Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Co(C12H8N2)3](CF3SO3)3·2H2O, crystallizes to form infinite chains of complex cations that are connected through offset face-to-face and edge-to-face inter­actions between their phenanthroline ligands. The chains are themselves inter­connected through weak offset face-to-face ligand inter­actions. The three trifluoro­methane­sulfonate anions of the asymmetric unit are connected with one another through the two water mol­ecules by hydrogen bonds. One of the trifluoro­methane­sulfonate anions is described by a disorder over three positions, with occupancies of 0.35, 0.35 and 0.3 in the refined model.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108001972/sk3194sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108001972/sk3194Isup2.hkl
Contains datablock I

CCDC reference: 682790

Comment top

The tris(1,10-phenanthroline)cobalt(III) complex was first synthesized by Pfeiffer & Werdelmann (1950). It has been used in conjunction with the tris(1,10-phenanthroline)cobalt(II) complex as a redox couple in dye-sensitized solar cells (Nusbaumer, 2004), serving as an alternative to the prolific I-/I3- couple (Grätzel, 2005). Co complexes with various ligands have been used with trifluoromethanesulfonate counter-ions (Wen et al., 2000; Nusbaumer, 2004), where [Co(C12H8N2)3](CF3SO3)3·2H2O, compound (I), is an example of such a complex.

Compound (I) crystallizes into a racemic triclinic structure with two water molecules per complex cation. Powder X-ray diffraction confirms that the synthesis of (I) yields a stoichiometric compound with only one crystal structure.

The asymmetric unit contains one [Co(phen)3]3+ cation, three trifluoromethanesulfonate anions and two water molecules. The three trifluoromethanesulfonate ions interact with the two water molecules to form a chain, bridged by hydrogen bonds (Fig. 1 and Table 1). The complex cations are not isolated by the anions and water molecules, but rather they interact with one another in motifs that have been described in the literature (Russell et al., 2001). The structure contains four different pairs of cations with a significant van der Waals interaction between ligands (Figs. 2a–2d).

In general, two types of motifs are distinguished, depending on whether the planes of the interacting ligands are parallel (face-to-face) or perpendicular (edge-to-face) to one another. Offset face-to-face (OFF) interactions are clearly present in the motifs shown in Figs. 2(b) and 2(c), and even an edge-to-face (EF) interaction can be recognized in Fig. 2(b). However, the motifs presented in Figs. 2(a) and 2(d) have limited OFF or EF characteristics. This is supported by additional geometric parameters given in Table 2. It should be noted that Russell et al. limited their characterization of OFF ligand interactions to those complex pairs that fulfilled certain geometric criteria. In our context, where all motifs are centrosymmetric, these translate to a plane-to-plane distance in the range 3.2–3.6 Å and a shortest C···C distance between a C atom equivalent to C11 (assuming D3 symmetry for the complex cation) and any C atom of the second phenanthroline ligand not exceeding 4.0 Å (Russell et al., 2001). As motifs (a) and (d) do not comply with these requirements, they will be considered to be weak interactions compared with (b) and (c).

Further characterization of these motifs was carried out by calculating the energy contributions arising from van der Waals and Coulombic interactions, considering either a complete pair of complex cations or only a pair of ligands forming an OFF or EF motif. This was achieved using the methodology of Russell et al. (2001). The atomic charge distribution of a complex cation was approximated on the basis of the charge distribution of an [Fe(phen)3]2+ cation (Russell et al., 2001), multiplying each partial charge by 1.5 to achieve the correct total charge. Although this procedure does not take into account details such as electronegativity in distributing the additional charge, other approaches (such as adding an equal fractional charge to each atom) only result in minor quantitative deviations. The obtained values for the interactions (Table 3) show that only OFF interaction motifs (b) and (c) contribute significantly to a favorable attractive energy. The total intermolecular energy is positive in all cases, however, owing to the high total charge of the complex cations.

It is interesting to note that motif (a), in which the distance between the two Co atoms is shortest, has the least favorable interaction energy. The close proximity of the cations leads to a strong Coulombic repulsion and only a weak van der Waals attraction between ligands, since their close approach causes them to avoid one another.

The packing of the complex cations can be described as infinite chains along [111] that are formed through the strong interaction motifs (b) and (c), as shown in Fig. 2(e). These chains are interconnected in two directions by the weaker interaction motifs (a) and (d), and form a three-dimensional network similar to a distorted diamond structure. The voids and channels of this network are then filled with the short chains of anions and water molecules. The two ordered trifluoromethanesulfonate anions are located in channels (rings), whereas the disordered trifluoromethanesulfonate group points into a void (cage). This might provide enough freedom to allow a rocking motion of the anion, resulting in the observed disorder. Such anionic and solvent disorder is a common phenomenon found in crystals containing [M(phen)3]n+ complex cations (Anderson, 1973; Baker et al., 1975; Boys et al., 1984; Deacon et al., 1979; Freire et al., 1998; Goodwin et al., 1984; Koh et al., 1994; Luck et al., 2000).

Related literature top

For related literature, see: Anderson (1973); Baker et al. (1975); Boys et al. (1984); Deacon et al. (1979); Freire et al. (1998); Goodwin et al. (1984); Grätzel (2005); Koh et al. (1994); Luck et al. (2000); Nusbaumer (2004); Pfeiffer & Werdelmann (1950); Russell et al. (2001); Wen et al. (2000).

Experimental top

Compound (I) was synthesized according to a method described by Nusbaumer (2004). To cobalt(II) chloride hexahydrate (236 mg) in water (10 ml) was added 1,10-phenanthroline hydrate (596 mg) in methanol (2 ml), and the mixture was stirred at room temperature for 30 min. Bromine (0.1 ml) in water (8 ml) was added dropwise, whereupon a red–brown powder precipitated. The temperature was elevated to 318–323 K to complete the oxidation. Immediately after the oxidation step, the counter-ions were exchanged by adding silver trifluoromethanesulfonate (0.567 mg) in methanol (2.5 ml). The Ag halide precipitate was filtered off, leaving an orange solution. Evaporation under reduced pressure led to large orange crystals.

Refinement top

All atoms except those of the disordered trifluoromethanesulfonate anion were refined anisotropically. The final model describes the disorder by considering three different orientations of the disordered trifluoromethanesulfonate group (refered to as A, B and C). Restraints were used in order to equalize the C—S bond lengths (of A, B and C) and the C—F, S—O and C···O distances (separately for A and B). Occupancies were constrained to add up to unity and were fixed after convergence to 35% (A), 30% (B) and 35% (C). All H-atom parameters were refined, giving C—H distances in the range 0.88 (3)–0.96 (2).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the crystal structure of (I) at 140 K, showing the atomic labeling and 50% probability displacement ellipsoids. Aromatic H atoms and two sites of the disordered anion have been omitted for clarity. Dashed lines represent hydrogen bonds.
[Figure 2] Fig. 2. (a)–(d) Supramolecular motifs formed by pairs of complex cations in the order of increasing Co···Co distance. The view is perpendicular to the phenanthroline ligand planes participating in an `OFF' interaction. (e) Chains formed from an alternating succession of motifs (b) and (c). The third ligand is shown as a ball and stick model for clarity.
Tris(1,10-phenanthroline-κ2N,N')cobalt(III) tris(trifluoromethanesulfonate) dihydrate top
Crystal data top
[Co(C12H8N2)3](CF3O3S)3·2H2OZ = 2
Mr = 1082.78F(000) = 1096
Triclinic, P1Dx = 1.738 Mg m3
a = 12.4096 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.0039 (4) ÅCell parameters from 9027 reflections
c = 13.4669 (4) Åθ = 2.7–33.3°
α = 92.764 (1)°µ = 0.68 mm1
β = 107.367 (1)°T = 140 K
γ = 91.878 (1)°Triangular, orange
V = 2069.2 (1) Å30.28 × 0.20 × 0.15 mm
Data collection top
Bruker SMART 6000
diffractometer
14813 independent reflections
Radiation source: fine-focus sealed tube13149 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 33.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1819
Tmin = 0.77, Tmax = 0.90k = 1920
36176 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.107All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0536P)2 + 1.3093P]
where P = (Fo2 + 2Fc2)/3
14813 reflections(Δ/σ)max = 0.005
758 parametersΔρmax = 0.75 e Å3
21 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Co(C12H8N2)3](CF3O3S)3·2H2Oγ = 91.878 (1)°
Mr = 1082.78V = 2069.2 (1) Å3
Triclinic, P1Z = 2
a = 12.4096 (4) ÅMo Kα radiation
b = 13.0039 (4) ŵ = 0.68 mm1
c = 13.4669 (4) ÅT = 140 K
α = 92.764 (1)°0.28 × 0.20 × 0.15 mm
β = 107.367 (1)°
Data collection top
Bruker SMART 6000
diffractometer
14813 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
13149 reflections with I > 2σ(I)
Tmin = 0.77, Tmax = 0.90Rint = 0.018
36176 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04021 restraints
wR(F2) = 0.107All H-atom parameters refined
S = 1.05Δρmax = 0.75 e Å3
14813 reflectionsΔρmin = 0.63 e Å3
758 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.207589 (14)0.295187 (13)0.740936 (13)0.01400 (4)
N10.31395 (9)0.37027 (9)0.68838 (8)0.01688 (19)
N20.32690 (9)0.30877 (8)0.87328 (8)0.01570 (18)
N30.14688 (9)0.42076 (9)0.77994 (8)0.01643 (19)
N40.10192 (9)0.22723 (9)0.80048 (9)0.01689 (19)
N50.09296 (9)0.27995 (9)0.60603 (9)0.01682 (19)
N60.26006 (10)0.16664 (9)0.69638 (9)0.01743 (19)
C10.30038 (12)0.40487 (12)0.59405 (11)0.0220 (3)
H10.2296 (17)0.3872 (15)0.5424 (15)0.019 (4)*
C20.38513 (13)0.46582 (13)0.57235 (11)0.0243 (3)
H20.369 (2)0.4898 (18)0.5062 (19)0.035 (6)*
C30.48628 (12)0.48898 (12)0.64793 (11)0.0220 (2)
H30.5391 (19)0.5294 (17)0.6352 (17)0.029 (5)*
C40.50387 (11)0.45031 (10)0.74743 (10)0.0178 (2)
C50.60628 (11)0.46729 (11)0.83209 (11)0.0214 (2)
H40.6644 (17)0.5031 (16)0.8199 (16)0.022 (5)*
C60.61457 (11)0.43116 (11)0.92720 (11)0.0213 (2)
H50.6822 (18)0.4399 (17)0.9826 (17)0.027 (5)*
C70.52134 (11)0.37717 (10)0.94690 (10)0.0172 (2)
C80.52011 (12)0.34374 (11)1.04458 (10)0.0206 (2)
H60.5852 (18)0.3568 (17)1.1035 (17)0.028 (5)*
C90.42333 (13)0.29686 (11)1.05445 (10)0.0214 (2)
H70.4153 (19)0.2785 (18)1.1186 (18)0.032 (6)*
C100.32720 (12)0.28012 (10)0.96740 (10)0.0184 (2)
H80.2593 (18)0.2480 (16)0.9715 (16)0.024 (5)*
C110.42174 (10)0.35813 (9)0.86389 (9)0.0152 (2)
C120.41418 (10)0.39303 (10)0.76381 (10)0.0159 (2)
C130.17646 (12)0.51882 (11)0.77135 (10)0.0200 (2)
H90.2331 (17)0.5319 (16)0.7421 (16)0.022 (5)*
C140.12186 (14)0.60044 (11)0.80428 (11)0.0244 (3)
H100.1480 (19)0.6664 (18)0.7985 (17)0.032 (6)*
C150.03454 (13)0.58101 (12)0.84499 (11)0.0245 (3)
H110.002 (2)0.6337 (18)0.8688 (18)0.034 (6)*
C160.00054 (12)0.47831 (11)0.85325 (10)0.0209 (2)
C170.08995 (12)0.44700 (13)0.89268 (11)0.0256 (3)
H120.1340 (19)0.4972 (18)0.9100 (17)0.031 (5)*
C180.11397 (12)0.34641 (14)0.90308 (12)0.0261 (3)
H130.172 (2)0.3242 (19)0.9257 (19)0.037 (6)*
C190.04890 (12)0.26681 (12)0.87481 (11)0.0219 (2)
C200.06533 (13)0.16089 (13)0.88639 (13)0.0274 (3)
H140.120 (2)0.1386 (18)0.9163 (18)0.036 (6)*
C210.00211 (14)0.09213 (12)0.85603 (13)0.0267 (3)
H150.008 (2)0.024 (2)0.8617 (19)0.038 (6)*
C220.08535 (12)0.12739 (11)0.81250 (11)0.0214 (2)
H160.1319 (17)0.0816 (16)0.7931 (15)0.022 (5)*
C230.03639 (11)0.29570 (10)0.83203 (10)0.0173 (2)
C240.06117 (11)0.40097 (10)0.82130 (10)0.0172 (2)
C250.00934 (11)0.34118 (11)0.56340 (11)0.0200 (2)
H170.0018 (17)0.3992 (16)0.5983 (16)0.022 (5)*
C260.06853 (12)0.31526 (12)0.46494 (11)0.0237 (3)
H180.124 (2)0.3606 (18)0.4380 (18)0.034 (6)*
C270.05974 (13)0.22616 (12)0.40981 (11)0.0240 (3)
H190.1092 (18)0.2089 (17)0.3453 (17)0.027 (5)*
C280.02872 (12)0.16109 (11)0.45286 (10)0.0207 (2)
C290.04867 (14)0.06720 (12)0.40237 (11)0.0260 (3)
H200.0034 (19)0.0510 (17)0.3372 (18)0.029 (5)*
C300.13543 (15)0.00812 (12)0.44850 (12)0.0267 (3)
H210.151 (2)0.049 (2)0.415 (2)0.043 (7)*
C310.21172 (13)0.03825 (11)0.55007 (11)0.0218 (2)
C320.30569 (14)0.01707 (12)0.60305 (12)0.0257 (3)
H220.323 (2)0.075 (2)0.5756 (19)0.039 (6)*
C330.37377 (13)0.02118 (12)0.69901 (12)0.0247 (3)
H230.434 (2)0.0125 (18)0.7371 (18)0.035 (6)*
C340.34901 (12)0.11353 (11)0.74413 (11)0.0207 (2)
H240.3917 (17)0.1396 (16)0.8055 (16)0.021 (5)*
C350.19334 (11)0.12998 (10)0.60041 (10)0.0178 (2)
C360.10198 (11)0.19125 (10)0.55168 (10)0.0176 (2)
S1A0.21955 (18)0.26890 (17)0.2397 (2)0.0134 (3)*0.35
C37A0.2948 (7)0.1503 (6)0.2860 (7)0.0182 (17)*0.35
O1A0.3168 (5)0.3439 (4)0.2765 (5)0.0350 (10)*0.35
O2A0.1792 (4)0.2542 (5)0.1306 (4)0.0235 (8)*0.35
O3A0.1315 (6)0.2725 (5)0.2910 (6)0.0190 (11)*0.35
F1A0.2296 (5)0.0659 (3)0.2550 (5)0.0227 (7)*0.35
F2A0.3846 (4)0.1409 (4)0.2516 (4)0.0247 (8)*0.35
F3A0.3482 (5)0.1556 (6)0.3862 (5)0.0432 (13)*0.35
S1B0.2083 (2)0.2529 (2)0.2269 (2)0.0383 (8)*0.30
C37B0.3105 (7)0.1652 (6)0.3013 (6)0.040 (2)*0.30
O1B0.2855 (6)0.3524 (5)0.2575 (5)0.0461 (15)*0.30
O2B0.1732 (6)0.2289 (6)0.1227 (5)0.049 (2)*0.30
O3B0.1218 (6)0.2562 (5)0.2789 (6)0.0321 (19)*0.30
F1B0.2549 (6)0.0711 (6)0.2755 (6)0.062 (3)*0.30
F2B0.4008 (5)0.1655 (5)0.2698 (4)0.0465 (15)*0.30
F3B0.3302 (6)0.1698 (5)0.4004 (4)0.0407 (12)*0.30
S1C0.23023 (15)0.27610 (14)0.25737 (14)0.0266 (6)*0.35
C37C0.2874 (9)0.1488 (8)0.2745 (8)0.037 (3)*0.35
O1C0.3103 (5)0.3553 (4)0.3056 (4)0.0423 (12)*0.35
O2C0.2002 (5)0.2802 (5)0.1448 (5)0.0494 (17)*0.35
O3C0.1485 (4)0.2738 (5)0.3105 (4)0.0308 (15)*0.35
F1C0.2079 (4)0.0725 (4)0.2369 (4)0.0451 (17)*0.35
F2C0.3699 (4)0.1339 (3)0.2285 (3)0.0328 (11)*0.35
F3C0.3235 (4)0.1380 (3)0.3814 (3)0.0314 (8)*0.35
C380.38610 (17)0.79792 (13)0.34817 (14)0.0322 (3)
C390.32757 (14)0.97148 (12)1.00627 (12)0.0275 (3)
S20.28934 (3)0.72498 (3)0.40090 (3)0.02283 (7)
S30.27390 (3)0.86882 (3)0.90444 (3)0.02393 (7)
F40.49070 (10)0.76594 (10)0.38110 (11)0.0452 (3)
F50.39003 (13)0.89755 (9)0.37673 (12)0.0507 (3)
F60.35369 (14)0.78822 (12)0.24434 (10)0.0554 (4)
F70.41173 (12)0.94161 (11)1.08339 (10)0.0540 (4)
F80.24641 (12)1.00139 (11)1.04551 (11)0.0528 (4)
F90.36432 (13)1.05392 (9)0.96969 (10)0.0458 (3)
O40.34057 (13)0.74230 (11)0.51177 (9)0.0361 (3)
O50.18310 (11)0.77275 (11)0.35997 (11)0.0360 (3)
O60.29251 (11)0.62038 (9)0.36088 (10)0.0315 (2)
O70.17961 (13)0.91199 (12)0.83166 (12)0.0454 (4)
O80.36892 (12)0.85314 (10)0.86495 (11)0.0366 (3)
O90.24785 (14)0.78508 (10)0.96084 (12)0.0410 (3)
O100.12487 (11)0.47292 (11)0.39099 (10)0.0302 (2)
H250.125 (2)0.421 (2)0.363 (2)0.039 (7)*
H260.168 (2)0.508 (2)0.376 (2)0.045 (7)*
O110.33191 (12)0.68523 (11)0.71035 (10)0.0320 (3)
H270.337 (2)0.698 (2)0.656 (2)0.046 (7)*
H280.346 (2)0.738 (2)0.743 (2)0.040 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01305 (8)0.01605 (8)0.01317 (8)0.00044 (5)0.00425 (6)0.00176 (5)
N10.0147 (4)0.0215 (5)0.0151 (4)0.0008 (4)0.0049 (4)0.0040 (4)
N20.0159 (4)0.0167 (5)0.0148 (4)0.0009 (4)0.0048 (4)0.0022 (3)
N30.0159 (4)0.0172 (5)0.0153 (4)0.0006 (4)0.0033 (4)0.0013 (4)
N40.0158 (4)0.0186 (5)0.0165 (5)0.0006 (4)0.0053 (4)0.0010 (4)
N50.0152 (4)0.0193 (5)0.0158 (4)0.0003 (4)0.0045 (4)0.0017 (4)
N60.0179 (5)0.0190 (5)0.0166 (5)0.0022 (4)0.0066 (4)0.0025 (4)
C10.0195 (6)0.0310 (7)0.0164 (5)0.0022 (5)0.0059 (5)0.0074 (5)
C20.0235 (6)0.0324 (7)0.0205 (6)0.0027 (5)0.0104 (5)0.0099 (5)
C30.0208 (6)0.0251 (6)0.0243 (6)0.0016 (5)0.0125 (5)0.0067 (5)
C40.0157 (5)0.0193 (5)0.0202 (5)0.0016 (4)0.0079 (4)0.0024 (4)
C50.0153 (5)0.0240 (6)0.0256 (6)0.0010 (4)0.0074 (5)0.0019 (5)
C60.0149 (5)0.0242 (6)0.0231 (6)0.0004 (4)0.0032 (5)0.0002 (5)
C70.0163 (5)0.0173 (5)0.0169 (5)0.0030 (4)0.0033 (4)0.0011 (4)
C80.0217 (6)0.0214 (6)0.0162 (5)0.0035 (5)0.0014 (4)0.0019 (4)
C90.0260 (6)0.0230 (6)0.0145 (5)0.0023 (5)0.0043 (5)0.0038 (4)
C100.0205 (6)0.0192 (6)0.0164 (5)0.0006 (4)0.0067 (4)0.0036 (4)
C110.0154 (5)0.0153 (5)0.0152 (5)0.0019 (4)0.0048 (4)0.0018 (4)
C120.0148 (5)0.0183 (5)0.0154 (5)0.0020 (4)0.0054 (4)0.0028 (4)
C130.0214 (6)0.0183 (6)0.0182 (5)0.0012 (4)0.0027 (5)0.0017 (4)
C140.0303 (7)0.0179 (6)0.0205 (6)0.0021 (5)0.0010 (5)0.0000 (5)
C150.0292 (7)0.0224 (6)0.0189 (6)0.0090 (5)0.0021 (5)0.0011 (5)
C160.0193 (6)0.0262 (6)0.0153 (5)0.0064 (5)0.0021 (4)0.0006 (4)
C170.0200 (6)0.0363 (8)0.0206 (6)0.0083 (5)0.0062 (5)0.0023 (5)
C180.0182 (6)0.0401 (8)0.0219 (6)0.0021 (5)0.0091 (5)0.0003 (6)
C190.0173 (5)0.0304 (7)0.0188 (6)0.0012 (5)0.0070 (4)0.0012 (5)
C200.0242 (7)0.0329 (8)0.0283 (7)0.0058 (6)0.0132 (6)0.0043 (6)
C210.0283 (7)0.0236 (7)0.0302 (7)0.0061 (5)0.0120 (6)0.0047 (5)
C220.0226 (6)0.0185 (6)0.0235 (6)0.0022 (5)0.0079 (5)0.0019 (5)
C230.0150 (5)0.0213 (6)0.0156 (5)0.0000 (4)0.0048 (4)0.0006 (4)
C240.0156 (5)0.0208 (6)0.0142 (5)0.0014 (4)0.0029 (4)0.0003 (4)
C250.0174 (5)0.0229 (6)0.0192 (6)0.0024 (4)0.0044 (4)0.0028 (5)
C260.0180 (6)0.0310 (7)0.0198 (6)0.0012 (5)0.0017 (5)0.0052 (5)
C270.0215 (6)0.0310 (7)0.0165 (6)0.0036 (5)0.0015 (5)0.0029 (5)
C280.0212 (6)0.0248 (6)0.0150 (5)0.0046 (5)0.0047 (4)0.0003 (4)
C290.0320 (7)0.0277 (7)0.0173 (6)0.0055 (6)0.0074 (5)0.0040 (5)
C300.0361 (8)0.0234 (7)0.0223 (6)0.0030 (6)0.0126 (6)0.0049 (5)
C310.0277 (6)0.0202 (6)0.0203 (6)0.0007 (5)0.0119 (5)0.0002 (5)
C320.0329 (7)0.0215 (6)0.0274 (7)0.0065 (5)0.0155 (6)0.0020 (5)
C330.0273 (7)0.0228 (6)0.0272 (7)0.0085 (5)0.0118 (5)0.0054 (5)
C340.0207 (6)0.0226 (6)0.0197 (6)0.0047 (5)0.0067 (5)0.0041 (5)
C350.0191 (5)0.0187 (5)0.0169 (5)0.0002 (4)0.0077 (4)0.0010 (4)
C360.0183 (5)0.0194 (5)0.0154 (5)0.0014 (4)0.0058 (4)0.0008 (4)
C380.0434 (9)0.0256 (7)0.0339 (8)0.0007 (6)0.0209 (7)0.0033 (6)
C390.0317 (7)0.0246 (7)0.0253 (7)0.0065 (6)0.0085 (6)0.0003 (5)
S20.02964 (17)0.02101 (15)0.02015 (15)0.00264 (12)0.01068 (13)0.00227 (11)
S30.02834 (17)0.01895 (15)0.02268 (16)0.00063 (12)0.00528 (13)0.00077 (12)
F40.0371 (6)0.0398 (6)0.0657 (8)0.0010 (5)0.0271 (6)0.0012 (6)
F50.0671 (9)0.0214 (5)0.0751 (9)0.0024 (5)0.0393 (8)0.0031 (5)
F60.0775 (10)0.0646 (9)0.0323 (6)0.0073 (7)0.0290 (6)0.0111 (6)
F70.0560 (8)0.0533 (8)0.0341 (6)0.0055 (6)0.0138 (5)0.0027 (5)
F80.0586 (8)0.0501 (7)0.0577 (8)0.0124 (6)0.0358 (7)0.0251 (6)
F90.0696 (9)0.0237 (5)0.0467 (7)0.0157 (5)0.0239 (6)0.0008 (4)
O40.0485 (8)0.0411 (7)0.0193 (5)0.0002 (6)0.0113 (5)0.0016 (5)
O50.0332 (6)0.0370 (7)0.0392 (7)0.0106 (5)0.0116 (5)0.0058 (5)
O60.0401 (6)0.0205 (5)0.0366 (6)0.0000 (4)0.0161 (5)0.0013 (4)
O70.0393 (7)0.0430 (8)0.0394 (7)0.0120 (6)0.0099 (6)0.0074 (6)
O80.0460 (7)0.0317 (6)0.0386 (7)0.0084 (5)0.0220 (6)0.0023 (5)
O90.0574 (9)0.0266 (6)0.0420 (7)0.0145 (6)0.0217 (7)0.0006 (5)
O100.0294 (6)0.0333 (6)0.0262 (5)0.0035 (5)0.0057 (5)0.0022 (5)
O110.0404 (7)0.0340 (6)0.0220 (5)0.0047 (5)0.0103 (5)0.0034 (5)
Geometric parameters (Å, º) top
Co1—N11.9330 (11)C25—H170.89 (2)
Co1—N31.9349 (11)C26—C271.371 (2)
Co1—N41.9399 (11)C26—H180.93 (2)
Co1—N51.9410 (11)C27—C281.409 (2)
Co1—N21.9435 (11)C27—H190.91 (2)
Co1—N61.9458 (11)C28—C361.3984 (18)
N1—C11.3330 (16)C28—C291.433 (2)
N1—C121.3635 (16)C29—C301.355 (2)
N2—C101.3373 (16)C29—H200.90 (2)
N2—C111.3639 (16)C30—C311.439 (2)
N3—C131.3353 (17)C30—H210.91 (3)
N3—C241.3629 (17)C31—C351.4023 (19)
N4—C221.3330 (18)C31—C321.412 (2)
N4—C231.3608 (17)C32—C331.375 (2)
N5—C251.3353 (17)C32—H220.88 (3)
N5—C361.3618 (17)C33—C341.404 (2)
N6—C341.3334 (17)C33—H230.91 (2)
N6—C351.3635 (17)C34—H240.88 (2)
C1—C21.404 (2)C35—C361.4200 (19)
C1—H10.96 (2)S1A—O2A1.404 (5)
C2—C31.373 (2)S1A—O3A1.458 (5)
C2—H20.92 (2)S1A—O1A1.474 (6)
C3—C41.4120 (19)S1A—C37A1.866 (7)
C3—H30.89 (2)C37A—F3A1.312 (10)
C4—C121.3965 (18)C37A—F1A1.315 (9)
C4—C51.4339 (19)C37A—F2A1.335 (8)
C5—C61.362 (2)S1B—O2B1.356 (7)
C5—H40.91 (2)S1B—O3B1.447 (6)
C6—C71.4318 (19)S1B—O1B1.546 (6)
C6—H50.94 (2)S1B—C37B1.834 (8)
C7—C111.4025 (17)C37B—F3B1.281 (9)
C7—C81.4094 (19)C37B—F2B1.310 (8)
C8—C91.374 (2)C37B—F1B1.362 (9)
C8—H60.95 (2)S1C—O1C1.398 (6)
C9—C101.4029 (19)S1C—O3C1.405 (5)
C9—H70.94 (2)S1C—O2C1.453 (6)
C10—H80.95 (2)S1C—C37C1.820 (9)
C11—C121.4204 (17)C37C—F1C1.342 (11)
C13—C141.401 (2)C37C—F2C1.360 (11)
C13—H90.92 (2)C37C—F3C1.390 (11)
C14—C151.374 (2)C38—F41.328 (2)
C14—H100.92 (2)C38—F51.329 (2)
C15—C161.407 (2)C38—F61.333 (2)
C15—H110.90 (2)C38—S21.8290 (18)
C16—C241.4013 (18)C39—F71.318 (2)
C16—C171.434 (2)C39—F91.3240 (19)
C17—C181.355 (2)C39—F81.330 (2)
C17—H120.93 (2)C39—S31.8239 (16)
C18—C191.438 (2)S2—O41.4408 (13)
C18—H130.91 (2)S2—O51.4424 (13)
C19—C231.3972 (18)S2—O61.4449 (12)
C19—C201.409 (2)S3—O71.4341 (14)
C20—C211.373 (2)S3—O91.4389 (14)
C20—H140.93 (2)S3—O81.4473 (14)
C21—C221.406 (2)O10—H250.75 (3)
C21—H150.90 (3)O10—H260.77 (3)
C22—H160.92 (2)O11—H270.77 (3)
C23—C241.4169 (19)O11—H280.78 (3)
C25—C261.4058 (19)
N1—Co1—N392.35 (5)N3—C24—C16123.35 (13)
N1—Co1—N4176.25 (5)N3—C24—C23115.95 (12)
N3—Co1—N484.50 (5)C16—C24—C23120.70 (12)
N1—Co1—N593.62 (5)N5—C25—C26121.27 (13)
N3—Co1—N592.63 (5)N5—C25—H17119.6 (13)
N4—Co1—N588.58 (5)C26—C25—H17119.1 (13)
N1—Co1—N284.76 (5)C27—C26—C25120.47 (14)
N3—Co1—N289.11 (5)C27—C26—H18121.3 (15)
N4—Co1—N293.13 (5)C25—C26—H18118.2 (15)
N5—Co1—N2177.67 (5)C26—C27—C28119.15 (13)
N1—Co1—N689.26 (5)C26—C27—H19121.3 (14)
N3—Co1—N6176.72 (5)C28—C27—H19119.5 (14)
N4—Co1—N693.98 (5)C36—C28—C27117.13 (13)
N5—Co1—N684.42 (5)C36—C28—C29118.23 (13)
N2—Co1—N693.88 (5)C27—C28—C29124.64 (13)
C1—N1—C12118.41 (12)C30—C29—C28121.52 (14)
C1—N1—Co1129.59 (10)C30—C29—H20121.3 (14)
C12—N1—Co1111.92 (8)C28—C29—H20117.1 (14)
C10—N2—C11118.40 (11)C29—C30—C31120.91 (14)
C10—N2—Co1130.15 (9)C29—C30—H21121.6 (16)
C11—N2—Co1111.43 (8)C31—C30—H21117.4 (16)
C13—N3—C24118.52 (12)C35—C31—C32116.91 (13)
C13—N3—Co1129.69 (10)C35—C31—C30118.23 (13)
C24—N3—Co1111.79 (9)C32—C31—C30124.86 (14)
C22—N4—C23118.42 (12)C33—C32—C31119.24 (13)
C22—N4—Co1129.79 (10)C33—C32—H22118.8 (16)
C23—N4—Co1111.79 (9)C31—C32—H22121.9 (16)
C25—N5—C36118.51 (12)C32—C33—C34120.19 (14)
C25—N5—Co1129.52 (10)C32—C33—H23122.6 (15)
C36—N5—Co1111.94 (9)C34—C33—H23117.2 (15)
C34—N6—C35118.26 (12)N6—C34—C33121.80 (13)
C34—N6—Co1129.98 (10)N6—C34—H24116.5 (13)
C35—N6—Co1111.75 (9)C33—C34—H24121.7 (13)
N1—C1—C2121.53 (13)N6—C35—C31123.59 (13)
N1—C1—H1116.7 (12)N6—C35—C36115.90 (12)
C2—C1—H1121.8 (12)C31—C35—C36120.51 (12)
C3—C2—C1120.35 (13)N5—C36—C28123.45 (13)
C3—C2—H2122.2 (15)N5—C36—C35115.93 (11)
C1—C2—H2117.4 (15)C28—C36—C35120.60 (12)
C2—C3—C4119.05 (13)O2A—S1A—O3A114.5 (4)
C2—C3—H3120.6 (14)O2A—S1A—O1A113.3 (4)
C4—C3—H3120.4 (14)O3A—S1A—O1A118.3 (4)
C12—C4—C3117.11 (12)O2A—S1A—C37A105.7 (4)
C12—C4—C5118.48 (12)O3A—S1A—C37A104.0 (3)
C3—C4—C5124.41 (13)O1A—S1A—C37A98.2 (4)
C6—C5—C4120.72 (13)F3A—C37A—F1A112.7 (7)
C6—C5—H4121.7 (13)F3A—C37A—F2A98.0 (7)
C4—C5—H4117.6 (13)F1A—C37A—F2A107.9 (6)
C5—C6—C7121.50 (12)F3A—C37A—S1A113.7 (6)
C5—C6—H5121.4 (13)F1A—C37A—S1A112.5 (6)
C7—C6—H5117.1 (13)F2A—C37A—S1A111.0 (5)
C11—C7—C8116.74 (12)O2B—S1B—O3B116.8 (5)
C11—C7—C6118.12 (12)O2B—S1B—O1B113.1 (4)
C8—C7—C6125.11 (12)O3B—S1B—O1B109.7 (4)
C9—C8—C7119.54 (12)O2B—S1B—C37B113.9 (4)
C9—C8—H6120.8 (13)O3B—S1B—C37B104.3 (4)
C7—C8—H6119.6 (13)O1B—S1B—C37B97.0 (4)
C8—C9—C10120.26 (12)F3B—C37B—F2B115.0 (7)
C8—C9—H7123.3 (14)F3B—C37B—F1B100.3 (7)
C10—C9—H7116.3 (14)F2B—C37B—F1B109.1 (7)
N2—C10—C9121.45 (12)F3B—C37B—S1B117.3 (6)
N2—C10—H8116.2 (13)F2B—C37B—S1B110.3 (6)
C9—C10—H8122.4 (13)F1B—C37B—S1B103.3 (6)
N2—C11—C7123.56 (11)O1C—S1C—O3C107.5 (4)
N2—C11—C12116.03 (11)O1C—S1C—O2C109.9 (4)
C7—C11—C12120.39 (12)O3C—S1C—O2C122.3 (3)
N1—C12—C4123.49 (12)O1C—S1C—C37C112.8 (4)
N1—C12—C11115.81 (11)O3C—S1C—C37C103.2 (4)
C4—C12—C11120.66 (12)O2C—S1C—C37C100.9 (4)
N3—C13—C14121.42 (14)F1C—C37C—F2C107.2 (7)
N3—C13—H9118.3 (13)F1C—C37C—F3C104.4 (8)
C14—C13—H9120.3 (13)F2C—C37C—F3C113.3 (8)
C15—C14—C13120.35 (14)F1C—C37C—S1C112.7 (7)
C15—C14—H10122.4 (14)F2C—C37C—S1C113.3 (7)
C13—C14—H10117.2 (14)F3C—C37C—S1C105.8 (6)
C14—C15—C16119.30 (13)F4—C38—F5107.65 (16)
C14—C15—H11119.8 (15)F4—C38—F6107.08 (15)
C16—C15—H11120.8 (15)F5—C38—F6108.00 (15)
C24—C16—C15117.01 (13)F4—C38—S2111.93 (12)
C24—C16—C17117.80 (14)F5—C38—S2110.75 (12)
C15—C16—C17125.18 (13)F6—C38—S2111.24 (14)
C18—C17—C16121.66 (14)F7—C39—F9107.79 (15)
C18—C17—H12119.6 (14)F7—C39—F8108.03 (15)
C16—C17—H12118.8 (14)F9—C39—F8106.88 (15)
C17—C18—C19120.87 (14)F7—C39—S3111.69 (12)
C17—C18—H13123.5 (15)F9—C39—S3111.57 (11)
C19—C18—H13115.6 (16)F8—C39—S3110.67 (12)
C23—C19—C20117.15 (13)O4—S2—O5114.78 (8)
C23—C19—C18118.16 (14)O4—S2—O6114.69 (8)
C20—C19—C18124.69 (13)O5—S2—O6115.13 (8)
C21—C20—C19119.25 (13)O4—S2—C38102.55 (9)
C21—C20—H14120.9 (15)O5—S2—C38103.63 (8)
C19—C20—H14119.8 (15)O6—S2—C38103.75 (8)
C20—C21—C22120.10 (14)O7—S3—O9116.31 (10)
C20—C21—H15120.5 (16)O7—S3—O8113.83 (10)
C22—C21—H15119.3 (16)O9—S3—O8114.47 (9)
N4—C22—C21121.59 (14)O7—S3—C39104.06 (8)
N4—C22—H16117.9 (13)O9—S3—C39102.88 (8)
C21—C22—H16120.5 (13)O8—S3—C39102.97 (8)
N4—C23—C19123.49 (13)H25—O10—H26106 (3)
N4—C23—C24115.79 (11)H27—O11—H28104 (3)
C19—C23—C24120.70 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H26···O60.77 (3)2.15 (3)2.913 (2)170 (3)
O10—H25···O3A0.75 (3)2.14 (3)2.891 (7)177 (3)
O10—H25···O3B0.75 (3)2.38 (3)3.126 (7)178 (3)
O10—H25···O3C0.75 (3)2.08 (3)2.817 (6)170 (3)
O11—H27···O40.77 (3)2.07 (3)2.841 (2)175 (3)
O11—H28···O80.78 (3)2.12 (3)2.870 (2)162 (3)

Experimental details

Crystal data
Chemical formula[Co(C12H8N2)3](CF3O3S)3·2H2O
Mr1082.78
Crystal system, space groupTriclinic, P1
Temperature (K)140
a, b, c (Å)12.4096 (4), 13.0039 (4), 13.4669 (4)
α, β, γ (°)92.764 (1), 107.367 (1), 91.878 (1)
V3)2069.2 (1)
Z2
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.28 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART 6000
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.77, 0.90
No. of measured, independent and
observed [I > 2σ(I)] reflections
36176, 14813, 13149
Rint0.018
(sin θ/λ)max1)0.777
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.05
No. of reflections14813
No. of parameters758
No. of restraints21
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.75, 0.63

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H26···O60.77 (3)2.15 (3)2.913 (2)170 (3)
O10—H25···O3A0.75 (3)2.14 (3)2.891 (7)177 (3)
O10—H25···O3B0.75 (3)2.38 (3)3.126 (7)178 (3)
O10—H25···O3C0.75 (3)2.08 (3)2.817 (6)170 (3)
O11—H27···O40.77 (3)2.07 (3)2.841 (2)175 (3)
O11—H28···O80.78 (3)2.12 (3)2.870 (2)162 (3)
Additional geometrical parameters (Å) for possible OFF motifs top
MotifCo···CoInterplanar distanceiC···Cii
(a)9.13.16.4 (C36···C25iii)
(b)9.73.44.0 (C11···C6iv)
(c)10.03.53.9 (C36···C30v)
(d)11.13.04.2 (C24···C17vi)
Notes: (i) the distance between the two ligand planes in the OFF motif; (ii) the shortest distance between a C atom equivalent to C11 (assuming D3 symmetry) and any C atom of the second phenanthroline ligand of the OFF motif. Symmetry codes: (iii) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z+2; (v) -x, -y, -z+1; (vi) -x, -y+1, -z+2.
Calculated energy contributions (kcal mol-1) for all motifs top
MotifTotalvdWCoulombicPrimary motifTotalphenivdWpheniCoulombicpheni
(a)12.4-8.621.0OFF-0.2-1.31.1
(b)3.0-16.519.5OFF-6.5-9.42.9
EF-0.3-2.82.5
(c)5.0-14.219.2OFF-6.8-9.52.7
(d)8.9-6.915.8OFF-0.9-4.73.8
Notes: (i) the calculated energy considering only the two phenanthroline ligands that characterize a primary motif. Note that the EF motif exists twice per cation pair.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds