Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Cocrystallization of 2,2'-dithio­dibenzoic acid with isonicotino­hydrazide from methanol solution yields the 1:2 cocrystal 2,2'-dithio­dibenzoic acid-isonicotinohydrazide (1/2), C14H10O4S2·2C6H7N3O. The component mol­ecules are linked by inter­molecular O-H...N, N-H...O, N-H...N and C-H...O hydrogen bonds into layers running parallel to the (010) plane, and these layers are further linked into a three-dimensional framework structure by means of weak aromatic [pi]-[pi] stacking inter­actions. As a potential cocrystallization agent, isonico­tino­hydrazide may be used for effective and versatile synthetic supra­molecular strategies utilizing hydrogen bonding of specific mol­ecular building blocks.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108008925/sk3220sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108008925/sk3220Isup2.hkl
Contains datablock I

CCDC reference: 690189

Comment top

Molecular recognition, a central concept in supramolecular chemistry resulting from a delicate balance of shape, size and functional complementarity, may allow for the assembly of individual entities into complex multi-component aggregates with desirable connectivities and metrics (Steed & Atwood, 2000; Lehn, 1995; Lehn et al., 1996). Although there are a variety of supramolecular interactions from which to choose, the hydrogen-bonded synthon involved the carboxylic acid group remains the most widely used for designing purely organic-based architectures owing to its strength, directionality, specificity and potential for electronic/geometric fine-tuning (Aakeroÿ et al., 2002, 2005, 2006; Aakeroÿ & Salmon, 2005; Braga & Grepioni, 2005; Varaghese & Pedireddi, 2006). 2,2'-Dithiodibenzoic acid (DSDA), possessing two carboxylic acid groups, has been often employed as a bridge ligand in metal coordination chemistry (Murugavel et al., 2001); however, because of its insolubility in water, molecular adducts based on DSDA have been reported for only a few cases to date (Li et al., 2001; Cai et al., 2006; Kang et al., 2002; Hu et al., 2004). With the aim of investigating the structural diversity arising from two hydrogen-bonded R-COOH groups and an N-containing heterocycle in the solid state, we used isonicotinohydrazide (INAH) as the potential cocrystallization agent. We report here the crystal structure of the title compound, (I).

The asymmetric unit of (I) comprises one DSDA and two INAH molecules, which are joined together by the expected carboxylic acid–N(heterocycle) hydrogen bonds (Fig. 1). The dihedral angle between the two benzene rings [76.0 (1)°], the disulfide bridge [2.052 (1) Å] and the average S—C bonds distance [1.782 (3) Å] in DSDA are all comparable to those observed in some analogs [Cambridge Structural Database (Allen, 2002) refcodes ACEYEH, MIPVAI, MUFNIK, WUBHOQ, XEBDEO and XEXFOV {please provide original references for each of these structures}]. According to the definitions of a cocrystal proposed by Aakeröy et al. (2005) [and/or Aakeröy & Salmon, 2005?], (I) can be regarded as the first binary acyl hydrazine-containing cocrystal. In DSDA, the C—O bond lengths in both the carboxylic acid groups [C19—O3 = 1.211 (3) Å, C19—O4 = 1.309 (3) Å, C26—O5 = 1.209 (3) Å and C26—O6 = 1.316 (3) Å] agree well with those tabulated in the International Tables for Crystallography (1992, Vol. C, Table 9.5.1.1, pp. 685–706) for a carboxylic acid group attached to a phenyl ring [1.305 (20) and 1.226 (20) Å]. In the INAH molecules, the C3—N1—C4 and C9—N4—C10 bond angles [117.5 (3) and 116.6 (3)°, respectively] are also consistent with the unprotonated-conformation C—N—C angle of 116.3 (16)° in pyridine molecules (Allen, 2002), although the size of the s.u. values prevents any firm conclusions being drawn from this comparison. Owing to the difference of the basicity of N atoms in pyridine and that in the hydrazine group, INAH may be used as a linker agent in constructing binary or ternary cocrystals.

In the supramolecular structure of (I) (Fig. 2), N—H···N hydrogen bonds link the INAH molecules to form two types of dimers, (IIa) and (IIb). The molecular components are further linked by N—H···O and C—H···O hydrogen bonds into two-dimensional layers, and these adjacent layers are then linked by weak ππ stacking interactions into a three-dimensional framework that can be analyzed in terms of several substructures.

Firstly, INAH molecules are linked by intermolecular N2···O2i, N3···N3ii, N5···N6iv and N6···O1vii hydrogen bonds (symmetry codes as in Table 1) into two-dimensional layers (layers A) running parallel to the (010) plane. These layers comprise four types of centrosymmetric hydrogen-bond motifs, namely R22(4), R22(6), R44(18) and R88(18) (Fig. 2); the reference layer is in the domain -0.380 < y < 0.380. Although the R22(4) motif exists frequently in nature, it has only been discussed in detail in a few reports (Glidewell et al., 1996; Eppel & Bernstein, 2008); the other three motifs are all commonly observed in hydrogen-bonded supramolecular complexes (Bernstein et al., 1995). The two-dimensional layers are further augmented by weak C9—H9···O1vi hydrogen bonds [C···O = 3.292 (4) Å, C—H···O = 140°] and strong ππ stacking interactions between inversion-related N4-containing pyridine fragments. The face-to-face pyridine rings are strictly parallel, with an inter-planar spacing of 3.612 (1) Å, and the ring-centroid separation is 3.707 (1) Å, corresponding to a ring offset of 0.832 (1) Å.

Secondly, DSDA molecules are linked to the INAH molecules by the remaining two strong (O4···N1 and O6···N4) and two weak (N3···O3ii and N6···O5v) hydrogen bonds, expanding the above-mentioned two-dimensional layers into the domain -0.811 < y < 0.811 (denoted layer B); this layer is about two times thicker than layer A (Fig.3). Finally, neighbouring B layers are linked by rather weak ππ stacking interactions between parallel symmetry-related C20–C25 benzene rings, with a centroid-to-centroid distance of 4.298 (2) Å, an interplanar spacing of 3.584 (2) Å and a larger ring offset of 2.372 (1) Å.

In summary, this study provides a foundation for effective and versatile synthetic supramolecular strategies by using INAH molecules as a molecular building block. It should be possible to construct a wide variety of heteromolecular architectures with predetermined connectivities and dimensions.

Related literature top

For related literature, see: Aakeröy & Salmon (2005); Aakeroÿ et al. (2002, 2005); Allen (2002); Allen et al. (1992); Bernstein et al. (1995); Braga & Grepioni (2005); Cai et al. (2006); Eppel & Bernstein (2008); Glidewell et al. (1996); Hu et al. (2004); Kang et al. (2002); Lehn (1995); Lehn et al. (1996); Li et al. (2001); Murugavel et al. (2001); Steed & Atwood (2000); Varaghese & Pedireddi (2006).

Experimental top

All the reagents and solvents were used as obtained without further purification. Equivalent molar amounts of 2,2'-dithiodibenzoic acid (0.1 mmol, 0.0306 g) and isonicotinohydrazide (0.2 mmol, 0.0274 g) were dissolved in 95% methanol (10 ml). The mixture was stirred for 10 min at ambient temperature and then filtered. The resulting light-brown solution was kept in air for two weeks. Plate-like pale-yellow [red according to CIF] crystals of (I) suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation of the solution at the bottom of the vessel (yield 6.8.2 mg, 10%, based on 1:2 cocrystal).

Refinement top

H atoms bonded to C atoms were positioned geometrically (C–H = 0.93 Å) and treated as riding [Uiso(H) = 1.2Ueq(C)]. H atoms bonded to N and O atoms were found in difference maps and the N—H and O—H distances were refined freely [the refined distances are given in Table 1; Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O), respectively].

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the two-dimensional layer formed only by INAH molecules running parallel to the (010) plane. Hydrogen bonds are shown as dashed lines. For clarity, the DSDA molecules and H atoms not involved in the motif have been omitted.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of the (010) two-dimensional layer built up by hydrogen bonds involving both DSDA and INAH molecules. Hydrogen bonds are shown as dashed lines. For clarity, H atoms not involved in the motif have been omitted.
2,2'-dithiodibenzoic acid–isonicotinohydrazide (1/2) top
Crystal data top
C14H10O4S2·2C6H7N3OZ = 2
Mr = 580.63F(000) = 604
Triclinic, P1Dx = 1.462 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8821 (8) ÅCell parameters from 2241 reflections
b = 11.0170 (9) Åθ = 2.4–21.4°
c = 12.2592 (10) ŵ = 0.26 mm1
α = 83.444 (1)°T = 298 K
β = 88.054 (1)°Plate, red
γ = 84.345 (1)°0.10 × 0.06 × 0.04 mm
V = 1319.14 (19) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5145 independent reflections
Radiation source: fine focus sealed Siemens Mo tube3619 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
0.3° wide ω exposures scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1212
Tmin = 0.886, Tmax = 0.990k = 1313
12845 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.062P)2 + 0.1314P]
where P = (Fo2 + 2Fc2)/3
5145 reflections(Δ/σ)max < 0.001
385 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C14H10O4S2·2C6H7N3Oγ = 84.345 (1)°
Mr = 580.63V = 1319.14 (19) Å3
Triclinic, P1Z = 2
a = 9.8821 (8) ÅMo Kα radiation
b = 11.0170 (9) ŵ = 0.26 mm1
c = 12.2592 (10) ÅT = 298 K
α = 83.444 (1)°0.10 × 0.06 × 0.04 mm
β = 88.054 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5145 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
3619 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 0.990Rint = 0.040
12845 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.30 e Å3
5145 reflectionsΔρmin = 0.22 e Å3
385 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1097 (3)0.1583 (2)0.5380 (2)0.0353 (6)
C20.0377 (3)0.1620 (3)0.4392 (2)0.0421 (7)
H20.05310.10830.38860.051*
C30.0569 (3)0.2458 (3)0.4161 (2)0.0475 (8)
H30.10510.24670.34960.057*
C40.0106 (3)0.3232 (3)0.5793 (3)0.0483 (8)
H40.02560.37980.62730.058*
C50.0837 (3)0.2418 (3)0.6090 (2)0.0426 (7)
H50.12980.24260.67630.051*
C60.2102 (3)0.0675 (3)0.5739 (2)0.0409 (7)
N10.0821 (2)0.3255 (2)0.4850 (2)0.0475 (7)
N20.2642 (3)0.0154 (3)0.4958 (2)0.0514 (7)
H2A0.244 (3)0.037 (3)0.431 (3)0.062*
N30.3597 (3)0.0714 (3)0.5175 (3)0.0628 (9)
H3A0.326 (4)0.135 (2)0.555 (3)0.075*
H3B0.421 (3)0.046 (3)0.555 (2)0.075*
O10.2380 (2)0.0435 (2)0.67213 (17)0.0621 (7)
C71.6566 (3)0.0793 (2)0.1208 (2)0.0372 (7)
C81.5404 (3)0.0694 (3)0.1846 (3)0.0493 (8)
H81.54540.02980.25580.059*
C91.4171 (3)0.1179 (3)0.1434 (3)0.0543 (9)
H91.34020.11120.18870.065*
C101.5144 (3)0.1830 (3)0.0202 (3)0.0535 (9)
H101.50630.22200.09140.064*
C111.6411 (3)0.1381 (3)0.0153 (2)0.0475 (8)
H111.71670.14690.03120.057*
N41.4015 (2)0.1739 (2)0.0422 (2)0.0503 (7)
C121.7903 (3)0.0284 (3)0.1687 (2)0.0399 (7)
N51.8966 (3)0.0221 (2)0.0996 (2)0.0465 (7)
H5A1.886 (3)0.038 (3)0.029 (3)0.056*
N62.0265 (3)0.0290 (3)0.1353 (2)0.0567 (7)
H6A2.055 (3)0.073 (2)0.1978 (16)0.068*
H6B2.063 (3)0.0379 (13)0.139 (2)0.068*
O21.8005 (2)0.0061 (2)0.26723 (16)0.0554 (6)
C130.4765 (3)0.5258 (2)0.3540 (2)0.0332 (6)
C140.5966 (3)0.4930 (2)0.2951 (2)0.0341 (6)
C150.6845 (3)0.5827 (3)0.2644 (2)0.0422 (7)
H150.76430.56260.22530.051*
C160.6554 (3)0.7004 (3)0.2908 (3)0.0494 (8)
H160.71500.75930.26880.059*
C170.5384 (3)0.7318 (3)0.3498 (3)0.0523 (8)
H170.51930.81120.36860.063*
C180.4507 (3)0.6443 (3)0.3803 (2)0.0431 (7)
H180.37160.66550.41990.052*
C190.3751 (3)0.4353 (3)0.3851 (2)0.0370 (7)
C200.9415 (3)0.3499 (3)0.0036 (2)0.0362 (7)
C210.8277 (3)0.3781 (2)0.0644 (2)0.0354 (7)
C220.7142 (3)0.4466 (3)0.0174 (2)0.0461 (8)
H220.63810.46510.06140.055*
C230.7128 (3)0.4875 (3)0.0929 (3)0.0539 (9)
H230.63690.53510.12240.065*
C240.8230 (4)0.4582 (3)0.1597 (3)0.0596 (9)
H240.82110.48420.23460.072*
C250.9349 (3)0.3908 (3)0.1152 (2)0.0493 (8)
H251.00920.37160.16080.059*
C261.0681 (3)0.2813 (3)0.0411 (2)0.0400 (7)
O30.3859 (2)0.3334 (2)0.35568 (18)0.0527 (6)
O40.2723 (2)0.4780 (2)0.44413 (17)0.0497 (6)
H4A0.206 (4)0.418 (3)0.464 (3)0.075*
O51.0847 (2)0.2491 (2)0.13772 (17)0.0538 (6)
O61.1615 (2)0.2591 (2)0.03501 (18)0.0580 (6)
H61.243 (4)0.233 (4)0.001 (3)0.087*
S10.63294 (8)0.33963 (7)0.26177 (6)0.0447 (2)
S20.83205 (8)0.32746 (7)0.20758 (6)0.0448 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0281 (15)0.0398 (16)0.0363 (15)0.0000 (13)0.0009 (12)0.0003 (12)
C20.0394 (17)0.0509 (19)0.0362 (16)0.0047 (15)0.0025 (13)0.0059 (13)
C30.0419 (18)0.066 (2)0.0331 (16)0.0054 (16)0.0065 (13)0.0033 (15)
C40.0398 (18)0.057 (2)0.0508 (19)0.0085 (15)0.0020 (15)0.0138 (15)
C50.0348 (17)0.059 (2)0.0350 (16)0.0063 (15)0.0063 (12)0.0091 (14)
C60.0379 (17)0.0455 (18)0.0373 (17)0.0010 (14)0.0015 (13)0.0013 (14)
N10.0345 (15)0.0600 (17)0.0476 (16)0.0091 (13)0.0039 (12)0.0011 (13)
N20.0495 (17)0.0640 (19)0.0430 (15)0.0209 (14)0.0018 (13)0.0023 (14)
N30.053 (2)0.059 (2)0.078 (2)0.0191 (16)0.0011 (16)0.0041 (16)
O10.0717 (17)0.0755 (17)0.0407 (13)0.0269 (13)0.0135 (11)0.0011 (11)
C70.0401 (17)0.0372 (16)0.0360 (16)0.0070 (13)0.0037 (13)0.0097 (12)
C80.046 (2)0.058 (2)0.0437 (18)0.0086 (16)0.0073 (15)0.0014 (15)
C90.043 (2)0.069 (2)0.052 (2)0.0119 (17)0.0127 (16)0.0071 (17)
C100.0402 (19)0.072 (2)0.0449 (19)0.0004 (17)0.0037 (15)0.0007 (16)
C110.0349 (18)0.067 (2)0.0397 (17)0.0026 (15)0.0062 (13)0.0047 (15)
N40.0317 (15)0.0610 (18)0.0584 (17)0.0032 (13)0.0022 (12)0.0097 (14)
C120.0436 (18)0.0412 (17)0.0358 (17)0.0046 (14)0.0005 (14)0.0076 (13)
N50.0383 (15)0.0621 (18)0.0368 (14)0.0059 (13)0.0048 (12)0.0034 (13)
N60.0417 (17)0.076 (2)0.0469 (16)0.0155 (15)0.0081 (13)0.0024 (14)
O20.0623 (15)0.0667 (15)0.0353 (12)0.0039 (12)0.0011 (10)0.0013 (10)
C130.0322 (16)0.0379 (16)0.0290 (14)0.0030 (12)0.0035 (11)0.0016 (12)
C140.0336 (16)0.0399 (16)0.0289 (14)0.0066 (13)0.0004 (12)0.0021 (12)
C150.0408 (18)0.0468 (19)0.0399 (17)0.0126 (14)0.0033 (13)0.0025 (14)
C160.050 (2)0.044 (2)0.055 (2)0.0193 (16)0.0050 (16)0.0002 (15)
C170.056 (2)0.0419 (19)0.061 (2)0.0073 (16)0.0038 (17)0.0120 (16)
C180.0399 (18)0.0451 (19)0.0445 (17)0.0010 (14)0.0032 (13)0.0081 (14)
C190.0305 (16)0.0481 (19)0.0313 (15)0.0035 (14)0.0018 (12)0.0002 (13)
C200.0315 (16)0.0415 (17)0.0363 (16)0.0061 (13)0.0021 (12)0.0060 (12)
C210.0317 (16)0.0378 (16)0.0374 (16)0.0050 (13)0.0003 (12)0.0066 (12)
C220.0375 (18)0.0520 (19)0.0467 (19)0.0040 (15)0.0014 (14)0.0041 (15)
C230.046 (2)0.066 (2)0.047 (2)0.0090 (17)0.0104 (16)0.0024 (16)
C240.058 (2)0.089 (3)0.0292 (17)0.001 (2)0.0051 (15)0.0017 (17)
C250.0390 (18)0.072 (2)0.0373 (17)0.0065 (16)0.0071 (14)0.0084 (15)
C260.0323 (17)0.0470 (18)0.0428 (18)0.0099 (14)0.0032 (13)0.0100 (14)
O30.0491 (14)0.0483 (14)0.0633 (14)0.0171 (11)0.0181 (11)0.0129 (11)
O40.0364 (12)0.0570 (14)0.0558 (14)0.0081 (10)0.0146 (10)0.0075 (11)
O50.0403 (13)0.0760 (16)0.0409 (13)0.0067 (11)0.0023 (10)0.0002 (11)
O60.0344 (13)0.0898 (18)0.0473 (13)0.0066 (12)0.0070 (10)0.0099 (12)
S10.0433 (5)0.0398 (5)0.0507 (5)0.0061 (3)0.0142 (4)0.0066 (3)
S20.0388 (4)0.0557 (5)0.0359 (4)0.0054 (4)0.0052 (3)0.0019 (3)
Geometric parameters (Å, º) top
C1—C21.382 (4)N6—H6B0.86 (2)
C1—C51.384 (4)C13—C181.378 (4)
C1—C61.498 (4)C13—C141.407 (4)
C2—C31.377 (4)C13—C191.493 (4)
C2—H20.9300C14—C151.390 (4)
C3—N11.332 (4)C14—S11.783 (3)
C3—H30.9300C15—C161.373 (4)
C4—N11.332 (4)C15—H150.9300
C4—C51.368 (4)C16—C171.378 (4)
C4—H40.9300C16—H160.9300
C5—H50.9300C17—C181.372 (4)
C6—O11.231 (3)C17—H170.9300
C6—N21.323 (4)C18—H180.9300
N2—N31.407 (4)C19—O31.211 (3)
N2—H2A0.82 (3)C19—O41.309 (3)
N3—H3A0.843 (18)C20—C251.393 (4)
N3—H3B0.80 (3)C20—C211.408 (4)
C7—C81.374 (4)C20—C261.484 (4)
C7—C111.384 (4)C21—C221.392 (4)
C7—C121.496 (4)C21—S21.781 (3)
C8—C91.370 (4)C22—C231.376 (4)
C8—H80.9300C22—H220.9300
C9—N41.327 (4)C23—C241.376 (4)
C9—H90.9300C23—H230.9300
C10—N41.337 (4)C24—C251.364 (4)
C10—C111.367 (4)C24—H240.9300
C10—H100.9300C25—H250.9300
C11—H110.9300C26—O51.209 (3)
C12—O21.229 (3)C26—O61.316 (3)
C12—N51.328 (4)O4—H4A0.98 (4)
N5—N61.413 (4)O6—H60.93 (4)
N5—H5A0.87 (3)S1—S22.0519 (11)
N6—H6A0.90 (2)
C2—C1—C5117.4 (3)N5—N6—H6B99 (2)
C2—C1—C6124.2 (3)H6A—N6—H6B101.2 (13)
C5—C1—C6118.4 (2)C18—C13—C14119.3 (2)
C1—C2—C3119.6 (3)C18—C13—C19119.8 (3)
C1—C2—H2120.2C14—C13—C19120.9 (2)
C3—C2—H2120.2C15—C14—C13118.3 (3)
N1—C3—C2122.8 (3)C15—C14—S1121.7 (2)
N1—C3—H3118.6C13—C14—S1119.9 (2)
C2—C3—H3118.6C16—C15—C14121.1 (3)
N1—C4—C5123.3 (3)C16—C15—H15119.5
N1—C4—H4118.3C14—C15—H15119.5
C5—C4—H4118.3C15—C16—C17120.4 (3)
C4—C5—C1119.4 (3)C15—C16—H16119.8
C4—C5—H5120.3C17—C16—H16119.8
C1—C5—H5120.3C18—C17—C16119.1 (3)
O1—C6—N2123.0 (3)C18—C17—H17120.5
O1—C6—C1120.1 (3)C16—C17—H17120.5
N2—C6—C1116.9 (3)C17—C18—C13121.8 (3)
C3—N1—C4117.5 (3)C17—C18—H18119.1
C6—N2—N3123.0 (3)C13—C18—H18119.1
C6—N2—H2A119 (2)O3—C19—O4123.6 (3)
N3—N2—H2A118 (2)O3—C19—C13122.9 (3)
N2—N3—H3A111 (3)O4—C19—C13113.4 (3)
N2—N3—H3B111 (3)C25—C20—C21118.5 (3)
H3A—N3—H3B104 (3)C25—C20—C26119.7 (3)
C8—C7—C11116.8 (3)C21—C20—C26121.8 (2)
C8—C7—C12118.9 (3)C22—C21—C20118.6 (3)
C11—C7—C12124.3 (3)C22—C21—S2121.5 (2)
C9—C8—C7119.9 (3)C20—C21—S2119.9 (2)
C9—C8—H8120.0C23—C22—C21121.1 (3)
C7—C8—H8120.0C23—C22—H22119.4
N4—C9—C8123.6 (3)C21—C22—H22119.4
N4—C9—H9118.2C22—C23—C24120.3 (3)
C8—C9—H9118.2C22—C23—H23119.9
N4—C10—C11123.3 (3)C24—C23—H23119.9
N4—C10—H10118.3C25—C24—C23119.4 (3)
C11—C10—H10118.3C25—C24—H24120.3
C10—C11—C7119.8 (3)C23—C24—H24120.3
C10—C11—H11120.1C24—C25—C20122.0 (3)
C7—C11—H11120.1C24—C25—H25119.0
C9—N4—C10116.6 (3)C20—C25—H25119.0
O2—C12—N5122.0 (3)O5—C26—O6123.0 (3)
O2—C12—C7121.2 (3)O5—C26—C20123.7 (3)
N5—C12—C7116.8 (3)O6—C26—C20113.3 (3)
C12—N5—N6121.5 (3)C19—O4—H4A113 (2)
C12—N5—H5A121 (2)C26—O6—H6109 (2)
N6—N5—H5A117 (2)C14—S1—S2105.38 (9)
N5—N6—H6A133 (2)C21—S2—S1105.62 (10)
C5—C1—C2—C31.0 (4)C13—C14—C15—C160.1 (4)
C6—C1—C2—C3177.1 (3)S1—C14—C15—C16179.8 (2)
C1—C2—C3—N10.6 (5)C14—C15—C16—C170.7 (5)
N1—C4—C5—C11.3 (5)C15—C16—C17—C180.9 (5)
C2—C1—C5—C40.1 (4)C16—C17—C18—C130.2 (5)
C6—C1—C5—C4178.1 (3)C14—C13—C18—C170.6 (4)
C2—C1—C6—O1157.2 (3)C19—C13—C18—C17177.5 (3)
C5—C1—C6—O120.9 (4)C18—C13—C19—O3173.1 (3)
C2—C1—C6—N222.0 (4)C14—C13—C19—O35.0 (4)
C5—C1—C6—N2160.0 (3)C18—C13—C19—O45.1 (4)
C2—C3—N1—C40.7 (5)C14—C13—C19—O4176.8 (2)
C5—C4—N1—C31.7 (5)C25—C20—C21—C220.6 (4)
O1—C6—N2—N30.8 (5)C26—C20—C21—C22177.7 (3)
C1—C6—N2—N3180.0 (3)C25—C20—C21—S2180.0 (2)
C11—C7—C8—C90.8 (4)C26—C20—C21—S21.7 (4)
C12—C7—C8—C9178.5 (3)C20—C21—C22—C230.7 (4)
C7—C8—C9—N41.1 (5)S2—C21—C22—C23178.7 (2)
N4—C10—C11—C70.1 (5)C21—C22—C23—C241.8 (5)
C8—C7—C11—C100.2 (4)C22—C23—C24—C251.6 (5)
C12—C7—C11—C10179.1 (3)C23—C24—C25—C200.2 (5)
C8—C9—N4—C100.8 (5)C21—C20—C25—C240.9 (5)
C11—C10—N4—C90.1 (5)C26—C20—C25—C24177.5 (3)
C8—C7—C12—O210.3 (4)C25—C20—C26—O5175.4 (3)
C11—C7—C12—O2169.0 (3)C21—C20—C26—O52.9 (4)
C8—C7—C12—N5169.5 (3)C25—C20—C26—O64.3 (4)
C11—C7—C12—N511.2 (4)C21—C20—C26—O6177.4 (2)
O2—C12—N5—N62.3 (5)C15—C14—S1—S211.8 (2)
C7—C12—N5—N6177.4 (2)C13—C14—S1—S2168.14 (19)
C18—C13—C14—C150.8 (4)C22—C21—S2—S118.2 (3)
C19—C13—C14—C15177.3 (2)C20—C21—S2—S1162.45 (19)
C18—C13—C14—S1179.1 (2)C14—S1—S2—C2187.08 (13)
C19—C13—C14—S12.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.82 (3)2.14 (3)2.884 (3)150 (3)
N3—H3A···O3ii0.84 (2)2.44 (3)3.148 (4)142 (3)
N3—H3B···N3iii0.80 (3)2.55 (2)3.068 (7)125 (2)
N5—H5A···N6iv0.87 (3)2.18 (3)2.947 (4)148 (3)
N6—H6B···O5v0.86 (2)2.36 (1)3.177 (4)160 (3)
C9—H9···O1vi0.932.533.292 (4)140
N6—H6A···O1vii0.90 (2)2.52 (2)3.187 (3)131 (2)
O4—H4A···N10.98 (4)1.66 (4)2.642 (3)174 (3)
O6—H6···N40.93 (4)1.71 (4)2.629 (3)171 (4)
C15—H15···S20.932.643.176 (3)117
C22—H22···S10.932.683.197 (3)116
Symmetry codes: (i) x2, y, z; (ii) x, y, z+1; (iii) x1, y, z+1; (iv) x+4, y, z; (v) x+1, y, z; (vi) x+1, y, z+1; (vii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC14H10O4S2·2C6H7N3O
Mr580.63
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.8821 (8), 11.0170 (9), 12.2592 (10)
α, β, γ (°)83.444 (1), 88.054 (1), 84.345 (1)
V3)1319.14 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.10 × 0.06 × 0.04
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.886, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
12845, 5145, 3619
Rint0.040
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.137, 1.05
No. of reflections5145
No. of parameters385
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.22

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.82 (3)2.14 (3)2.884 (3)150 (3)
N3—H3A···O3ii0.843 (18)2.44 (3)3.148 (4)142 (3)
N3—H3B···N3iii0.80 (3)2.545 (15)3.068 (7)124.5 (18)
N5—H5A···N6iv0.87 (3)2.18 (3)2.947 (4)148 (3)
N6—H6B···O5v0.86 (2)2.356 (12)3.177 (4)160 (3)
C9—H9···O1vi0.932.533.292 (4)140
N6—H6A···O1vii0.90 (2)2.520 (16)3.187 (3)131.3 (16)
O4—H4A···N10.98 (4)1.66 (4)2.642 (3)174 (3)
O6—H6···N40.93 (4)1.71 (4)2.629 (3)171 (4)
C15—H15···S20.932.643.176 (3)117
C22—H22···S10.932.683.197 (3)116
Symmetry codes: (i) x2, y, z; (ii) x, y, z+1; (iii) x1, y, z+1; (iv) x+4, y, z; (v) x+1, y, z; (vi) x+1, y, z+1; (vii) x+2, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds