Buy article online - an online subscription or single-article purchase is required to access this article.
The geometric features of 1-(4-nitrophenyl)-1
H-tetrazol-5-amine, C
7H
6N
6O
2, correspond to the presence of the essential interaction of the 5-amino group lone pair with the
system of the tetrazole ring. Intermolecular N-H
N and N-H
O hydrogen bonds result in the formation of infinite chains running along the [110] direction and involve centrosymmetric ring structures with motifs
R22(8) and
R22(20). Molecules of {(
E)-[1-(4-ethoxyphenyl)-1
H-tetrazol-5-yl]iminomethyl}dimethylamine, C
12H
16N
6O, are essentially flattened, which facilitates the formation of a conjugated system spanning the whole molecule. Conjugation in the azomethine N=C-N fragment results in practically the same length for the formal double and single bonds.
Supporting information
CCDC references: 700019; 700020
Compound (I) was prepared from 1-(4-nitrophenyl)-1H-tetrazole using the
one-pot technique reported by Vorobiov et al. (2006). Single
crystals
suitable for X-ray crystal structure analysis were grown by slow evaporation
from a tetrahydrofurane–benzene solvent system (2:1 v/v) at
room temperature.
Compound (II) was prepared from 1-(4-ethoxyphenyl)-1H-tetrazol-5-amine
(Vorobiov et al., 2006) as follows. A solution containing
1-(4-ethoxyphenyl)-1H-tetrazol-5-amine (0.01 mol) in methanol (30 ml)
was treated with N,N-dimethylformamide dimethyl acetal (0.02 mol). The reaction mixture was boiled under reflux for 2 h, then cooled and
kept at 273 K for 10 h. The precipitate which formed was filtered off, washed
with cold methanol and dried under reduced pressure (yield 95%, m.p. 421–422 K). Spectroscopic analysis: 1H NMR (500 MHz, DMSO-d6, δ, p.p.m.):
1.34 (t, 3H, CH3), 2.99 (s, 3H, CH3), 3.16 (s, 3H,
CH3), 4.08 (q, 2H, CH2), 7.08 (d, 2H, CHAr), 7.71
(d, 2H, CHAr), 8.57 (s, 1H, CH); 13C NMR(125 MHz,
DMSO-d6, δ, p.p.m.): 14.5, 34.3, 40.4, 63.4, 114.8, 124.3, 127.3,
158.2, 158.4, 158.7. Single crystals suitable for X-ray crystal structure
analysis were grown by slow evaporation of a benzene solution at room
temperature.
In (I), H-atom positions were found from the difference Fourier map and all
associated parameters were refined freely.
The H atoms in (II) were included in geometrically calculated positions, with
C—H = 0.97 Å for the methylene groups, 0.96 Å for the methyl groups and
0.93 Å for the remaining CH groups, and refined using a riding model, with
Uiso(H) = 1.5Ueq(C) for the methyl groups or
1.2Ueq(C) for all others.
For both compounds, data collection: R3m software (Nicolet, 1980); cell refinement: R3m software (Nicolet, 1980); data reduction: R3m software (Nicolet, 1980); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003) and SHELXL97 (Sheldrick, 2008).
(I) 1-(4-nitrophenyl)-1
H-tetrazol-5-amine
top
Crystal data top
C7H6N6O2 | Z = 2 |
Mr = 206.18 | F(000) = 212 |
Triclinic, P1 | Dx = 1.540 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.8891 (17) Å | Cell parameters from 25 reflections |
b = 7.9921 (18) Å | θ = 16.2–20.7° |
c = 8.5877 (18) Å | µ = 0.12 mm−1 |
α = 68.135 (17)° | T = 295 K |
β = 74.049 (17)° | Prism, yellow |
γ = 63.135 (18)° | 0.48 × 0.44 × 0.42 mm |
V = 444.55 (19) Å3 | |
Data collection top
Nicolet R3m four-circle diffractometer | Rint = 0.011 |
Radiation source: fine-focus sealed tube | θmax = 30.1°, θmin = 2.6° |
Graphite monochromator | h = 0→11 |
ω/2θ scans | k = −10→11 |
5556 measured reflections | l = −11→12 |
2605 independent reflections | 3 standard reflections every 100 reflections |
2338 reflections with I > 2σ(I) | intensity decay: none |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.121 | All H-atom parameters refined |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0697P)2 + 0.0595P] where P = (Fo2 + 2Fc2)/3 |
2605 reflections | (Δ/σ)max < 0.001 |
160 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
Crystal data top
C7H6N6O2 | γ = 63.135 (18)° |
Mr = 206.18 | V = 444.55 (19) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.8891 (17) Å | Mo Kα radiation |
b = 7.9921 (18) Å | µ = 0.12 mm−1 |
c = 8.5877 (18) Å | T = 295 K |
α = 68.135 (17)° | 0.48 × 0.44 × 0.42 mm |
β = 74.049 (17)° | |
Data collection top
Nicolet R3m four-circle diffractometer | Rint = 0.011 |
5556 measured reflections | 3 standard reflections every 100 reflections |
2605 independent reflections | intensity decay: none |
2338 reflections with I > 2σ(I) | |
Refinement top
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.121 | All H-atom parameters refined |
S = 1.06 | Δρmax = 0.19 e Å−3 |
2605 reflections | Δρmin = −0.28 e Å−3 |
160 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
N1 | 0.71575 (11) | 0.30355 (12) | 0.22691 (10) | 0.03411 (19) | |
N2 | 0.68183 (14) | 0.30624 (14) | 0.07743 (11) | 0.0432 (2) | |
N3 | 0.59130 (14) | 0.19458 (15) | 0.11762 (12) | 0.0447 (2) | |
N4 | 0.56081 (12) | 0.11715 (13) | 0.28830 (11) | 0.0394 (2) | |
N6 | 0.64696 (17) | 0.14419 (17) | 0.51962 (12) | 0.0509 (3) | |
H6A | 0.585 (2) | 0.074 (2) | 0.590 (2) | 0.061 (4)* | |
H6B | 0.671 (2) | 0.222 (2) | 0.552 (2) | 0.065 (4)* | |
C5 | 0.63976 (13) | 0.18612 (13) | 0.35495 (12) | 0.0348 (2) | |
C7 | 0.82206 (13) | 0.40546 (13) | 0.23101 (11) | 0.03255 (19) | |
C8 | 0.76465 (15) | 0.60463 (15) | 0.14954 (14) | 0.0397 (2) | |
H8 | 0.653 (2) | 0.678 (2) | 0.0916 (19) | 0.055 (4)* | |
C9 | 0.86768 (16) | 0.70270 (15) | 0.15807 (14) | 0.0418 (2) | |
H9 | 0.829 (2) | 0.846 (3) | 0.098 (2) | 0.067 (5)* | |
C10 | 1.02302 (14) | 0.59757 (14) | 0.24793 (12) | 0.0357 (2) | |
C11 | 1.08440 (14) | 0.39851 (15) | 0.32524 (13) | 0.0387 (2) | |
H11 | 1.198 (2) | 0.328 (2) | 0.3815 (18) | 0.053 (4)* | |
C12 | 0.98186 (14) | 0.30067 (14) | 0.31603 (14) | 0.0387 (2) | |
H12 | 1.023 (2) | 0.159 (2) | 0.3678 (19) | 0.054 (4)* | |
N13 | 1.12551 (14) | 0.70192 (14) | 0.26615 (12) | 0.0436 (2) | |
O1 | 1.05418 (16) | 0.88076 (14) | 0.22333 (15) | 0.0651 (3) | |
O2 | 1.27657 (13) | 0.60462 (15) | 0.32748 (12) | 0.0561 (2) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
N1 | 0.0359 (4) | 0.0384 (4) | 0.0364 (4) | −0.0224 (3) | −0.0058 (3) | −0.0088 (3) |
N2 | 0.0513 (5) | 0.0533 (5) | 0.0382 (4) | −0.0322 (4) | −0.0080 (4) | −0.0108 (4) |
N3 | 0.0510 (5) | 0.0543 (5) | 0.0440 (5) | −0.0326 (4) | −0.0089 (4) | −0.0130 (4) |
N4 | 0.0418 (4) | 0.0452 (4) | 0.0437 (4) | −0.0274 (4) | −0.0060 (3) | −0.0125 (3) |
N6 | 0.0727 (7) | 0.0668 (6) | 0.0381 (5) | −0.0541 (6) | −0.0054 (4) | −0.0089 (4) |
C5 | 0.0347 (4) | 0.0368 (4) | 0.0397 (5) | −0.0212 (3) | −0.0042 (3) | −0.0097 (3) |
C7 | 0.0331 (4) | 0.0371 (4) | 0.0349 (4) | −0.0211 (3) | −0.0019 (3) | −0.0109 (3) |
C8 | 0.0406 (5) | 0.0373 (5) | 0.0468 (5) | −0.0188 (4) | −0.0128 (4) | −0.0082 (4) |
C9 | 0.0471 (5) | 0.0351 (4) | 0.0499 (5) | −0.0218 (4) | −0.0095 (4) | −0.0097 (4) |
C10 | 0.0372 (4) | 0.0433 (5) | 0.0384 (4) | −0.0250 (4) | 0.0007 (3) | −0.0167 (4) |
C11 | 0.0343 (4) | 0.0441 (5) | 0.0438 (5) | −0.0209 (4) | −0.0074 (4) | −0.0107 (4) |
C12 | 0.0365 (5) | 0.0357 (4) | 0.0469 (5) | −0.0191 (4) | −0.0092 (4) | −0.0062 (4) |
N13 | 0.0473 (5) | 0.0549 (5) | 0.0465 (5) | −0.0328 (4) | 0.0026 (4) | −0.0236 (4) |
O1 | 0.0708 (6) | 0.0529 (5) | 0.0941 (8) | −0.0357 (5) | −0.0096 (5) | −0.0314 (5) |
O2 | 0.0524 (5) | 0.0737 (6) | 0.0652 (5) | −0.0371 (4) | −0.0107 (4) | −0.0266 (5) |
Geometric parameters (Å, º) top
N1—C5 | 1.3516 (12) | C8—C9 | 1.3897 (13) |
N1—N2 | 1.3722 (12) | C8—H8 | 0.960 (15) |
N1—C7 | 1.4223 (11) | C9—C10 | 1.3819 (15) |
N2—N3 | 1.2794 (12) | C9—H9 | 0.999 (17) |
N3—N4 | 1.3617 (13) | C10—C11 | 1.3784 (15) |
N4—C5 | 1.3269 (12) | C10—N13 | 1.4662 (12) |
N6—C5 | 1.3376 (13) | C11—C12 | 1.3874 (13) |
N6—H6A | 0.866 (16) | C11—H11 | 0.966 (15) |
N6—H6B | 0.873 (18) | C12—H12 | 0.977 (15) |
C7—C12 | 1.3857 (14) | N13—O1 | 1.2207 (14) |
C7—C8 | 1.3862 (14) | N13—O2 | 1.2266 (14) |
| | | |
C5—N1—N2 | 108.08 (8) | C9—C8—H8 | 118.9 (9) |
C5—N1—C7 | 130.01 (8) | C10—C9—C8 | 118.59 (9) |
N2—N1—C7 | 121.85 (8) | C10—C9—H9 | 122.0 (10) |
N3—N2—N1 | 106.07 (8) | C8—C9—H9 | 119.4 (10) |
N2—N3—N4 | 111.89 (8) | C11—C10—C9 | 123.05 (9) |
C5—N4—N3 | 105.93 (8) | C11—C10—N13 | 117.99 (9) |
C5—N6—H6A | 116.6 (11) | C9—C10—N13 | 118.95 (9) |
C5—N6—H6B | 118.3 (10) | C10—C11—C12 | 118.27 (9) |
H6A—N6—H6B | 120.5 (16) | C10—C11—H11 | 120.8 (9) |
N4—C5—N6 | 126.25 (9) | C12—C11—H11 | 120.9 (9) |
N4—C5—N1 | 108.04 (9) | C7—C12—C11 | 119.26 (9) |
N6—C5—N1 | 125.69 (9) | C7—C12—H12 | 120.4 (9) |
C12—C7—C8 | 122.04 (9) | C11—C12—H12 | 120.4 (9) |
C12—C7—N1 | 118.43 (8) | O1—N13—O2 | 123.36 (10) |
C8—C7—N1 | 119.53 (8) | O1—N13—C10 | 118.45 (10) |
C7—C8—C9 | 118.74 (9) | O2—N13—C10 | 118.17 (9) |
C7—C8—H8 | 122.3 (9) | | |
| | | |
C5—N1—N2—N3 | −0.32 (11) | C12—C7—C8—C9 | −1.96 (16) |
C7—N1—N2—N3 | 177.14 (9) | N1—C7—C8—C9 | 178.57 (9) |
N1—N2—N3—N4 | 0.48 (12) | C7—C8—C9—C10 | −0.18 (16) |
N2—N3—N4—C5 | −0.46 (12) | C8—C9—C10—C11 | 2.10 (17) |
N3—N4—C5—N6 | −178.48 (11) | C8—C9—C10—N13 | −176.38 (9) |
N3—N4—C5—N1 | 0.24 (11) | C9—C10—C11—C12 | −1.83 (16) |
N2—N1—C5—N4 | 0.04 (11) | N13—C10—C11—C12 | 176.65 (9) |
C7—N1—C5—N4 | −177.15 (9) | C8—C7—C12—C11 | 2.23 (16) |
N2—N1—C5—N6 | 178.77 (10) | N1—C7—C12—C11 | −178.30 (9) |
C7—N1—C5—N6 | 1.58 (17) | C10—C11—C12—C7 | −0.34 (15) |
C5—N1—C7—C12 | 52.88 (14) | C11—C10—N13—O1 | −167.90 (10) |
N2—N1—C7—C12 | −123.97 (11) | C9—C10—N13—O1 | 10.65 (15) |
C5—N1—C7—C8 | −127.63 (11) | C11—C10—N13—O2 | 10.41 (14) |
N2—N1—C7—C8 | 55.52 (13) | C9—C10—N13—O2 | −171.04 (10) |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N6—H6A···N4i | 0.866 (16) | 2.119 (17) | 2.9684 (14) | 166.8 (15) |
N6—H6B···O2ii | 0.873 (18) | 2.234 (18) | 3.1003 (14) | 171.9 (14) |
C8—H8···N3iii | 0.960 (15) | 2.599 (16) | 3.5286 (16) | 163.1 (13) |
C9—H9···N3iv | 0.999 (17) | 2.601 (17) | 3.4614 (18) | 144.2 (13) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+1, −z; (iv) x, y+1, z. |
(II) {(E)-[1-(4-ethoxyphenyl)-1H-tetrazol-5-yl]iminomethyl}dimethylamine
top
Crystal data top
C12H16N6O | F(000) = 552 |
Mr = 260.31 | Dx = 1.331 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 8.4150 (16) Å | θ = 11.8–16.8° |
b = 17.514 (3) Å | µ = 0.09 mm−1 |
c = 8.8300 (14) Å | T = 294 K |
β = 93.694 (14)° | Prism, colourless |
V = 1298.7 (4) Å3 | 0.42 × 0.32 × 0.16 mm |
Z = 4 | |
Data collection top
Nicolet R3m four-circle diffractometer | Rint = 0.015 |
Radiation source: fine-focus sealed tube | θmax = 27.6°, θmin = 2.3° |
Graphite monochromator | h = 0→10 |
ω/2θ scans | k = 0→22 |
3232 measured reflections | l = −11→11 |
2999 independent reflections | 3 standard reflections every 100 reflections |
2132 reflections with I > 2σ(I) | intensity decay: none |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H-atom parameters constrained |
wR(F2) = 0.154 | w = 1/[σ2(Fo2) + (0.0867P)2 + 0.1412P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
2999 reflections | Δρmax = 0.20 e Å−3 |
176 parameters | Δρmin = −0.18 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.018 (3) |
Crystal data top
C12H16N6O | V = 1298.7 (4) Å3 |
Mr = 260.31 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.4150 (16) Å | µ = 0.09 mm−1 |
b = 17.514 (3) Å | T = 294 K |
c = 8.8300 (14) Å | 0.42 × 0.32 × 0.16 mm |
β = 93.694 (14)° | |
Data collection top
Nicolet R3m four-circle diffractometer | Rint = 0.015 |
3232 measured reflections | 3 standard reflections every 100 reflections |
2999 independent reflections | intensity decay: none |
2132 reflections with I > 2σ(I) | |
Refinement top
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.154 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.20 e Å−3 |
2999 reflections | Δρmin = −0.18 e Å−3 |
176 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
O1 | 0.60836 (15) | 0.10107 (7) | −0.05248 (13) | 0.0593 (3) | |
N1 | 0.90038 (15) | 0.10695 (7) | 0.53214 (15) | 0.0487 (3) | |
N2 | 0.99266 (18) | 0.16831 (8) | 0.57485 (17) | 0.0599 (4) | |
N3 | 1.04928 (19) | 0.15516 (9) | 0.71189 (18) | 0.0638 (4) | |
N4 | 0.99730 (19) | 0.08718 (8) | 0.76300 (17) | 0.0586 (4) | |
C5 | 0.90459 (19) | 0.05731 (9) | 0.65058 (17) | 0.0487 (4) | |
C6 | 0.82460 (18) | 0.10513 (9) | 0.38218 (18) | 0.0464 (4) | |
C7 | 0.8559 (2) | 0.16369 (9) | 0.28342 (19) | 0.0532 (4) | |
H7 | 0.9245 | 0.2030 | 0.3153 | 0.064* | |
C8 | 0.7856 (2) | 0.16416 (9) | 0.13753 (19) | 0.0537 (4) | |
H8 | 0.8067 | 0.2038 | 0.0717 | 0.064* | |
C9 | 0.68410 (19) | 0.10579 (9) | 0.08929 (18) | 0.0494 (4) | |
C10 | 0.6538 (2) | 0.04693 (10) | 0.18828 (19) | 0.0589 (5) | |
H10 | 0.5856 | 0.0075 | 0.1562 | 0.071* | |
C11 | 0.7236 (2) | 0.04624 (10) | 0.33395 (19) | 0.0576 (4) | |
H11 | 0.7031 | 0.0064 | 0.3995 | 0.069* | |
C12 | 0.6245 (2) | 0.16413 (10) | −0.15256 (19) | 0.0562 (4) | |
H12A | 0.7347 | 0.1698 | −0.1766 | 0.067* | |
H12B | 0.5907 | 0.2109 | −0.1054 | 0.067* | |
C13 | 0.5216 (3) | 0.14823 (12) | −0.2941 (2) | 0.0689 (5) | |
H13A | 0.5564 | 0.1020 | −0.3400 | 0.103* | |
H13B | 0.5298 | 0.1898 | −0.3640 | 0.103* | |
H13C | 0.4129 | 0.1427 | −0.2690 | 0.103* | |
N5 | 0.82387 (16) | −0.01001 (8) | 0.64652 (14) | 0.0516 (4) | |
C14 | 0.82880 (19) | −0.04778 (9) | 0.77513 (17) | 0.0506 (4) | |
H14 | 0.8814 | −0.0260 | 0.8603 | 0.061* | |
N6 | 0.76253 (17) | −0.11498 (8) | 0.78837 (15) | 0.0538 (4) | |
C15 | 0.6815 (3) | −0.15312 (12) | 0.6600 (2) | 0.0723 (6) | |
H15A | 0.5701 | −0.1571 | 0.6759 | 0.109* | |
H15B | 0.7254 | −0.2033 | 0.6495 | 0.109* | |
H15C | 0.6955 | −0.1243 | 0.5693 | 0.109* | |
C16 | 0.7706 (3) | −0.15519 (12) | 0.9323 (2) | 0.0692 (5) | |
H16A | 0.8253 | −0.1242 | 1.0086 | 0.104* | |
H16B | 0.8271 | −0.2024 | 0.9224 | 0.104* | |
H16C | 0.6647 | −0.1657 | 0.9611 | 0.104* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
O1 | 0.0727 (8) | 0.0533 (7) | 0.0502 (7) | −0.0089 (6) | −0.0101 (5) | 0.0068 (5) |
N1 | 0.0537 (7) | 0.0403 (6) | 0.0513 (8) | 0.0022 (5) | −0.0031 (6) | −0.0032 (5) |
N2 | 0.0689 (9) | 0.0475 (8) | 0.0614 (9) | −0.0063 (7) | −0.0093 (7) | −0.0051 (6) |
N3 | 0.0725 (10) | 0.0556 (9) | 0.0613 (9) | −0.0042 (7) | −0.0124 (7) | −0.0055 (7) |
N4 | 0.0668 (9) | 0.0518 (8) | 0.0556 (8) | 0.0004 (7) | −0.0093 (7) | −0.0037 (6) |
C5 | 0.0520 (8) | 0.0459 (8) | 0.0475 (8) | 0.0089 (7) | −0.0025 (7) | −0.0050 (6) |
C6 | 0.0506 (8) | 0.0414 (8) | 0.0468 (8) | 0.0044 (6) | −0.0009 (6) | −0.0026 (6) |
C7 | 0.0572 (9) | 0.0431 (8) | 0.0581 (10) | −0.0055 (7) | −0.0048 (7) | 0.0002 (7) |
C8 | 0.0603 (10) | 0.0453 (8) | 0.0550 (9) | −0.0043 (7) | −0.0014 (7) | 0.0073 (7) |
C9 | 0.0543 (9) | 0.0451 (8) | 0.0480 (8) | 0.0019 (7) | −0.0034 (7) | 0.0009 (6) |
C10 | 0.0715 (11) | 0.0476 (9) | 0.0557 (9) | −0.0133 (8) | −0.0102 (8) | 0.0042 (7) |
C11 | 0.0721 (11) | 0.0459 (9) | 0.0535 (9) | −0.0099 (8) | −0.0072 (8) | 0.0057 (7) |
C12 | 0.0649 (10) | 0.0530 (9) | 0.0507 (9) | 0.0021 (8) | 0.0022 (7) | 0.0077 (7) |
C13 | 0.0833 (13) | 0.0719 (12) | 0.0503 (10) | −0.0012 (10) | −0.0041 (9) | 0.0076 (8) |
N5 | 0.0623 (8) | 0.0456 (7) | 0.0460 (7) | 0.0023 (6) | −0.0037 (6) | 0.0011 (5) |
C14 | 0.0560 (9) | 0.0497 (9) | 0.0451 (8) | 0.0054 (7) | −0.0048 (7) | −0.0025 (6) |
N6 | 0.0639 (8) | 0.0526 (8) | 0.0441 (7) | −0.0004 (6) | −0.0033 (6) | 0.0023 (6) |
C15 | 0.0955 (15) | 0.0673 (12) | 0.0531 (10) | −0.0223 (11) | −0.0038 (10) | −0.0062 (9) |
C16 | 0.0836 (13) | 0.0691 (12) | 0.0541 (10) | −0.0005 (10) | −0.0018 (9) | 0.0165 (9) |
Geometric parameters (Å, º) top
O1—C9 | 1.3701 (19) | C11—H11 | 0.9300 |
O1—C12 | 1.426 (2) | C12—C13 | 1.500 (2) |
N1—C5 | 1.359 (2) | C12—H12A | 0.9700 |
N1—N2 | 1.3647 (19) | C12—H12B | 0.9700 |
N1—C6 | 1.432 (2) | C13—H13A | 0.9600 |
N2—N3 | 1.292 (2) | C13—H13B | 0.9600 |
N3—N4 | 1.356 (2) | C13—H13C | 0.9600 |
N4—C5 | 1.330 (2) | N5—C14 | 1.313 (2) |
C5—N5 | 1.360 (2) | C14—N6 | 1.311 (2) |
C6—C7 | 1.382 (2) | C14—H14 | 0.9300 |
C6—C11 | 1.386 (2) | N6—C15 | 1.448 (2) |
C7—C8 | 1.382 (2) | N6—C16 | 1.451 (2) |
C7—H7 | 0.9300 | C15—H15A | 0.9600 |
C8—C9 | 1.382 (2) | C15—H15B | 0.9600 |
C8—H8 | 0.9300 | C15—H15C | 0.9600 |
C9—C10 | 1.386 (2) | C16—H16A | 0.9600 |
C10—C11 | 1.379 (2) | C16—H16B | 0.9600 |
C10—H10 | 0.9300 | C16—H16C | 0.9600 |
| | | |
C9—O1—C12 | 117.53 (13) | C13—C12—H12A | 110.2 |
C5—N1—N2 | 107.75 (13) | O1—C12—H12B | 110.2 |
C5—N1—C6 | 133.25 (13) | C13—C12—H12B | 110.2 |
N2—N1—C6 | 118.98 (13) | H12A—C12—H12B | 108.5 |
N3—N2—N1 | 106.70 (14) | C12—C13—H13A | 109.5 |
N2—N3—N4 | 111.15 (14) | C12—C13—H13B | 109.5 |
C5—N4—N3 | 106.46 (14) | H13A—C13—H13B | 109.5 |
N4—C5—N1 | 107.93 (15) | C12—C13—H13C | 109.5 |
N4—C5—N5 | 128.96 (15) | H13A—C13—H13C | 109.5 |
N1—C5—N5 | 123.11 (14) | H13B—C13—H13C | 109.5 |
C7—C6—C11 | 119.74 (15) | C14—N5—C5 | 115.23 (14) |
C7—C6—N1 | 118.37 (14) | N6—C14—N5 | 122.66 (15) |
C11—C6—N1 | 121.89 (14) | N6—C14—H14 | 118.7 |
C8—C7—C6 | 120.33 (15) | N5—C14—H14 | 118.7 |
C8—C7—H7 | 119.8 | C14—N6—C15 | 121.73 (15) |
C6—C7—H7 | 119.8 | C14—N6—C16 | 121.18 (15) |
C9—C8—C7 | 120.10 (15) | C15—N6—C16 | 117.07 (16) |
C9—C8—H8 | 119.9 | N6—C15—H15A | 109.5 |
C7—C8—H8 | 119.9 | N6—C15—H15B | 109.5 |
O1—C9—C8 | 124.63 (15) | H15A—C15—H15B | 109.5 |
O1—C9—C10 | 115.96 (14) | N6—C15—H15C | 109.5 |
C8—C9—C10 | 119.42 (15) | H15A—C15—H15C | 109.5 |
C11—C10—C9 | 120.66 (15) | H15B—C15—H15C | 109.5 |
C11—C10—H10 | 119.7 | N6—C16—H16A | 109.5 |
C9—C10—H10 | 119.7 | N6—C16—H16B | 109.5 |
C10—C11—C6 | 119.74 (15) | H16A—C16—H16B | 109.5 |
C10—C11—H11 | 120.1 | N6—C16—H16C | 109.5 |
C6—C11—H11 | 120.1 | H16A—C16—H16C | 109.5 |
O1—C12—C13 | 107.44 (15) | H16B—C16—H16C | 109.5 |
O1—C12—H12A | 110.2 | | |
| | | |
C5—N1—N2—N3 | 0.33 (18) | C6—C7—C8—C9 | −0.3 (3) |
C6—N1—N2—N3 | −178.53 (14) | C12—O1—C9—C8 | −5.8 (2) |
N1—N2—N3—N4 | −0.4 (2) | C12—O1—C9—C10 | 174.13 (15) |
N2—N3—N4—C5 | 0.3 (2) | C7—C8—C9—O1 | 179.80 (16) |
N3—N4—C5—N1 | −0.04 (18) | C7—C8—C9—C10 | −0.1 (3) |
N3—N4—C5—N5 | −179.66 (16) | O1—C9—C10—C11 | −179.82 (16) |
N2—N1—C5—N4 | −0.17 (18) | C8—C9—C10—C11 | 0.1 (3) |
C6—N1—C5—N4 | 178.46 (15) | C9—C10—C11—C6 | 0.3 (3) |
N2—N1—C5—N5 | 179.47 (14) | C7—C6—C11—C10 | −0.7 (3) |
C6—N1—C5—N5 | −1.9 (3) | N1—C6—C11—C10 | −179.83 (16) |
C5—N1—C6—C7 | −174.68 (16) | C9—O1—C12—C13 | −175.63 (15) |
N2—N1—C6—C7 | 3.8 (2) | N4—C5—N5—C14 | 5.7 (3) |
C5—N1—C6—C11 | 4.5 (3) | N1—C5—N5—C14 | −173.87 (14) |
N2—N1—C6—C11 | −177.02 (15) | C5—N5—C14—N6 | −177.18 (15) |
C11—C6—C7—C8 | 0.7 (3) | N5—C14—N6—C15 | 1.3 (3) |
N1—C6—C7—C8 | 179.86 (15) | N5—C14—N6—C16 | 179.86 (16) |
Experimental details
| (I) | (II) |
Crystal data |
Chemical formula | C7H6N6O2 | C12H16N6O |
Mr | 206.18 | 260.31 |
Crystal system, space group | Triclinic, P1 | Monoclinic, P21/c |
Temperature (K) | 295 | 294 |
a, b, c (Å) | 7.8891 (17), 7.9921 (18), 8.5877 (18) | 8.4150 (16), 17.514 (3), 8.8300 (14) |
α, β, γ (°) | 68.135 (17), 74.049 (17), 63.135 (18) | 90, 93.694 (14), 90 |
V (Å3) | 444.55 (19) | 1298.7 (4) |
Z | 2 | 4 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 0.12 | 0.09 |
Crystal size (mm) | 0.48 × 0.44 × 0.42 | 0.42 × 0.32 × 0.16 |
|
Data collection |
Diffractometer | Nicolet R3m four-circle diffractometer | Nicolet R3m four-circle diffractometer |
Absorption correction | – | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5556, 2605, 2338 | 3232, 2999, 2132 |
Rint | 0.011 | 0.015 |
(sin θ/λ)max (Å−1) | 0.705 | 0.651 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.121, 1.06 | 0.047, 0.154, 1.05 |
No. of reflections | 2605 | 2999 |
No. of parameters | 160 | 176 |
H-atom treatment | All H-atom parameters refined | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.19, −0.28 | 0.20, −0.18 |
Selected bond lengths (Å) for (I) topN1—C5 | 1.3516 (12) | N3—N4 | 1.3617 (13) |
N1—N2 | 1.3722 (12) | N4—C5 | 1.3269 (12) |
N1—C7 | 1.4223 (11) | N6—C5 | 1.3376 (13) |
N2—N3 | 1.2794 (12) | | |
Hydrogen-bond geometry (Å, º) for (I) top
D—H···A | D—H | H···A | D···A | D—H···A |
N6—H6A···N4i | 0.866 (16) | 2.119 (17) | 2.9684 (14) | 166.8 (15) |
N6—H6B···O2ii | 0.873 (18) | 2.234 (18) | 3.1003 (14) | 171.9 (14) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, −y+1, −z+1. |
Selected bond lengths (Å) for (II) topN1—C5 | 1.359 (2) | N4—C5 | 1.330 (2) |
N1—N2 | 1.3647 (19) | C5—N5 | 1.360 (2) |
N1—C6 | 1.432 (2) | N5—C14 | 1.313 (2) |
N2—N3 | 1.292 (2) | C14—N6 | 1.311 (2) |
N3—N4 | 1.356 (2) | | |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.
5-Aminotetrazoles attract considerable attention because many of them reveal biological activity (Wittenberger, 1994; Schelenz, 2000; Katritzky et al., 2003, and references therein). In particular, the use of 1-aryl-5-aminotetrazoles as anti-inflammatory agents has been described (Enkoji et al., 1970), while 1-nitrophenyl-5-aminotetrazoles have been found to be active in treating and preventing coccidiosis in poultry (Mrozik, 1974). However only two examples of 1-aryl-5-aminotetrazoles have been structurally characterized to date (Lyakhov et al., 2003). In the present work, we report the crystal structure of a new compound, 1-(4-nitrophenyl)-1H-tetrazol-5-amine, (I).
In our previous investigations of 5-aminotetrazoles (Lyakhov et al., 2001, 2003, 2008), the influence of the conjugation of the 5-amino group lone pair with the π system of the tetrazole ring on the geometric features of the molecules in the crystal structures was studied. It is of interest to investigate similar effects in compounds with other N-containing groups, for example with the azomethine fragment. For this purpose, we have also investigated {(E)-[1-(4-ethoxyphenyl)-1H-tetrazol-5-yl]iminomethyl}dimethylamine, (II). This compound has practical importance, being useful as a synthetic intermediate, and as a pharmaceutical and agrochemical agent (Tiŝler, 1983; Granik, 1983; Oshovskii & Pinchuk, 2000), and can be utilized as a tetrazole-containing building block for the synthesis of complex molecules or as a polytopic ligand in bioinorganic, medicinal and supramolecular chemistry. No structural data for tetrazole azomethines are available in the literature.
In both title compounds, the tetrazole ring geometries are similar. The formal double bonds N2═N3 and N4═C5 are the shortest in the ring, while three other ring bonds lie in a rather narrow range (Tables 1 and 3). The tetrazole rings are essentially planar, with the mean deviations of the tetrazole ring atoms from their least-squares plane being 0.0018 (6)Å for (I) and 0.0013 (10) Å for (II). The geometries of the benzene rings are normal. In (I), the benzene and tetrazole rings are essentially non-coplanar, with a dihedral angle of 54.41 (5)°, while in (II) the corresponding dihedral angle has a rather low value of 4.15 (11)°. This non-coplanarity of the rings in (I) may be caused by steric hindrance due to the 5-amino group H atom. This assumption agrees with the essential non-coplanarity of the benzene and tetrazole rings in the molecules of all 1-aryl-5-aminotetrazoles investigated to date (Lyakhov et al., 2003).
Quantum chemical and X-ray investigations of 5-aminotetrazoles (Lyakhov et al., 2001, 2003, 2008) show that the conjugation of the 5-amino group lone pair with the π system of the tetrazole ring results in a planar configuration of the amino group, essential shortening of the exocyclic C5—Namino bond and, to a lesser extent, elongation of the C5═N4 tetrazole ring bond. Moreover, the hydrogen bonds formed by the 5-amino group in these crystal structures enhance this effect. For all 5-aminotetrazoles studied to date, the length of the C5—Namino bond lies in the narrow range 1.330 (2)–1.3374 (16) Å (Lyakhov et al., 2001, 2003, 2008; Bray & White, 1979). The data obtained for (I) agree with the above structural peculiarities of 5-aminotetrazoles (Table 1).
The molecules of compound (I) are linked by a combination of N—H···N and N—H···O hydrogen bonds (Table 2) to form polymeric chains running along the [110] direction (Fig. 3). The chain involves two types of centrosymmetric rings with motifs R22(8) and R22(20) (Bernstein et al., 1995), centred at (1/2+n, n, 1/2) and (1+n, 1/2+n, 1/2), respectively (n = zero or an integer). Only van der Waals interactions are observed between the chains.
The molecule of (II) is essentially flattened, with a mean deviation of the non-H atoms from their least-squares plane of 0.0679 (19) Å. This geometry is favourable for a conjugated system spanning the whole molecule. The same lengths of the formal N5═C14 double and C14—N6 single bonds (Table 3) could be caused by essential conjugation of the N6 atom lone pair with the N5═C14 bond. This conjugation also takes place in solution, as seen in the observed difference in the chemical shifts of signals of formally equivalent N-methyl groups in the 1H and 13C NMR spectra. Thus, two singlets of the same intensity were observed in the 1H NMR spectrum (2.99 and 3.16 p.p.m.) and two similar methyl signals were observed in the 13C NMR spectrum (34.3 and 40.4 p.p.m.), which is indicative of the absence of free rotation around the N6—C14 bond in solution. Analysis of the data presented in the Cambridge Structural Database (Version 5.29 of November 2007; Allen, 2002) show that, in azomethines with the dialkylamino group at the C atom, the relation between the two bond lengths in the N═C—N fragment is rather different, namely the formal double bond may be shorter, equal to or even longer than the formal single bond, which may be caused by the different influence of the fragments bonded to the azomethine N atom.
In (II), the C5—N5 bond (Table 3) is longer than the C5—Namino bond in 5-aminotetrazoles, which may be an indicative of less conjugation between the lone pair of the azomethine N atom and the tetrazole ring π system in (II) compared with 5-aminotetrazoles. The azomethine fragment is in the E configuration. There are no direction-specific interactions between adjacent molecules in (II).