O1—H1···O32i0.842.453.073 (3)131
O3—H3···Cl80.842.523.312 (2)158
O11—H11···O2W0.841.982.810 (3)172
O31—H31···O3W0.841.942.740 (3)160
O12—H12···O2Wvi0.841.952.784 (3)173
O32—H32···Cl2i0.842.273.096 (2)169
O1W—H1W···Cl20.80 (3)2.41 (3)3.203 (2)176 (3)
O1W—H2W···O3Wi0.76 (4)2.19 (4)2.944 (3)173 (4)
O2W—H3W···Cl4vii0.74 (4)2.74 (4)3.302 (3)134 (3)
O2W—H4W···O3Wiii0.77 (3)2.20 (4)2.955 (3)170 (4)
O3W—H5W···Cl8i0.98 (4)2.09 (4)3.067 (3)174 (3)
O3W—H6W···O32viii0.76 (4)1.96 (4)2.690 (3)159 (4)
C1—H1A···Cl1vii0.993.113.630 (3)114
C1—H1A···Cl6ix0.992.883.570 (3)127
C1—H1A···Cl8ix0.993.174.099 (3)157
C3—H3A···Cl70.992.793.545 (3)134
C3—H3B···Cl1vii0.993.023.574 (3)117
C11—H11B···Cl2i0.993.013.638 (3)123
C11—H11A···Cl1vii0.992.973.628 (3)125
C11—H11A···Cl7x0.992.773.679 (3)153
C31—H31B···Cl5ix0.992.843.740 (3)151
C31—H31B···Cl6ix0.992.943.582 (3)123
C31—H31A···Cl2i0.992.833.459 (3)122
C12—H12A···Cl8vi0.992.783.643 (3)146
C12—H12B···Cl4xi0.992.813.379 (3)117
C12—H12B···O3vi0.992.623.204 (3)118
C32—H32B···Cl5xii0.993.033.693 (3)126
C32—H32B···Cl8vi0.992.793.689 (3)151
C32—H32A···Cl4xi0.993.053.667 (3)121
Symmetry codes: (i) x+1, y+1, z+1; (iii) x1, y, z; (vi) x, y+1, z+1; (vii) x1/2, y+1/2, z+1/2; (viii) x+1/2, y+3/2, z+1/2; (ix) x+1/2, y+1/2, z+1/2; (x) x+1/2, y+1/2, z+3/2; (xi) x+1/2, y+1/2, z+1/2; (xii) x, y+1, z.

Experimental details

(2e)(2f)
Crystal data
Chemical formula[Ca2(C3H6O3)2(H2O)8]Br4[Cd2(C3H6O3)6][Cd6Cl16(H2O)2]·4H2O
Mr724.082114.96
Crystal system, space groupTriclinic, P1Monoclinic, P21/n
Temperature (K)100100
a, b, c (Å)9.225 (2), 9.143 (2), 14.504 (3)11.170 (3), 17.119 (3), 14.225 (3)
α, β, γ (°)90.73 (3), 100.01 (3), 92.84 (3)90, 95.42 (3), 90
V3)1202.9 (5)2707.9 (10)
Z22
Radiation typeMo KαMo Kα
µ (mm1)7.173.94
Crystal size (mm)0.41 × 0.36 × 0.170.19 × 0.08 × 0.04
Data collection
DiffractometerKuma KM4 κ-geometry
diffractometer with Sapphire CCD camera
Kuma KM4 κ-geometry
diffractometer with Sapphire CCD camera
Absorption correctionAnalytical
(CrysAlis RED in KM-4 CCD Software; Oxford Diffraction, 2004)
Analytical
(CrysAlis RED in KM-4 CCD Software; Oxford Diffraction, 2004)
Tmin, Tmax0.100, 0.2830.550, 0.850
No. of measured, independent and
observed [I > 2σ(I)] reflections
18605, 6788, 5914 38913, 7856, 5800
Rint0.0350.051
(sin θ/λ)max1)0.7030.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.057, 1.04 0.029, 0.036, 1.00
No. of reflections67887856
No. of parameters326322
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.511.02, 0.60

Computer programs: CrysAlis CCD in KM-4 CCD Software (Oxford Diffraction, 2004), CrysAlis RED in KM-4 CCD Software (Oxford Diffraction, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Bruker, 1997).

Selected geometric parameters (Å, º) for (2e) top
O1—C11.425 (3)O11—C111.419 (3)
O2—C21.225 (3)O21—C211.221 (3)
O3—C31.419 (3)O31—C311.416 (3)
O1—C1—C2—O24.2 (3)O11—C11—C21—O217.7 (3)
O1—C1—C2—C3175.4 (2)O11—C11—C21—C31170.1 (2)
O2—C2—C3—O38.1 (3)O21—C21—C31—O319.6 (3)
C1—C2—C3—O3172.3 (2)C11—C21—C31—O31172.6 (2)
Hydrogen-bond geometry (Å, º) for (2e) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Br30.77 (4)2.39 (4)3.150 (2)169 (4)
O3—H3···Br10.84 (4)2.33 (4)3.159 (2)172 (4)
O11—H11···Br3i0.77 (4)2.48 (4)3.222 (2)162 (3)
O31—H31···Br40.78 (4)2.43 (4)3.206 (2)173 (4)
O1W—H1W···Br3ii0.78 (5)2.53 (5)3.312 (2)175 (4)
O1W—H2W···O2Wi0.80 (4)2.06 (4)2.828 (3)161 (4)
O2W—H4W···Br20.73 (4)2.52 (4)3.244 (2)177 (4)
O2W—H3W···Br4iii0.82 (4)2.57 (4)3.340 (2)157 (3)
O3W—H6W···Br1iv0.69 (4)2.73 (4)3.412 (2)169 (4)
O3W—H5W···Br4iii0.84 (5)2.47 (5)3.288 (2)163 (4)
O4W—H8W···Br1iv0.64 (5)2.64 (5)3.276 (3)169 (5)
O4W—H7W···O1ii0.77 (5)2.28 (5)2.979 (3)152 (4)
O5W—H10W···Br2v0.74 (4)2.73 (4)3.396 (2)151 (4)
O5W—H9W···Br4vi0.82 (5)2.49 (5)3.298 (2)170 (4)
O6W—H11W···Br1vii0.77 (4)2.64 (4)3.328 (2)150 (4)
O6W—H12W···O5Wviii0.83 (4)2.10 (4)2.840 (3)149 (3)
O7W—H13W···Br2v0.78 (4)2.54 (4)3.321 (2)175 (3)
O7W—H14W···Br2vii0.85 (5)2.50 (5)3.322 (2)164 (4)
O8W—H15W···Br1vii0.82 (5)2.59 (5)3.387 (2)165 (4)
O8W—H16W···Br3i0.78 (4)2.66 (4)3.401 (2)160 (4)
C1—H1B···Br20.992.873.526 (3)125
C3—H3A···Br4ix0.993.003.602 (3)121
C11—H11A···Br2i0.992.953.794 (3)144
C11—H11B···Br3v0.993.053.710 (3)125
C31—H31A···Br2x0.993.133.785 (3)125
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y, z+1; (iv) x+1, y+1, z; (v) x, y1, z1; (vi) x, y1, z; (vii) x+1, y, z+1; (viii) x+2, y, z; (ix) x1, y, z+1; (x) x, y, z1.
Selected geometric parameters (Å, º) for (2f) top
O1—C11.416 (3)O31—C311.417 (3)
O2—C21.221 (3)O12—C121.427 (3)
O3—C31.405 (3)O22—C221.218 (3)
O11—C111.424 (3)O32—C321.421 (3)
O21—C211.229 (3)
O1—C1—C2—O22.6 (4)O21—C21—C31—O316.4 (4)
O1—C1—C2—C3178.3 (2)C11—C21—C31—O31172.9 (2)
O2—C2—C3—O30.3 (4)O12—C12—C22—O2210.0 (4)
C1—C2—C3—O3178.7 (2)O12—C12—C22—C32172.5 (2)
O11—C11—C21—O210.8 (4)O22—C22—C32—O325.6 (4)
O11—C11—C21—C31178.5 (2)C12—C22—C32—O32171.9 (2)
Hydrogen-bond geometry (Å, º) for (2f) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O22i0.842.072.822 (3)150
O1—H1···O32i0.842.453.073 (3)131
O3—H3···Cl80.842.523.312 (2)158
O11—H11···O2W0.841.982.810 (3)172
O31—H31···O3W0.841.942.740 (3)160
O12—H12···O2Wii0.841.952.784 (3)173
O32—H32···Cl2i0.842.273.096 (2)169
O1W—H1W···Cl20.80 (3)2.41 (3)3.203 (2)176 (3)
O1W—H2W···O3Wi0.76 (4)2.19 (4)2.944 (3)173 (4)
O2W—H3W···Cl4iii0.74 (4)2.74 (4)3.302 (3)134 (3)
O2W—H4W···O3Wiv0.77 (3)2.20 (4)2.955 (3)170 (4)
O3W—H5W···Cl8i0.98 (4)2.09 (4)3.067 (3)174 (3)
O3W—H6W···O32v0.76 (4)1.96 (4)2.690 (3)159 (4)
C1—H1A···Cl1iii0.993.113.630 (3)114
C1—H1A···Cl6vi0.992.883.570 (3)127
C1—H1A···Cl8vi0.993.174.099 (3)157
C3—H3A···Cl70.992.793.545 (3)134
C3—H3B···Cl1iii0.993.023.574 (3)117
C11—H11B···Cl2i0.993.013.638 (3)123
C11—H11A···Cl1iii0.992.973.628 (3)125
C11—H11A···Cl7vii0.992.773.679 (3)153
C31—H31B···Cl5vi0.992.843.740 (3)151
C31—H31B···Cl6vi0.992.943.582 (3)123
C31—H31A···Cl2i0.992.833.459 (3)122
C12—H12A···Cl8ii0.992.783.643 (3)146
C12—H12B···Cl4viii0.992.813.379 (3)117
C12—H12B···O3ii0.992.623.204 (3)118
C32—H32B···Cl5ix0.993.033.693 (3)126
C32—H32B···Cl8ii0.992.793.689 (3)151
C32—H32A···Cl4viii0.993.053.667 (3)121
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x1/2, y+1/2, z+1/2; (iv) x1, y, z; (v) x+1/2, y+3/2, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y+1/2, z+3/2; (viii) x+1/2, y+1/2, z+1/2; (ix) x, y+1, z.
The coordination environment of the Ca2+ ions in (2e) (Å) top
Ca1—O12.458 (2)Ca2—O112.420 (2)
Ca1—O22.524 (2)Ca2—O212.512 (2)
Ca1—O2i2.574 (2)Ca2—O21ii2.550 (2)
Ca1—O3i2.387 (2)Ca2—O31ii2.402 (2)
Ca1—O1W2.351 (2)Ca2—O5W2.450 (2)
Ca1—O2W2.439 (2)Ca2—O6W2.380 (2)
Ca1—O3W2.405 (2)Ca2—O7W2.380 (2)
Ca1—O4W2.388 (2)Ca2—O8W2.431 (2)
Ca1···Ca1i4.334 (2)Ca2···Ca2ii4.300 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y -z.
The coordination environment of the Cd2+ ions in (2f) (Å) top
Cd1—O12.296 (2)Cd3—O1W2.341 (2)
Cd1—O22.383 (2)Cd3—Cl32.6370 (11)
Cd1—O112.375 (2)Cd3—Cl42.5613 (10)
Cd1—O212.502 (2)Cd3—Cl52.6780 (8)
Cd1—O122.335 (2)Cd3—Cl62.5516 (11)
Cd1—O222.360 (2)Cd3—Cl72.6158 (11)
Cd1—O21i2.432 (2)Cd4—Cl62.5746 (10)
Cd1—O31i2.370 (2)Cd4—Cl72.6551 (12)
Cd1···Cd1i4.1954 (11)Cd4—Cl82.5414 (9)
Cd2—Cl12.5713 (10)Cd4—Cl1iii2.5726 (11)
Cd2—Cl22.5350 (9)Cd4—Cl5iv2.6572 (11)
Cd2—Cl32.6740 (11)Cd4—Cl7iv2.7925 (9)
Cd2—Cl42.5839 (11)Cd2···Cd33.7147 (10)
Cd2—Cl3ii2.7591 (9)Cd3···Cd43.7252 (10)
Cd2—Cl5ii2.6523 (12)Cd4···Cd2iii3.7544 (10)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) x-1, y, z; (iv) -x, -y, -z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds