Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Two polymorphs of the title compound, C16H16O3, have been obtained from the same solution. One polymorph, (Im), crystallizes in the monoclinic space group P21, while the other, (Io), crystallizes in the ortho­rhom­bic space group P212121. The cell constants of the two polymorphs are surprisingly similar. Whereas the a and b axes are equal in the two structures, the c axis in (Io) is twice as long as that in (Im). The monoclinic angle [beta] is 95.084 (9)° compared with 90° in the ortho­rhom­bic crystal system. The cell volume of (Im) is almost exactly half of the cell volume of (Io). The packing motifs are also very similar in the two structures. However, whereas the mol­ecules in (Im) are related by a twofold screw axis just in the direction of the b axis, in (Io) there are twofold screw axes along all three directions of the unit cell.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108001170/sk3197sup1.cif
Contains datablocks Im, Io, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108001170/sk3197Imsup2.hkl
Contains datablock Im

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108001170/sk3197Iosup3.hkl
Contains datablock Io

CCDC references: 681563; 681564

Comment top

β-Lapachone is a naturally occurring plant quinone primarily isolated from the Central and South American lapacho tree (Tabebuia avellanedae). Lapachone (2,2-dimethyl-3,4-dihydro-2H-naphtho[1,2-b]pyran-5,6-dione) and its derivatives exhibit a number of important pharmacological properties, such as antibacterial, antifungal, antitrypanosomal, antimalarial and antitumor activities (Guiraud et al., 1994; de Andrade-Neto et al., 2004; Ferreira et al., 2006). The title compound, (I), was synthesized from 2-hydroxy-1,4-naphthoquinone, α,β-unsaturated aldehyde and diarylprolinol catalyst, and recrystallized from CH3OH/hexane/CH2Cl2 (Rueping et al., 2008). In the same reaction vessel, two different kinds of crystals were found, viz. yellow plates and yellow needles [both orange according to CIF]. Since the cell parameters of the two crystal types were different, for both types a full crystal structure determination was carried out. As a result, two polymorphs were encountered. The plates are an orthorhombic form, (Io), whereas the needles are a monoclinic form, (Im).

A perspective view of the two polymorphs of the title compound is shown in Figs. 1 and 2. Bond lengths and angles can be regarded as normal (Cambridge Structural Database; Version 5.28 of November 2006 plus two updates; Mogul; Version 1.1; Allen, 2002; Bruno et al., 2004). The 1,2-naphthoquinone unit is planar [the r.m.s. deviation for the ten C atoms is 0.014 and 0.016 Å for (Im) and (Io), respectively]. The 3,4,5,6-dihydro-2H-pyran ring adopts a half-chair conformation and exhibits local twofold rotational symmetry (Tables 2 and 3). The propyl chains adopt a trans conformation (Tables 2 and 3). The molecular conformation of both polymorphs is almost identical. A least-squares fit of all non-H atoms gives an r.m.s. deviation of 0.013 Å.

The packing patterns on the other hand show some interesting similarities and differences. Whereas the a and b axes are equal in both structures, the c axis in (Io) is twice as long as in (Im) and the monoclinic angle β of 95.084 (9) differs significantly from that of 90° in the orthorhombic crystal system. The cell volume of (Im) is almost exactly half of the cell volume of (Io). The packing motifs are also very similar in the two structures (Figs. 3 and 4). If only the central two columns of molecules in the packing of (Io) are compared with only the right or left two columns in the packing of (Im) the patterns seem to be the same, because the aromatic rings in two neighbouring molecules approach one another in the same manner. The reason for this similarity is that these molecules are related by a twofold screw axis running in the same direction in both structures, i.e. along b in (Im) and along a in (Io). However, the propyl chains of two neighbouring molecules approach each other in a completely different way. Whereas in (Im) two molecules are again related by a twofold screw axis along b (in the plane of the paper), in (Io) two molecules are related by a twofold screw axis along b (perpendicular to the plane of the paper). In other words, the propyl chains in (Im) all point in the same direction (downwards in Fig. 3) whereas the propyl chains in (Io) point upwards and downwards (Fig. 4). This difference is the reason for the appearance of two polymorphic forms of the title compound.

Related literature top

For related literature, see: Allen (2002); Andrade-Neto et al. (2004); Bruno et al. (2004); Ferreira et al. (2006); Guiraud et al. (1994); Rueping et al. (2008).

Experimental top

Full experimenatal details are published elsewhere (Rueping et al., 2008).

Refinement top

Because of the absence of anomalous scatterers, Friedel pairs were merged prior to refinement. All H atoms could be located by difference Fourier synthesis. They were refined with fixed individual displacement parameters [Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl)] using a riding model, with C—H ranging from 0.95 to 1.00 Å.

Computing details top

For both compounds, data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. A perspective view of (Im), with the atom numbering; displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. A perspective view of (Io), with the atom numbering; displacement ellipsoids are shown at the 50% probability level.
[Figure 3] Fig. 3. The packing of (Im) with a view along the a axis; H atoms have been omitted for clarity.
[Figure 4] Fig. 4. The packing of (Io) with a view along the b axis; H atoms have been omitted for clarity.
(Im) 4-propyl-3,4-dihydro-2H-naphtho[1,2-b]pyran-5,6-dione top
Crystal data top
C16H16O3F(000) = 272
Mr = 256.29Dx = 1.314 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3913 reflections
a = 6.3201 (7) Åθ = 2.2–25.5°
b = 5.2972 (8) ŵ = 0.09 mm1
c = 19.429 (2) ÅT = 173 K
β = 95.084 (9)°Needle, orange
V = 647.90 (14) Å30.22 × 0.04 × 0.04 mm
Z = 2
Data collection top
Stoe IPDSII two-circle
diffractometer
1021 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.099
Graphite monochromatorθmax = 25.5°, θmin = 2.1°
ω scansh = 77
6418 measured reflectionsk = 66
1331 independent reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0396P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
1331 reflectionsΔρmax = 0.16 e Å3
173 parametersΔρmin = 0.18 e Å3
1 restraintExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.088 (9)
Crystal data top
C16H16O3V = 647.90 (14) Å3
Mr = 256.29Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.3201 (7) ŵ = 0.09 mm1
b = 5.2972 (8) ÅT = 173 K
c = 19.429 (2) Å0.22 × 0.04 × 0.04 mm
β = 95.084 (9)°
Data collection top
Stoe IPDSII two-circle
diffractometer
1021 reflections with I > 2σ(I)
6418 measured reflectionsRint = 0.099
1331 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.087H-atom parameters constrained
S = 0.97Δρmax = 0.16 e Å3
1331 reflectionsΔρmin = 0.18 e Å3
173 parameters
Special details top

Experimental. ;

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0416 (4)0.6319 (5)0.10963 (12)0.0454 (7)
O20.0959 (3)0.9388 (4)0.21703 (12)0.0374 (6)
O30.7157 (3)0.4375 (4)0.25398 (11)0.0333 (6)
C10.1312 (5)0.5916 (6)0.14041 (16)0.0311 (7)
C20.2065 (5)0.7573 (6)0.20319 (16)0.0304 (7)
C30.4053 (5)0.6977 (6)0.24317 (15)0.0283 (7)
C40.5268 (5)0.5070 (6)0.22130 (15)0.0279 (7)
C50.4705 (5)0.3487 (6)0.15938 (15)0.0287 (7)
C60.2748 (5)0.3874 (6)0.12012 (15)0.0300 (7)
C70.2169 (5)0.2357 (6)0.06332 (16)0.0339 (8)
H70.08460.26200.03710.041*
C80.3508 (5)0.0469 (7)0.04473 (16)0.0365 (8)
H80.31130.05560.00560.044*
C90.5430 (5)0.0069 (6)0.08325 (16)0.0351 (8)
H90.63360.12510.07060.042*
C100.6052 (5)0.1574 (6)0.14025 (16)0.0328 (8)
H100.73830.13000.16590.039*
C110.7659 (5)0.5476 (7)0.32131 (16)0.0349 (7)
H11A0.91890.52330.33550.042*
H11B0.68420.46000.35530.042*
C120.7147 (5)0.8257 (6)0.32159 (17)0.0332 (7)
H12A0.79670.91420.28780.040*
H12B0.75640.89680.36790.040*
C130.4775 (5)0.8680 (6)0.30309 (15)0.0302 (7)
H130.45931.04600.28650.036*
C140.3442 (5)0.8371 (7)0.36480 (16)0.0331 (8)
H14A0.19370.81250.34730.040*
H14B0.39150.68320.39070.040*
C150.3591 (6)1.0598 (8)0.4138 (2)0.0500 (10)
H15A0.31871.21470.38730.060*
H15B0.50871.07920.43290.060*
C160.2199 (6)1.0378 (10)0.47349 (19)0.0561 (11)
H16A0.23891.18780.50290.084*
H16B0.26050.88690.50070.084*
H16C0.07071.02440.45530.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0328 (13)0.0524 (17)0.0488 (14)0.0098 (12)0.0087 (11)0.0051 (12)
O20.0316 (12)0.0377 (13)0.0432 (14)0.0085 (12)0.0050 (10)0.0027 (12)
O30.0296 (12)0.0356 (13)0.0331 (12)0.0034 (11)0.0066 (9)0.0002 (10)
C10.0270 (17)0.0336 (18)0.0326 (17)0.0011 (14)0.0028 (14)0.0033 (15)
C20.0291 (17)0.0310 (18)0.0317 (17)0.0007 (15)0.0068 (14)0.0014 (14)
C30.0257 (16)0.0305 (18)0.0288 (17)0.0009 (14)0.0028 (13)0.0042 (14)
C40.0226 (15)0.0303 (18)0.0304 (16)0.0021 (14)0.0010 (13)0.0055 (14)
C50.0295 (16)0.0288 (16)0.0281 (15)0.0006 (14)0.0030 (13)0.0067 (15)
C60.0301 (17)0.0296 (18)0.0300 (17)0.0010 (13)0.0008 (13)0.0044 (14)
C70.0314 (18)0.037 (2)0.0322 (19)0.0024 (15)0.0026 (14)0.0018 (15)
C80.044 (2)0.0370 (18)0.0280 (18)0.0014 (18)0.0024 (14)0.0015 (16)
C90.0420 (19)0.0300 (19)0.0336 (18)0.0048 (14)0.0051 (14)0.0031 (14)
C100.0330 (18)0.0331 (18)0.0326 (17)0.0035 (15)0.0044 (14)0.0063 (16)
C110.0315 (17)0.0382 (18)0.0335 (17)0.0003 (15)0.0056 (13)0.0006 (16)
C120.0288 (17)0.0347 (18)0.0362 (18)0.0054 (14)0.0033 (13)0.0032 (15)
C130.0310 (18)0.0279 (17)0.0318 (17)0.0021 (13)0.0039 (13)0.0010 (15)
C140.0329 (17)0.0338 (18)0.0325 (18)0.0059 (15)0.0021 (13)0.0003 (15)
C150.053 (2)0.048 (2)0.051 (2)0.008 (2)0.0132 (18)0.019 (2)
C160.057 (2)0.069 (3)0.044 (2)0.001 (2)0.0089 (18)0.016 (2)
Geometric parameters (Å, º) top
O1—C11.217 (4)C10—H100.9500
O2—C21.232 (4)C11—C121.509 (5)
O3—C41.353 (4)C11—H11A0.9900
O3—C111.442 (4)C11—H11B0.9900
C1—C61.487 (4)C12—C131.527 (4)
C1—C21.543 (5)C12—H12A0.9900
C2—C31.452 (4)C12—H12B0.9900
C3—C41.359 (4)C13—C141.534 (4)
C3—C131.511 (4)C13—H131.0000
C4—C51.484 (4)C14—C151.514 (5)
C5—C101.395 (4)C14—H14A0.9900
C5—C61.410 (4)C14—H14B0.9900
C6—C71.388 (4)C15—C161.521 (5)
C7—C81.378 (5)C15—H15A0.9900
C7—H70.9500C15—H15B0.9900
C8—C91.385 (5)C16—H16A0.9800
C8—H80.9500C16—H16B0.9800
C9—C101.393 (5)C16—H16C0.9800
C9—H90.9500
C4—O3—C11115.5 (2)O3—C11—H11B109.3
O1—C1—C6122.6 (3)C12—C11—H11B109.3
O1—C1—C2119.3 (3)H11A—C11—H11B108.0
C6—C1—C2118.1 (3)C11—C12—C13110.4 (3)
O2—C2—C3122.3 (3)C11—C12—H12A109.6
O2—C2—C1118.4 (3)C13—C12—H12A109.6
C3—C2—C1119.4 (3)C11—C12—H12B109.6
C4—C3—C2118.7 (3)C13—C12—H12B109.6
C4—C3—C13123.0 (3)H12A—C12—H12B108.1
C2—C3—C13118.0 (3)C3—C13—C12108.5 (3)
O3—C4—C3123.7 (3)C3—C13—C14112.9 (3)
O3—C4—C5111.4 (3)C12—C13—C14113.3 (3)
C3—C4—C5124.9 (3)C3—C13—H13107.3
C10—C5—C6119.2 (3)C12—C13—H13107.3
C10—C5—C4121.2 (3)C14—C13—H13107.3
C6—C5—C4119.5 (3)C15—C14—C13113.6 (3)
C7—C6—C5120.2 (3)C15—C14—H14A108.8
C7—C6—C1120.5 (3)C13—C14—H14A108.8
C5—C6—C1119.3 (3)C15—C14—H14B108.8
C8—C7—C6120.3 (3)C13—C14—H14B108.8
C8—C7—H7119.9H14A—C14—H14B107.7
C6—C7—H7119.9C14—C15—C16114.3 (3)
C7—C8—C9119.9 (3)C14—C15—H15A108.7
C7—C8—H8120.0C16—C15—H15A108.7
C9—C8—H8120.0C14—C15—H15B108.7
C8—C9—C10120.9 (3)C16—C15—H15B108.7
C8—C9—H9119.5H15A—C15—H15B107.6
C10—C9—H9119.5C15—C16—H16A109.5
C9—C10—C5119.5 (3)C15—C16—H16B109.5
C9—C10—H10120.3H16A—C16—H16B109.5
C5—C10—H10120.3C15—C16—H16C109.5
O3—C11—C12111.6 (3)H16A—C16—H16C109.5
O3—C11—H11A109.3H16B—C16—H16C109.5
C12—C11—H11A109.3
O1—C1—C2—O25.6 (4)O1—C1—C6—C71.3 (5)
C6—C1—C2—O2174.5 (3)C2—C1—C6—C7178.8 (3)
O1—C1—C2—C3175.4 (3)O1—C1—C6—C5178.5 (3)
C6—C1—C2—C34.5 (4)C2—C1—C6—C51.4 (4)
O2—C2—C3—C4174.7 (3)C5—C6—C7—C80.3 (4)
C1—C2—C3—C44.3 (4)C1—C6—C7—C8179.9 (3)
O2—C2—C3—C130.7 (4)C6—C7—C8—C90.6 (5)
C1—C2—C3—C13178.3 (3)C7—C8—C9—C100.9 (5)
C11—O3—C4—C310.8 (4)C8—C9—C10—C51.0 (5)
C11—O3—C4—C5169.0 (3)C6—C5—C10—C90.6 (4)
C2—C3—C4—O3179.2 (3)C4—C5—C10—C9177.6 (3)
C13—C3—C4—O35.5 (5)C4—O3—C11—C1244.0 (4)
C2—C3—C4—C51.1 (4)O3—C11—C12—C1361.5 (3)
C13—C3—C4—C5174.7 (3)C4—C3—C13—C1212.2 (4)
O3—C4—C5—C100.6 (4)C2—C3—C13—C12161.5 (3)
C3—C4—C5—C10179.6 (3)C4—C3—C13—C14114.3 (3)
O3—C4—C5—C6177.6 (3)C2—C3—C13—C1472.0 (4)
C3—C4—C5—C62.2 (4)C11—C12—C13—C343.4 (3)
C10—C5—C6—C70.3 (4)C11—C12—C13—C1482.9 (3)
C4—C5—C6—C7178.0 (3)C3—C13—C14—C15159.7 (3)
C10—C5—C6—C1179.9 (3)C12—C13—C14—C1576.4 (4)
C4—C5—C6—C11.8 (4)C13—C14—C15—C16177.3 (3)
(Io) 4-propyl-3,4,5,6-tetrahydro-2H-naphtho[1,2-b]pyran-5,6-dione top
Crystal data top
C16H16O3F(000) = 544
Mr = 256.29Dx = 1.319 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3430 reflections
a = 5.2833 (7) Åθ = 2.2–24.1°
b = 6.3043 (8) ŵ = 0.09 mm1
c = 38.753 (6) ÅT = 173 K
V = 1290.8 (3) Å3Plate, orange
Z = 40.19 × 0.18 × 0.03 mm
Data collection top
Stoe IPDSII two-circle
diffractometer
738 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.083
Graphite monochromatorθmax = 24.8°, θmin = 2.1°
ω scansh = 56
8057 measured reflectionsk = 77
1399 independent reflectionsl = 4545
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 0.84 w = 1/[σ2(Fo2) + (0.056P)2]
where P = (Fo2 + 2Fc2)/3
1399 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C16H16O3V = 1290.8 (3) Å3
Mr = 256.29Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.2833 (7) ŵ = 0.09 mm1
b = 6.3043 (8) ÅT = 173 K
c = 38.753 (6) Å0.19 × 0.18 × 0.03 mm
Data collection top
Stoe IPDSII two-circle
diffractometer
738 reflections with I > 2σ(I)
8057 measured reflectionsRint = 0.083
1399 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 0.84Δρmax = 0.24 e Å3
1399 reflectionsΔρmin = 0.17 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3409 (6)0.1794 (5)0.94506 (7)0.0721 (9)
O20.6456 (6)0.2881 (4)0.89158 (7)0.0642 (8)
O30.1459 (5)0.8989 (4)0.87354 (7)0.0586 (7)
C10.2976 (8)0.3442 (7)0.92982 (11)0.0575 (9)
C20.4634 (8)0.4026 (6)0.89841 (10)0.0545 (9)
C30.4033 (7)0.5906 (6)0.87893 (10)0.0526 (9)
C40.2114 (8)0.7162 (6)0.88969 (10)0.0539 (9)
C50.0566 (8)0.6794 (6)0.92057 (10)0.0511 (9)
C60.0949 (7)0.4923 (6)0.93991 (9)0.0513 (9)
C70.0561 (8)0.4499 (6)0.96839 (10)0.0586 (11)
H70.02720.32570.98170.070*
C80.2491 (8)0.5881 (8)0.97754 (10)0.0622 (11)
H80.35480.55710.99670.075*
C90.2870 (8)0.7728 (7)0.95843 (10)0.0587 (10)
H90.41700.86890.96490.070*
C100.1373 (8)0.8170 (7)0.93017 (10)0.0584 (10)
H100.16660.94220.91720.070*
C110.2515 (9)0.9309 (7)0.83961 (10)0.0597 (11)
H11A0.22511.08000.83240.072*
H11B0.16390.83800.82280.072*
C120.5325 (7)0.8810 (7)0.83959 (12)0.0574 (10)
H12A0.62020.97180.85670.069*
H12B0.60460.91090.81650.069*
C130.5732 (8)0.6480 (7)0.84866 (9)0.0553 (10)
H130.75200.63390.85680.066*
C140.5431 (8)0.4985 (7)0.81767 (10)0.0583 (10)
H14A0.51600.35240.82630.070*
H14B0.39050.54050.80450.070*
C150.7692 (9)0.4988 (8)0.79350 (12)0.0768 (12)
H15A0.79470.64470.78470.092*
H15B0.92200.45900.80680.092*
C160.7438 (11)0.3498 (9)0.76303 (12)0.0885 (16)
H16A0.89480.36080.74850.133*
H16B0.59380.38830.74950.133*
H16C0.72640.20380.77140.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.067 (2)0.060 (2)0.0894 (19)0.0047 (17)0.0040 (16)0.0114 (16)
O20.0528 (17)0.0569 (16)0.0830 (18)0.0107 (15)0.0020 (14)0.0022 (15)
O30.0531 (17)0.0498 (16)0.0730 (16)0.0048 (14)0.0008 (13)0.0066 (14)
C10.056 (2)0.044 (2)0.072 (2)0.000 (2)0.007 (2)0.0021 (18)
C20.050 (2)0.044 (2)0.069 (2)0.001 (2)0.0087 (19)0.004 (2)
C30.044 (2)0.046 (2)0.067 (2)0.0007 (17)0.0033 (18)0.0032 (18)
C40.053 (2)0.0410 (19)0.068 (2)0.0023 (19)0.0071 (18)0.0005 (17)
C50.047 (2)0.046 (2)0.061 (2)0.001 (2)0.0093 (17)0.0009 (17)
C60.042 (2)0.047 (2)0.065 (2)0.0017 (17)0.0033 (19)0.0026 (19)
C70.067 (3)0.051 (3)0.0573 (18)0.003 (2)0.009 (2)0.0070 (17)
C80.050 (2)0.064 (3)0.072 (2)0.005 (2)0.001 (2)0.0028 (18)
C90.050 (2)0.062 (2)0.063 (2)0.009 (2)0.0041 (19)0.0051 (19)
C100.053 (2)0.056 (3)0.066 (2)0.000 (2)0.003 (2)0.0003 (19)
C110.069 (3)0.051 (3)0.059 (2)0.004 (2)0.002 (2)0.0085 (16)
C120.0428 (16)0.047 (2)0.082 (2)0.008 (2)0.002 (2)0.003 (2)
C130.041 (2)0.059 (3)0.066 (2)0.003 (2)0.0011 (16)0.0038 (19)
C140.050 (2)0.060 (3)0.065 (2)0.002 (2)0.000 (2)0.001 (2)
C150.066 (3)0.080 (3)0.084 (3)0.001 (3)0.006 (3)0.008 (3)
C160.085 (4)0.091 (4)0.090 (3)0.001 (3)0.016 (3)0.019 (3)
Geometric parameters (Å, º) top
O1—C11.217 (5)C10—H100.9500
O2—C21.232 (5)C11—C121.518 (6)
O3—C41.356 (4)C11—H11A0.9900
O3—C111.443 (5)C11—H11B0.9900
C1—C61.473 (5)C12—C131.525 (6)
C1—C21.544 (6)C12—H12A0.9900
C2—C31.441 (5)C12—H12B0.9900
C3—C41.352 (5)C13—C141.535 (5)
C3—C131.521 (5)C13—H131.0000
C4—C51.467 (5)C14—C151.518 (6)
C5—C101.393 (5)C14—H14A0.9900
C5—C61.412 (5)C14—H14B0.9900
C6—C71.388 (5)C15—C161.515 (6)
C7—C81.387 (6)C15—H15A0.9900
C7—H70.9500C15—H15B0.9900
C8—C91.394 (6)C16—H16A0.9800
C8—H80.9500C16—H16B0.9800
C9—C101.380 (5)C16—H16C0.9800
C9—H90.9500
C4—O3—C11116.2 (3)O3—C11—H11B109.6
O1—C1—C6123.3 (4)C12—C11—H11B109.6
O1—C1—C2118.6 (4)H11A—C11—H11B108.1
C6—C1—C2118.0 (3)C11—C12—C13109.7 (4)
O2—C2—C3122.8 (4)C11—C12—H12A109.7
O2—C2—C1118.2 (4)C13—C12—H12A109.7
C3—C2—C1119.0 (4)C11—C12—H12B109.7
C4—C3—C2119.0 (4)C13—C12—H12B109.7
C4—C3—C13122.8 (4)H12A—C12—H12B108.2
C2—C3—C13118.0 (4)C3—C13—C12108.9 (3)
O3—C4—C3123.1 (4)C3—C13—C14113.4 (3)
O3—C4—C5111.6 (4)C12—C13—C14113.3 (3)
C3—C4—C5125.2 (4)C3—C13—H13107.0
C10—C5—C6118.9 (4)C12—C13—H13107.0
C10—C5—C4122.0 (3)C14—C13—H13107.0
C6—C5—C4119.0 (4)C15—C14—C13113.6 (4)
C7—C6—C5120.0 (4)C15—C14—H14A108.8
C7—C6—C1120.4 (4)C13—C14—H14A108.8
C5—C6—C1119.5 (4)C15—C14—H14B108.8
C8—C7—C6120.3 (4)C13—C14—H14B108.8
C8—C7—H7119.8H14A—C14—H14B107.7
C6—C7—H7119.8C16—C15—C14114.2 (4)
C7—C8—C9119.6 (4)C16—C15—H15A108.7
C7—C8—H8120.2C14—C15—H15A108.7
C9—C8—H8120.2C16—C15—H15B108.7
C10—C9—C8120.5 (4)C14—C15—H15B108.7
C10—C9—H9119.7H15A—C15—H15B107.6
C8—C9—H9119.7C15—C16—H16A109.5
C9—C10—C5120.6 (4)C15—C16—H16B109.5
C9—C10—H10119.7H16A—C16—H16B109.5
C5—C10—H10119.7C15—C16—H16C109.5
O3—C11—C12110.5 (4)H16A—C16—H16C109.5
O3—C11—H11A109.6H16B—C16—H16C109.5
C12—C11—H11A109.6
O1—C1—C2—O25.5 (6)O1—C1—C6—C71.1 (6)
C6—C1—C2—O2174.3 (4)C2—C1—C6—C7178.6 (3)
O1—C1—C2—C3176.1 (4)O1—C1—C6—C5179.5 (4)
C6—C1—C2—C34.1 (5)C2—C1—C6—C50.8 (5)
O2—C2—C3—C4175.1 (4)C5—C6—C7—C81.5 (6)
C1—C2—C3—C43.2 (5)C1—C6—C7—C8179.1 (4)
O2—C2—C3—C130.2 (6)C6—C7—C8—C91.5 (6)
C1—C2—C3—C13178.5 (3)C7—C8—C9—C101.2 (6)
C11—O3—C4—C313.8 (5)C8—C9—C10—C50.9 (6)
C11—O3—C4—C5168.7 (3)C6—C5—C10—C91.0 (6)
C2—C3—C4—O3178.2 (3)C4—C5—C10—C9177.0 (4)
C13—C3—C4—O33.2 (6)C4—O3—C11—C1246.4 (5)
C2—C3—C4—C51.0 (6)O3—C11—C12—C1362.4 (5)
C13—C3—C4—C5174.0 (4)C4—C3—C13—C1213.6 (5)
O3—C4—C5—C102.1 (5)C2—C3—C13—C12161.5 (3)
C3—C4—C5—C10179.5 (4)C4—C3—C13—C14113.5 (4)
O3—C4—C5—C6178.1 (3)C2—C3—C13—C1471.4 (4)
C3—C4—C5—C64.5 (6)C11—C12—C13—C344.3 (5)
C10—C5—C6—C71.2 (5)C11—C12—C13—C1482.9 (5)
C4—C5—C6—C7177.4 (4)C3—C13—C14—C15158.4 (4)
C10—C5—C6—C1179.3 (3)C12—C13—C14—C1576.9 (5)
C4—C5—C6—C13.2 (5)C13—C14—C15—C16179.2 (4)

Experimental details

(Im)(Io)
Crystal data
Chemical formulaC16H16O3C16H16O3
Mr256.29256.29
Crystal system, space groupMonoclinic, P21Orthorhombic, P212121
Temperature (K)173173
a, b, c (Å)6.3201 (7), 5.2972 (8), 19.429 (2)5.2833 (7), 6.3043 (8), 38.753 (6)
α, β, γ (°)90, 95.084 (9), 9090, 90, 90
V3)647.90 (14)1290.8 (3)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.090.09
Crystal size (mm)0.22 × 0.04 × 0.040.19 × 0.18 × 0.03
Data collection
DiffractometerStoe IPDSII two-circle
diffractometer
Stoe IPDSII two-circle
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6418, 1331, 1021 8057, 1399, 738
Rint0.0990.083
(sin θ/λ)max1)0.6050.589
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.087, 0.97 0.046, 0.108, 0.84
No. of reflections13311399
No. of parameters173172
No. of restraints10
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.180.24, 0.17

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 1991), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected torsion angles (º) for (Im) top
C11—O3—C4—C310.8 (4)C4—C3—C13—C1212.2 (4)
C13—C3—C4—O35.5 (5)C11—C12—C13—C343.4 (3)
C4—O3—C11—C1244.0 (4)C13—C14—C15—C16177.3 (3)
O3—C11—C12—C1361.5 (3)
Selected torsion angles (º) for (Io) top
C11—O3—C4—C313.8 (5)C4—C3—C13—C1213.6 (5)
C13—C3—C4—O33.2 (6)C11—C12—C13—C344.3 (5)
C4—O3—C11—C1246.4 (5)C13—C14—C15—C16179.2 (4)
O3—C11—C12—C1362.4 (5)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds