Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title carbazolyl boronic ester, C22H28BNO2, (I), is a building block for the synthesis of new carbazole derivatives of potential utility as pharmaceutically active compounds. The crystal structure of (I) and of the title bromo­carbazole com­pound, C16H16BrN, (II), the synthetic precursor of (I), were solved and analysed with the aim of understanding the lack of reactivity of (I) under Suzuki cross-coupling reaction conditions. In both structures, the methyl groups are coplanar with the carbazole ring system, and the ethyl group lies out of the carbazole plane. The dioxaborolane ring of boronic ester (I) adopts a half-chair conformation but lies approximately in a planar orientation with respect of the carbazole ring system, whereas the Br atom of (II) is coplanar with the carbazole plane. In (I), the carbazole-boronic ester C-B bond length is 1.5435 (14) Å, which is somewhat shorter than the usual value of 1.57 Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108020593/sk3248sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108020593/sk3248Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108020593/sk3248IIsup3.hkl
Contains datablock II

CCDC references: 700036; 700037

Comment top

Ellipticine (5,11-dimethyl-6H-pyrido[4,3-b]carbazole) is a well known alkaloid with antitumor properties, acting as a DNA intercalating agent and inhibiting the activity of topoisomerase II. Many structural modifications of the original molecule have been designed in order to obtain derivatives with a better pharmacological profile. In particular, 9-hydroxyellipticine, Celiptium, has been shown to possess a higher DNA affinity than ellipticine itself, measured on L1210 mice leukaemia, and a lack of toxicity at therapeutic doses (Le Pecq et al., 1974; Searle et al., 1984; Poljakova et al., 2007; Ho & Hsieh, 2006).

We have described recently a general method for the synthesis of 9-alkyl-1,4-dimethyl-6- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazoles starting from 6-bromo-9-alkyl-1,4-dimethyl-9H-carbazole (Caruso et al., 2007). Using the similar synthesis pathway we were able to prepare 9-ethyl-1,4-dimethyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -9H-carbazole, (I), from 6-bromo-1,4-dimethyl-9H-carbazole, with 6-bromo-9-ethyl-1,4-dimethyl-9H-carbazole, (II), as intermediate product. The crystal structures of the final product (I) and the intermediate (II) are described in this article. The boronic acids and esters constitute very interesting and reactive intermediates for the preparation of various compounds; for example they can be used in metal-catalyzed reactions of the Suzuki type (Suzuki, 1999; Gérard et al., 2006). Metallo-catalysed cross-coupling chemistry has considerably upset the existing medicinal chemistry strategies, making the majority of classical synthetic pathways obsolete. This generally convergent strategy, which is the source of great diversity, makes possible the synthesis of a wide range of chemical libraries starting from a few valuable scaffolds. In this context, we are interested in the production of boronic compounds which are directly carriers of a potent therapeutic skeleton and have cancerology applications (de Koning et al., 2000). However, the title boronic ester has a lower activity than expected, and we undertaken the crystal structure analysis of (I) and (II) to find an explanation.

Figs. 1 and 2 show views of the molecules of (I) and (II), respectively. The asymmetric unit of (I) contains one molecule and that of (II) contains two molecules.

Structure analysis showed that the carbazole cycle is planar in both compounds. The methyl substituents are positioned coplanar with respect to the aromatic rings. In both structures, the ethyl group takes the same conformation: it lies out of the carbazole plane. The dihedral angle (C9A—N9—C10—C11) between the carbazole plane and the plane formed by the ethyl C and carbazole N atoms is -69.9 (1)° in (I) and thus the ethyl group is oriented `downwards' with respect to the carbazole plane. In (II), the dihedral angles are 96.2 (3) and 93.7 (3)°: the ethyl group is oriented `upwards' with respect to the carbazole ring system.

The dioxaborolane ring of (I) is in a half-chair conformation, with an O1—C14—C15—O2 torsion angle of 30.80 (9)°. The BO2 group is rotated away from the plane of the carbazole ring system by 10.90 (5)°, and the angle between the diaxoborolane ring and the carbazole plane is 16.85 (4)°. The bond length between the carbazole ring and the dioxaborolane ring is 1.5435 (14) Å, which is smaller than usual (1.57 Å; Hall, 2005). Thus, it seems that the boron electron deficiency pumps the π electrons from the carbazole ring system, and this could be a reason for the lower reactivity of (I).

In the crystal packing of (I), the carbazole ring systems stack in parallel planes, forming columns in the b-axis direction. The interplanar spacing is between 3.50 and 3.54 Å. The stacking appears to be the principal interaction in the crystal packing. [There is some repetition in these last two paragraphs; is the spacing actually the same in both compounds or should this first paragraph be omitted? If it is to be retained the wording in the following paragraph should be altered to avoid repetition.]

In (II), the carbazole ring systems stack in parallel planes, forming columns in the b-axis direction. The interplanar spacing is 3.50–3.54 Å. Columns in the b-axis direction are also formed in (I). However, in this case, each second ring in the column is slipped (in the a direction) and the planes of neighbouring carbazole ring systems in the columns are twisted; the angle formed between the planes is about 37°.

Related literature top

For related literature, see: Caruso et al. (2007); Gérard et al. (2006); Hall (2005); Ho & Hsieh (2006); Koning et al. (2000); Le Pecq, Xuong, Gosse & Paoletti (1974); Poljakova et al. (2007); Searle et al. (1984); Suzuki (1999).

Experimental top

6-Bromo-1,4-dimethyl-9H-carbazole was prepared by the reaction of 5-bromoindole with hexane-2,4-dione in the presence of p-toluenesulphonic acid. 6-Bromo-1,4-dimethyl-9H-carbazole was N-ethylated by iodoethane/sodium hydride under standard conditions to give (II). Lithiation–boronation of this intermediate, at very low temperature [specify temeperature?], using n-BuLi, triisopropyl borate and pinacol gave (II) after a typical hydrolytic work-up. Transparent crystals of (I) and (II) suitable for X-ray analysis were grown from an acetonitrile solution at room temperature. [Please specify quantities of reagents throughout.]

Refinement top

The Flack parameter for (II) was determined with a BASF/TWIN refinement. For (I), all H atoms were located via a difference Fourier map and refined with isotropic atomic displacement parameters [C—H = 0.948 (17)–1.031 (16) Å]. For (II), H atoms were placed in calculated positions and treated as riding on the parent atoms in the ideal geometry (C—H = 0.93–0.97 Å).

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the labelling of the non-H atoms. Displacement ellipsoids are shown at the 50% probability levels; H atoms are drawn as small circles of arbitrary radii.
[Figure 2] Fig. 2. One of the two molecules of the asymmetric unit of (II), showing the labelling of the non-H atoms. Displacement ellipsoids are shown at the 50% probability levels; H atoms are drawn as small circles of arbitrary radiius.
(I) 9-Ethyl-1,4-dimethyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)- 9H-carbazole top
Crystal data top
C22H28BNO2F(000) = 752
Mr = 349.26Dx = 1.183 Mg m3
Monoclinic, P21/cMelting point: 415 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.6357 (3) ÅCell parameters from 9716 reflections
b = 8.1068 (3) Åθ = 2.4–34.7°
c = 28.2057 (9) ŵ = 0.07 mm1
β = 96.673 (2)°T = 150 K
V = 1961.24 (12) Å3Plate, colourless
Z = 40.51 × 0.36 × 0.35 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6728 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.048
Graphite monochromatorθmax = 34.9°, θmin = 2.6°
phi and ω scansh = 1313
96221 measured reflectionsk = 1213
8529 independent reflectionsl = 4445
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.068P)2 + 0.5909P]
where P = (Fo2 + 2Fc2)/3
8529 reflections(Δ/σ)max < 0.001
347 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C22H28BNO2V = 1961.24 (12) Å3
Mr = 349.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6357 (3) ŵ = 0.07 mm1
b = 8.1068 (3) ÅT = 150 K
c = 28.2057 (9) Å0.51 × 0.36 × 0.35 mm
β = 96.673 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6728 reflections with I > 2σ(I)
96221 measured reflectionsRint = 0.048
8529 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.143All H-atom parameters refined
S = 1.08Δρmax = 0.59 e Å3
8529 reflectionsΔρmin = 0.29 e Å3
347 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C60.35498 (10)0.80818 (11)0.10426 (3)0.01580 (15)
C70.24194 (11)0.86419 (12)0.13295 (3)0.01723 (16)
H70.1380 (17)0.8936 (19)0.1176 (5)0.028 (4)*
C80.27233 (10)0.87927 (12)0.18199 (3)0.01641 (16)
H80.1907 (16)0.9200 (19)0.2010 (5)0.024 (3)*
C8A0.42282 (10)0.84174 (11)0.20297 (3)0.01377 (15)
N90.48382 (9)0.85695 (10)0.25028 (3)0.01475 (14)
C9A0.64091 (10)0.81134 (11)0.25445 (3)0.01404 (15)
C10.75276 (11)0.81416 (11)0.29491 (3)0.01651 (16)
C20.90150 (11)0.76301 (12)0.28726 (4)0.01898 (17)
H20.9851 (17)0.7638 (18)0.3151 (5)0.023 (3)*
C30.94038 (11)0.71291 (12)0.24271 (4)0.01873 (17)
H31.0473 (18)0.6738 (19)0.2392 (5)0.026 (4)*
C40.83144 (10)0.71556 (11)0.20249 (3)0.01559 (15)
C4A0.67993 (10)0.76710 (10)0.20872 (3)0.01342 (14)
C4B0.54021 (10)0.78717 (10)0.17550 (3)0.01340 (14)
C50.50407 (10)0.76893 (11)0.12620 (3)0.01498 (15)
H50.5835 (17)0.7298 (18)0.1061 (5)0.021 (3)*
C100.38311 (11)0.86188 (11)0.28845 (3)0.01520 (15)
H10A0.2875 (15)0.9180 (17)0.2753 (4)0.015 (3)*
H10B0.4342 (15)0.9303 (17)0.3142 (5)0.018 (3)*
C110.34604 (11)0.69040 (12)0.30542 (3)0.01821 (17)
H11A0.3019 (17)0.6226 (19)0.2786 (5)0.025 (4)*
H11B0.4391 (17)0.6366 (18)0.3214 (5)0.024 (3)*
H11C0.2677 (17)0.6978 (18)0.3282 (5)0.025 (4)*
C120.87335 (11)0.66028 (13)0.15478 (4)0.02052 (18)
H12A0.8595 (18)0.7489 (19)0.1319 (6)0.029 (4)*
H12B0.8066 (17)0.5649 (19)0.1428 (5)0.028 (4)*
H12C0.9835 (17)0.6243 (19)0.1570 (5)0.026 (4)*
C130.72279 (12)0.87230 (15)0.34370 (4)0.0233 (2)
H13A0.6832 (18)0.985 (2)0.3427 (5)0.031 (4)*
H13B0.8215 (19)0.872 (2)0.3659 (6)0.032 (4)*
H13C0.6527 (19)0.7996 (19)0.3575 (6)0.030 (4)*
B10.31304 (12)0.78903 (13)0.04984 (4)0.01688 (18)
O20.17617 (8)0.84516 (9)0.02549 (2)0.01970 (14)
O10.40869 (8)0.71309 (10)0.02090 (2)0.02022 (14)
C140.31605 (12)0.68979 (14)0.02529 (3)0.02069 (18)
C150.19294 (12)0.83023 (13)0.02531 (3)0.01973 (18)
C160.42376 (15)0.70069 (19)0.06399 (4)0.0317 (3)
H16A0.477 (2)0.803 (2)0.0619 (6)0.035 (4)*
H16B0.497 (2)0.604 (2)0.0612 (6)0.043 (5)*
H16C0.364 (2)0.696 (2)0.0959 (7)0.046 (5)*
C170.24447 (14)0.51831 (15)0.02465 (4)0.0273 (2)
H17A0.1744 (18)0.510 (2)0.0011 (5)0.033 (4)*
H17B0.1794 (18)0.493 (2)0.0558 (6)0.031 (4)*
H17C0.3281 (19)0.436 (2)0.0189 (6)0.036 (4)*
C180.03524 (13)0.79172 (16)0.05233 (4)0.0272 (2)
H18A0.0093 (18)0.693 (2)0.0394 (6)0.031 (4)*
H18B0.044 (2)0.771 (2)0.0879 (6)0.037 (4)*
H18C0.0316 (19)0.885 (2)0.0506 (6)0.033 (4)*
C190.25054 (15)0.99612 (16)0.04130 (4)0.0297 (2)
H19A0.356 (2)1.023 (2)0.0237 (6)0.041 (4)*
H19B0.2639 (19)0.992 (2)0.0771 (6)0.040 (4)*
H19C0.1754 (19)1.082 (2)0.0352 (6)0.033 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C60.0156 (4)0.0168 (4)0.0149 (3)0.0006 (3)0.0014 (3)0.0016 (3)
C70.0148 (4)0.0196 (4)0.0171 (4)0.0024 (3)0.0012 (3)0.0027 (3)
C80.0140 (3)0.0185 (4)0.0169 (4)0.0029 (3)0.0026 (3)0.0010 (3)
C8A0.0141 (3)0.0133 (3)0.0139 (3)0.0001 (3)0.0017 (3)0.0005 (3)
N90.0141 (3)0.0165 (3)0.0137 (3)0.0014 (2)0.0019 (2)0.0002 (2)
C9A0.0134 (3)0.0121 (3)0.0163 (3)0.0006 (3)0.0007 (3)0.0005 (3)
C10.0163 (4)0.0158 (4)0.0169 (4)0.0016 (3)0.0003 (3)0.0002 (3)
C20.0148 (4)0.0209 (4)0.0204 (4)0.0018 (3)0.0015 (3)0.0012 (3)
C30.0124 (3)0.0211 (4)0.0223 (4)0.0010 (3)0.0006 (3)0.0018 (3)
C40.0127 (3)0.0147 (4)0.0195 (4)0.0012 (3)0.0023 (3)0.0009 (3)
C4A0.0130 (3)0.0113 (3)0.0159 (3)0.0008 (3)0.0014 (3)0.0006 (3)
C4B0.0128 (3)0.0122 (3)0.0152 (3)0.0001 (3)0.0018 (3)0.0009 (3)
C50.0146 (3)0.0149 (4)0.0156 (3)0.0002 (3)0.0025 (3)0.0007 (3)
C100.0169 (4)0.0135 (3)0.0156 (3)0.0019 (3)0.0034 (3)0.0016 (3)
C110.0194 (4)0.0162 (4)0.0194 (4)0.0007 (3)0.0042 (3)0.0001 (3)
C120.0159 (4)0.0246 (5)0.0219 (4)0.0016 (3)0.0056 (3)0.0001 (4)
C130.0218 (4)0.0302 (5)0.0171 (4)0.0004 (4)0.0012 (3)0.0041 (4)
B10.0159 (4)0.0195 (4)0.0150 (4)0.0004 (3)0.0010 (3)0.0025 (3)
O20.0182 (3)0.0255 (3)0.0149 (3)0.0045 (3)0.0000 (2)0.0017 (2)
O10.0169 (3)0.0298 (4)0.0137 (3)0.0040 (3)0.0003 (2)0.0006 (3)
C140.0199 (4)0.0290 (5)0.0128 (3)0.0029 (4)0.0004 (3)0.0007 (3)
C150.0200 (4)0.0247 (4)0.0138 (4)0.0012 (3)0.0009 (3)0.0033 (3)
C160.0284 (5)0.0500 (8)0.0175 (4)0.0055 (5)0.0063 (4)0.0021 (5)
C170.0314 (5)0.0260 (5)0.0238 (5)0.0023 (4)0.0003 (4)0.0032 (4)
C180.0221 (5)0.0356 (6)0.0220 (5)0.0021 (4)0.0051 (4)0.0022 (4)
C190.0351 (6)0.0281 (5)0.0251 (5)0.0026 (5)0.0004 (4)0.0089 (4)
Geometric parameters (Å, º) top
C6—C51.3987 (13)C11—H11C0.988 (15)
C6—C71.4132 (13)C12—H12A0.964 (16)
C6—B11.5435 (14)C12—H12B1.000 (15)
C7—C81.3832 (13)C12—H12C0.990 (15)
C7—H70.979 (15)C13—H13A0.977 (16)
C8—C8A1.3975 (12)C13—H13B0.998 (16)
C8—H80.991 (14)C13—H13C0.959 (16)
C8A—N91.3820 (11)B1—O11.3725 (13)
C8A—C4B1.4163 (12)B1—O21.3738 (12)
N9—C9A1.3978 (11)O2—C151.4617 (12)
N9—C101.4612 (11)O1—C141.4599 (12)
C9A—C11.4071 (12)C14—C161.5167 (15)
C9A—C4A1.4165 (12)C14—C171.5223 (16)
C1—C21.3903 (13)C14—C151.5576 (14)
C1—C131.5051 (14)C15—C181.5139 (15)
C2—C31.3981 (14)C15—C191.5204 (16)
C2—H21.003 (15)C16—H16A0.948 (17)
C3—C41.3873 (13)C16—H16B1.006 (18)
C3—H30.993 (15)C16—H16C0.985 (19)
C4—C4A1.4038 (12)C17—H17A1.000 (15)
C4—C121.5021 (14)C17—H17B1.006 (16)
C4A—C4B1.4483 (12)C17—H17C0.985 (17)
C4B—C51.3973 (12)C18—H18A0.979 (16)
C5—H50.991 (14)C18—H18B1.029 (17)
C10—C111.5164 (13)C18—H18C0.954 (17)
C10—H10A0.977 (13)C19—H19A1.010 (17)
C10—H10B0.976 (14)C19—H19B1.031 (16)
C11—H11A0.975 (15)C19—H19C0.979 (17)
C11—H11B0.977 (15)
C5—C6—C7118.78 (8)C4—C12—H12B110.1 (9)
C5—C6—B1120.97 (8)H12A—C12—H12B109.2 (13)
C7—C6—B1120.25 (8)C4—C12—H12C111.2 (8)
C8—C7—C6122.52 (8)H12A—C12—H12C107.7 (13)
C8—C7—H7118.5 (9)H12B—C12—H12C107.8 (12)
C6—C7—H7119.0 (9)C1—C13—H13A111.3 (9)
C7—C8—C8A117.59 (8)C1—C13—H13B110.5 (9)
C7—C8—H8120.4 (8)H13A—C13—H13B106.8 (13)
C8A—C8—H8121.9 (8)C1—C13—H13C111.2 (9)
N9—C8A—C8128.37 (8)H13A—C13—H13C110.7 (13)
N9—C8A—C4B109.83 (7)H13B—C13—H13C106.1 (13)
C8—C8A—C4B121.73 (8)O1—B1—O2113.17 (8)
C8A—N9—C9A108.36 (7)O1—B1—C6123.27 (8)
C8A—N9—C10121.42 (7)O2—B1—C6123.56 (9)
C9A—N9—C10126.88 (7)B1—O2—C15106.57 (7)
N9—C9A—C1129.20 (8)B1—O1—C14106.47 (7)
N9—C9A—C4A108.76 (7)O1—C14—C16108.45 (8)
C1—C9A—C4A121.95 (8)O1—C14—C17106.78 (8)
C2—C1—C9A115.39 (8)C16—C14—C17110.21 (10)
C2—C1—C13119.70 (8)O1—C14—C15102.06 (8)
C9A—C1—C13124.88 (9)C16—C14—C15115.65 (9)
C1—C2—C3123.29 (9)C17—C14—C15112.92 (9)
C1—C2—H2118.1 (8)O2—C15—C18108.95 (8)
C3—C2—H2118.7 (8)O2—C15—C19106.89 (8)
C4—C3—C2121.30 (9)C18—C15—C19109.83 (9)
C4—C3—H3118.2 (9)O2—C15—C14101.86 (7)
C2—C3—H3120.5 (9)C18—C15—C14115.05 (9)
C3—C4—C4A117.10 (8)C19—C15—C14113.57 (9)
C3—C4—C12121.13 (8)C14—C16—H16A109.9 (10)
C4A—C4—C12121.74 (8)C14—C16—H16B109.4 (10)
C4—C4A—C9A120.87 (8)H16A—C16—H16B112.4 (14)
C4—C4A—C4B132.14 (8)C14—C16—H16C110.9 (11)
C9A—C4A—C4B106.99 (7)H16A—C16—H16C106.7 (15)
C5—C4B—C8A119.09 (8)H16B—C16—H16C107.5 (14)
C5—C4B—C4A134.83 (8)C14—C17—H17A110.7 (10)
C8A—C4B—C4A106.06 (7)C14—C17—H17B111.1 (9)
C4B—C5—C6120.25 (8)H17A—C17—H17B107.2 (12)
C4B—C5—H5120.9 (8)C14—C17—H17C109.4 (10)
C6—C5—H5118.9 (8)H17A—C17—H17C109.1 (13)
N9—C10—C11111.90 (7)H17B—C17—H17C109.3 (13)
N9—C10—H10A106.3 (7)C15—C18—H18A110.6 (9)
C11—C10—H10A110.3 (8)C15—C18—H18B111.1 (10)
N9—C10—H10B107.8 (8)H18A—C18—H18B107.6 (13)
C11—C10—H10B112.3 (8)C15—C18—H18C109.0 (10)
H10A—C10—H10B107.9 (11)H18A—C18—H18C111.3 (13)
C10—C11—H11A110.5 (9)H18B—C18—H18C107.2 (13)
C10—C11—H11B111.2 (9)C15—C19—H19A110.6 (10)
H11A—C11—H11B109.4 (12)C15—C19—H19B109.7 (10)
C10—C11—H11C109.6 (9)H19A—C19—H19B107.0 (13)
H11A—C11—H11C107.6 (12)C15—C19—H19C109.2 (10)
H11B—C11—H11C108.4 (12)H19A—C19—H19C109.9 (14)
C4—C12—H12A110.7 (9)H19B—C19—H19C110.4 (13)
O1—C18—C19—O244.71 (3)
(II) 6-bromo-9-ethyl-1,4-dimethyl-9H-carbazole top
Crystal data top
C16H16BrNF(000) = 616
Mr = 302.21Dx = 1.513 Mg m3
Monoclinic, P21Melting point: 363 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 15.3210 (14) ÅCell parameters from 5721 reflections
b = 4.6518 (5) Åθ = 2.7–29.9°
c = 18.6647 (17) ŵ = 3.08 mm1
β = 94.239 (5)°T = 150 K
V = 1326.6 (2) Å3Prism, colourless
Z = 40.41 × 0.36 × 0.34 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
9080 independent reflections
Radiation source: sealed tube7897 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
phi and ω scansθmax = 32.0°, θmin = 2.7°
Absorption correction: numerical
(SAINT; Bruker, 2006)
h = 2222
Tmin = 0.366, Tmax = 0.508k = 66
32267 measured reflectionsl = 2627
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0358P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
9080 reflectionsΔρmax = 0.59 e Å3
332 parametersΔρmin = 0.33 e Å3
1 restraintAbsolute structure: Flack (1983), 3979 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.265 (4)
Crystal data top
C16H16BrNV = 1326.6 (2) Å3
Mr = 302.21Z = 4
Monoclinic, P21Mo Kα radiation
a = 15.3210 (14) ŵ = 3.08 mm1
b = 4.6518 (5) ÅT = 150 K
c = 18.6647 (17) Å0.41 × 0.36 × 0.34 mm
β = 94.239 (5)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
9080 independent reflections
Absorption correction: numerical
(SAINT; Bruker, 2006)
7897 reflections with I > 2σ(I)
Tmin = 0.366, Tmax = 0.508Rint = 0.033
32267 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.067Δρmax = 0.59 e Å3
S = 1.01Δρmin = 0.33 e Å3
9080 reflectionsAbsolute structure: Flack (1983), 3979 Friedel pairs
332 parametersAbsolute structure parameter: 0.265 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.77412 (10)0.5447 (4)0.41137 (9)0.0212 (3)
C120.72214 (12)0.6594 (4)0.35457 (10)0.0253 (4)
H120.73310.60450.30820.030*
C130.65427 (11)0.8526 (4)0.36330 (10)0.0254 (3)
H130.62110.91940.32300.030*
C140.63495 (10)0.9480 (4)0.43085 (9)0.0204 (3)
C14A0.68556 (9)0.8360 (3)0.48968 (9)0.0177 (3)
C14B0.68387 (10)0.8794 (4)0.56649 (9)0.0187 (3)
C150.63271 (10)1.0471 (4)0.60894 (9)0.0209 (3)
H150.58871.16530.58840.025*
C160.64958 (10)1.0318 (4)0.68285 (9)0.0238 (3)
C170.71606 (11)0.8605 (4)0.71549 (10)0.0257 (4)
H170.72610.85970.76520.031*
C180.76699 (11)0.6920 (4)0.67402 (9)0.0235 (3)
H180.81130.57630.69500.028*
C18A0.74968 (9)0.7012 (4)0.59950 (9)0.0187 (3)
N190.79060 (8)0.5521 (3)0.54743 (8)0.0198 (3)
C19A0.75345 (10)0.6321 (4)0.48002 (9)0.0185 (3)
Br110.577329 (12)1.24125 (4)0.743002 (10)0.03300 (5)
C1100.85923 (10)0.3415 (4)0.56576 (10)0.0227 (3)
H10A0.85980.20020.52760.027*
H10B0.84620.24200.60940.027*
C1110.94926 (11)0.4793 (5)0.57678 (11)0.0309 (4)
H11A0.96360.57030.53300.046*
H11B0.99200.33420.59000.046*
H11C0.94900.62040.61430.046*
C1120.56356 (11)1.1641 (4)0.43874 (10)0.0244 (4)
H12A0.53511.20600.39240.037*
H12B0.58831.33730.45950.037*
H12C0.52161.08720.46940.037*
C1130.84686 (11)0.3415 (4)0.39530 (11)0.0278 (4)
H13A0.82990.14800.40560.042*
H13B0.89890.39030.42460.042*
H13C0.85800.35680.34550.042*
C210.65996 (11)0.8775 (4)0.03465 (10)0.0229 (3)
C220.67743 (11)0.7110 (4)0.09374 (10)0.0273 (4)
H220.63820.71650.13420.033*
C230.75171 (11)0.5350 (5)0.09496 (10)0.0290 (4)
H230.76060.43080.13630.035*
C240.81179 (10)0.5126 (4)0.03648 (9)0.0245 (3)
C24A0.79602 (11)0.6781 (3)0.02431 (10)0.0210 (3)
C24B0.84379 (10)0.7101 (4)0.09345 (9)0.0214 (3)
C250.92166 (11)0.5920 (4)0.12524 (10)0.0237 (3)
H250.95410.46010.10080.028*
C260.94839 (11)0.6785 (4)0.19408 (11)0.0278 (4)
Br211.054315 (12)0.52725 (4)0.238642 (11)0.03635 (6)
C270.90157 (12)0.8735 (5)0.23248 (11)0.0298 (4)
H270.92190.92460.27890.036*
C280.82479 (11)0.9922 (4)0.20191 (10)0.0275 (4)
H280.79271.12230.22720.033*
C28A0.79715 (11)0.9106 (4)0.13222 (10)0.0226 (3)
N290.72428 (9)1.0030 (3)0.09020 (8)0.0230 (3)
C29A0.72183 (11)0.8599 (4)0.02435 (9)0.0212 (3)
C2100.66349 (11)1.2114 (4)0.11622 (10)0.0260 (3)
H20A0.63481.31270.07560.031*
H20B0.69581.35140.14620.031*
C2110.59423 (13)1.0716 (6)0.15941 (12)0.0386 (5)
H21A0.55730.95070.12840.058*
H21B0.55941.21820.17960.058*
H21C0.62230.95780.19730.058*
C2120.89124 (12)0.3248 (4)0.03838 (11)0.0315 (4)
H22A0.88970.22570.08360.047*
H22B0.89180.18710.00000.047*
H22C0.94300.44130.03280.047*
C2130.57866 (11)1.0603 (5)0.03923 (10)0.0299 (4)
H23A0.59461.25890.04340.045*
H23B0.54811.03390.00330.045*
H23C0.54151.00480.08060.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0206 (6)0.0192 (7)0.0240 (8)0.0013 (6)0.0023 (6)0.0019 (7)
C120.0276 (8)0.0290 (9)0.0194 (8)0.0017 (6)0.0013 (7)0.0033 (7)
C130.0260 (8)0.0304 (9)0.0192 (8)0.0010 (7)0.0022 (6)0.0005 (7)
C140.0202 (7)0.0175 (7)0.0232 (8)0.0001 (5)0.0008 (6)0.0020 (6)
C14A0.0162 (6)0.0179 (7)0.0188 (8)0.0028 (5)0.0002 (6)0.0000 (6)
C14B0.0166 (7)0.0182 (8)0.0213 (8)0.0041 (5)0.0001 (6)0.0007 (6)
C150.0195 (6)0.0203 (8)0.0228 (8)0.0027 (6)0.0014 (6)0.0016 (7)
C160.0230 (7)0.0269 (8)0.0221 (8)0.0059 (7)0.0055 (6)0.0048 (8)
C170.0243 (8)0.0323 (9)0.0203 (8)0.0072 (7)0.0017 (6)0.0000 (7)
C180.0225 (7)0.0255 (9)0.0219 (8)0.0030 (6)0.0019 (6)0.0036 (7)
C18A0.0170 (6)0.0176 (8)0.0213 (8)0.0036 (5)0.0003 (5)0.0018 (6)
N190.0187 (5)0.0206 (7)0.0198 (7)0.0007 (5)0.0011 (5)0.0005 (6)
C19A0.0163 (7)0.0175 (7)0.0212 (8)0.0030 (5)0.0016 (6)0.0002 (6)
Br110.03198 (9)0.04153 (11)0.02647 (9)0.00080 (8)0.00871 (7)0.00781 (9)
C1100.0212 (7)0.0201 (7)0.0264 (9)0.0013 (6)0.0016 (6)0.0013 (7)
C1110.0196 (7)0.0412 (11)0.0316 (10)0.0008 (7)0.0011 (7)0.0035 (9)
C1120.0215 (7)0.0258 (9)0.0258 (9)0.0025 (6)0.0008 (7)0.0023 (7)
C1130.0267 (8)0.0278 (8)0.0290 (10)0.0030 (7)0.0038 (7)0.0071 (8)
C210.0227 (8)0.0252 (9)0.0209 (8)0.0028 (6)0.0019 (6)0.0055 (7)
C220.0270 (8)0.0320 (10)0.0222 (8)0.0051 (8)0.0013 (6)0.0019 (8)
C230.0331 (9)0.0327 (10)0.0215 (8)0.0041 (9)0.0041 (7)0.0045 (9)
C240.0261 (7)0.0231 (8)0.0248 (8)0.0030 (7)0.0052 (6)0.0006 (7)
C24A0.0215 (7)0.0213 (9)0.0205 (8)0.0029 (6)0.0026 (6)0.0025 (6)
C24B0.0208 (7)0.0209 (8)0.0225 (8)0.0023 (6)0.0021 (6)0.0018 (7)
C250.0224 (7)0.0261 (9)0.0225 (8)0.0003 (6)0.0016 (6)0.0031 (7)
C260.0220 (7)0.0328 (10)0.0280 (9)0.0011 (6)0.0031 (7)0.0059 (7)
Br210.02796 (8)0.04670 (12)0.03295 (11)0.00446 (8)0.00746 (7)0.00629 (9)
C270.0297 (9)0.0371 (11)0.0220 (9)0.0045 (7)0.0014 (7)0.0020 (8)
C280.0286 (8)0.0295 (10)0.0242 (9)0.0011 (7)0.0005 (7)0.0042 (8)
C28A0.0213 (7)0.0239 (8)0.0224 (8)0.0021 (6)0.0006 (6)0.0007 (7)
N290.0230 (6)0.0236 (7)0.0221 (7)0.0005 (6)0.0000 (5)0.0008 (6)
C29A0.0225 (7)0.0218 (8)0.0195 (8)0.0042 (6)0.0027 (6)0.0031 (6)
C2100.0243 (7)0.0267 (9)0.0273 (9)0.0009 (7)0.0041 (6)0.0024 (8)
C2110.0307 (9)0.0550 (14)0.0310 (10)0.0015 (9)0.0085 (8)0.0063 (10)
C2120.0312 (9)0.0339 (10)0.0297 (10)0.0038 (7)0.0053 (8)0.0062 (8)
C2130.0250 (8)0.0363 (10)0.0280 (9)0.0003 (7)0.0007 (7)0.0044 (8)
Geometric parameters (Å, º) top
C11—C121.385 (2)C21—C221.390 (3)
C11—C19A1.403 (2)C21—C29A1.401 (2)
C11—C1131.508 (2)C21—C2131.505 (2)
C12—C131.393 (3)C22—C231.403 (3)
C12—H120.9300C22—H220.9300
C13—C141.389 (2)C23—C241.379 (2)
C13—H130.9300C23—H230.9300
C14—C14A1.397 (2)C24—C24A1.407 (3)
C14—C1121.501 (2)C24—C2121.501 (2)
C14A—C19A1.429 (2)C24A—C29A1.417 (2)
C14A—C14B1.450 (2)C24A—C24B1.443 (2)
C14B—C151.394 (2)C24B—C251.405 (2)
C14B—C18A1.411 (2)C24B—C28A1.408 (2)
C15—C161.387 (2)C25—C261.379 (3)
C15—H150.9300C25—H250.9300
C16—C171.397 (3)C26—C271.388 (3)
C16—Br111.9025 (17)C26—Br211.9029 (18)
C17—C181.383 (2)C27—C281.384 (3)
C17—H170.9300C27—H270.9300
C18—C18A1.397 (2)C28—C28A1.391 (3)
C18—H180.9300C28—H280.9300
C18A—N191.381 (2)C28A—N291.384 (2)
N19—C19A1.393 (2)N29—C29A1.396 (2)
N19—C1101.459 (2)N29—C2101.453 (2)
C110—C1111.521 (2)C210—C2111.525 (3)
C110—H10A0.9700C210—H20A0.9700
C110—H10B0.9700C210—H20B0.9700
C111—H11A0.9600C211—H21A0.9600
C111—H11B0.9600C211—H21B0.9600
C111—H11C0.9600C211—H21C0.9600
C112—H12A0.9600C212—H22A0.9600
C112—H12B0.9600C212—H22B0.9600
C112—H12C0.9600C212—H22C0.9600
C113—H13A0.9600C213—H23A0.9600
C113—H13B0.9600C213—H23B0.9600
C113—H13C0.9600C213—H23C0.9600
C12—C11—C19A115.58 (15)C22—C21—C29A115.62 (16)
C12—C11—C113118.73 (16)C22—C21—C213118.47 (16)
C19A—C11—C113125.70 (16)C29A—C21—C213125.90 (17)
C11—C12—C13123.42 (17)C21—C22—C23122.82 (17)
C11—C12—H12118.3C21—C22—H22118.6
C13—C12—H12118.3C23—C22—H22118.6
C14—C13—C12121.55 (17)C24—C23—C22121.73 (18)
C14—C13—H13119.2C24—C23—H23119.1
C12—C13—H13119.2C22—C23—H23119.1
C13—C14—C14A116.82 (15)C23—C24—C24A116.91 (17)
C13—C14—C112120.58 (16)C23—C24—C212121.37 (17)
C14A—C14—C112122.59 (16)C24A—C24—C212121.71 (16)
C14—C14A—C19A121.00 (15)C24—C24A—C29A120.85 (16)
C14—C14A—C14B132.50 (15)C24—C24A—C24B132.18 (16)
C19A—C14A—C14B106.48 (14)C29A—C24A—C24B106.96 (15)
C15—C14B—C18A119.62 (16)C25—C24B—C28A119.32 (16)
C15—C14B—C14A133.79 (15)C25—C24B—C24A134.11 (16)
C18A—C14B—C14A106.58 (14)C28A—C24B—C24A106.55 (14)
C16—C15—C14B117.74 (16)C26—C25—C24B117.62 (16)
C16—C15—H15121.1C26—C25—H25121.2
C14B—C15—H15121.1C24B—C25—H25121.2
C15—C16—C17122.65 (16)C25—C26—C27122.85 (17)
C15—C16—Br11119.15 (13)C25—C26—Br21118.95 (14)
C17—C16—Br11118.17 (13)C27—C26—Br21118.19 (14)
C18—C17—C16120.17 (17)C28—C27—C26120.25 (18)
C18—C17—H17119.9C28—C27—H27119.9
C16—C17—H17119.9C26—C27—H27119.9
C17—C18—C18A117.80 (16)C27—C28—C28A117.89 (17)
C17—C18—H18121.1C27—C28—H28121.1
C18A—C18—H18121.1C28A—C28—H28121.1
N19—C18A—C18128.48 (15)N29—C28A—C28128.49 (16)
N19—C18A—C14B109.54 (14)N29—C28A—C24B109.46 (15)
C18—C18A—C14B121.98 (15)C28—C28A—C24B122.05 (16)
C18A—N19—C19A108.97 (13)C28A—N29—C29A108.61 (14)
C18A—N19—C110121.91 (14)C28A—N29—C210121.85 (15)
C19A—N19—C110129.09 (15)C29A—N29—C210129.53 (14)
N19—C19A—C11130.01 (15)N29—C29A—C21129.56 (16)
N19—C19A—C14A108.42 (15)N29—C29A—C24A108.40 (15)
C11—C19A—C14A121.57 (15)C21—C29A—C24A122.04 (17)
N19—C110—C111112.29 (15)N29—C210—C211112.37 (17)
N19—C110—H10A109.1N29—C210—H20A109.1
C111—C110—H10A109.1C211—C210—H20A109.1
N19—C110—H10B109.1N29—C210—H20B109.1
C111—C110—H10B109.1C211—C210—H20B109.1
H10A—C110—H10B107.9H20A—C210—H20B107.9
C110—C111—H11A109.5C210—C211—H21A109.5
C110—C111—H11B109.5C210—C211—H21B109.5
H11A—C111—H11B109.5H21A—C211—H21B109.5
C110—C111—H11C109.5C210—C211—H21C109.5
H11A—C111—H11C109.5H21A—C211—H21C109.5
H11B—C111—H11C109.5H21B—C211—H21C109.5
C14—C112—H12A109.5C24—C212—H22A109.5
C14—C112—H12B109.5C24—C212—H22B109.5
H12A—C112—H12B109.5H22A—C212—H22B109.5
C14—C112—H12C109.5C24—C212—H22C109.5
H12A—C112—H12C109.5H22A—C212—H22C109.5
H12B—C112—H12C109.5H22B—C212—H22C109.5
C11—C113—H13A109.5C21—C213—H23A109.5
C11—C113—H13B109.5C21—C213—H23B109.5
H13A—C113—H13B109.5H23A—C213—H23B109.5
C11—C113—H13C109.5C21—C213—H23C109.5
H13A—C113—H13C109.5H23A—C213—H23C109.5
H13B—C113—H13C109.5H23B—C213—H23C109.5

Experimental details

(I)(II)
Crystal data
Chemical formulaC22H28BNO2C16H16BrN
Mr349.26302.21
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21
Temperature (K)150150
a, b, c (Å)8.6357 (3), 8.1068 (3), 28.2057 (9)15.3210 (14), 4.6518 (5), 18.6647 (17)
β (°) 96.673 (2) 94.239 (5)
V3)1961.24 (12)1326.6 (2)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.073.08
Crystal size (mm)0.51 × 0.36 × 0.350.41 × 0.36 × 0.34
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Bruker APEXII CCD area-detector
diffractometer
Absorption correctionNumerical
(SAINT; Bruker, 2006)
Tmin, Tmax0.366, 0.508
No. of measured, independent and
observed [I > 2σ(I)] reflections
96221, 8529, 6728 32267, 9080, 7897
Rint0.0480.033
(sin θ/λ)max1)0.8050.746
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.143, 1.08 0.030, 0.067, 1.01
No. of reflections85299080
No. of parameters347332
No. of restraints01
H-atom treatmentAll H-atom parameters refinedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.290.59, 0.33
Absolute structure?Flack (1983), 3979 Friedel pairs
Absolute structure parameter?0.265 (4)

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds