Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109011470/sk3310sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270109011470/sk3310Isup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270109011470/sk3310IIsup3.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270109011470/sk3310IIIsup4.hkl |
CCDC references: 735117; 735118; 735119
For related literature, see: Ashizawa et al. (2004); Mori et al. (1998); Xue et al. (2004); Yamada et al. (2001).
For the synthesis of VDTO–TTP, 2,3-bis(2-cyanoethylthio)-6,7-vinylenedithiotetrathiafulvalene (Xue et al., 2004) (0.35 g, 0.76 mmol) was dissolved in acetone (30 ml) and excess CsOH.H2O (0.78 g, 4.6 mmol) was added in the presence of N2 at room temperature. Stirring was continued for 4 h at room temperature. Zinc chloride (0.42 g, 3.5 mmol) was added to the orange reaction mixture, followed by Bu4NBr (0.68 g, 2.1 mmol) under N2. After 2 h, the reaction mixture was dried in vacuo. The residue was suspended in tetrahydrofuran (30 ml) and then an excess of triphosgen (0.55 g, 1.9 mmol) at 195 K was added under the protection of N2. The solution was stirred overnight. An orange precipitate was obtained and dried in vacuo. The precipitate was dissolved in carbon disulfide, washed with water and dried with anhydrous magnesium sulfate. Compound (III) was isolated by silica gel column chromatography using carbon disulfide as eluant. Orange prism-shaped crystals were formed on slow evaporation of the carbon disulfide solvent at room temperature. IR (v, cm-1): 3030 (w, CH), 2920 (w, CH), 1676 (vs, C═O), 1616 (m),1489 (m), 965(m), 900 (m), 875 (m), 794 (m), 750 (m), 692 (s), 682 (s), 671 (m), 407(s). EDTO–TTP was synthesized by a similar procedure. IR (v, cm-1): 2970(w, CH2), 2922 (w, CH2), 1664 (vs, C═O), 1624 (vs), 1609 (vs), 1414(m), 969 (m), 881 (s), 857 (m), 766 (s), 757 (s), 409 (vs). Note that the carbonyl viboratin of EDTO–TTP has a 12 cm-1 redshift relative to that of VDTO–TTP.
All the H atoms were located in a difference Fourier map and refined in the isotropic approximation.
Data collection: SMART (Version 5.049; Bruker, 1998) for (I), (II); APEX2 (Bruker, 2005) for (III). Cell refinement: SAINT (Version 7.46A; Bruker, 2007) for (I), (II); APEX2 (Bruker, 2005) for (III). Data reduction: SAINT (Version 7.46A; Bruker, 2007) for (I), (II); APEX2 (Bruker, 2005) for (III). Program(s) used to solve structure: SHELXTL (Version 6.14; Sheldrick, 2008) for (I), (II); SHELXS97 (Sheldrick, 2008) for (III). Program(s) used to refine structure: SHELXTL (Version 6.14; Sheldrick, 2008) for (I), (II); SHELXL97 (Sheldrick, 2008) for (III). Molecular graphics: SHELXTL (Version 6.14; Sheldrick, 2008) for (I), (II); SHELXTL (Sheldrick, 2008) for (III). Software used to prepare material for publication: SHELXTL (Version 6.14; Sheldrick, 2008) for (I), (II); WinGX (Farrugia, 1999) for (III).
C9H4OS8 | F(000) = 776 |
Mr = 384.60 | Dx = 1.944 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 4976 reflections |
a = 6.4948 (4) Å | θ = 2.8–27.1° |
b = 28.7194 (16) Å | µ = 1.34 mm−1 |
c = 7.1503 (4) Å | T = 220 K |
β = 99.548 (1)° | Plate, orange |
V = 1315.25 (13) Å3 | 0.23 × 0.19 × 0.02 mm |
Z = 4 |
Siemens SMART 1K CCD area-detector diffractometer | 2682 independent reflections |
Radiation source: fine-focus sealed tube | 2107 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
Detector resolution: 8 pixels mm-1 | θmax = 27.2°, θmin = 2.8° |
Ω scans | h = −8→7 |
Absorption correction: multi-scan (SADABS 2006/1; Bruker, 2005), R(int)=0.047 before correction | k = −33→34 |
Tmin = 0.749, Tmax = 0.974 | l = −8→9 |
11099 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.064 | All H-atom parameters refined |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0194P)2 + 0.9207P] where P = (Fo2 + 2Fc2)/3 |
2682 reflections | (Δ/σ)max = 0.001 |
179 parameters | Δρmax = 0.54 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
C9H4OS8 | V = 1315.25 (13) Å3 |
Mr = 384.60 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 6.4948 (4) Å | µ = 1.34 mm−1 |
b = 28.7194 (16) Å | T = 220 K |
c = 7.1503 (4) Å | 0.23 × 0.19 × 0.02 mm |
β = 99.548 (1)° |
Siemens SMART 1K CCD area-detector diffractometer | 2682 independent reflections |
Absorption correction: multi-scan (SADABS 2006/1; Bruker, 2005), R(int)=0.047 before correction | 2107 reflections with I > 2σ(I) |
Tmin = 0.749, Tmax = 0.974 | Rint = 0.032 |
11099 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.064 | All H-atom parameters refined |
S = 1.09 | Δρmax = 0.54 e Å−3 |
2682 reflections | Δρmin = −0.32 e Å−3 |
179 parameters |
Experimental. The data collection nominally covered full sphere of reciprocal space, by a combination of 4 runs of narrow-frame ω-scans (scan width 0.3° ω, 20 s exposure), every run at a different ϕ angle. Crystal to detector distance 4.94 cm |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.55521 (10) | 0.64008 (2) | 0.76478 (9) | 0.02842 (15) | |
S2 | 0.10921 (9) | 0.61106 (2) | 0.67531 (9) | 0.02841 (15) | |
S3 | 0.68965 (9) | 0.53783 (2) | 0.79025 (9) | 0.02792 (15) | |
S4 | 0.24090 (9) | 0.50892 (2) | 0.69960 (9) | 0.02890 (16) | |
S5 | 0.82327 (9) | 0.42849 (2) | 0.81049 (9) | 0.02526 (15) | |
S6 | 0.37694 (9) | 0.40187 (2) | 0.72496 (9) | 0.02516 (15) | |
S7 | 0.98235 (9) | 0.33257 (2) | 0.84731 (11) | 0.03497 (18) | |
S8 | 0.45355 (9) | 0.30048 (2) | 0.74265 (10) | 0.03253 (17) | |
O1 | 0.2361 (3) | 0.69816 (6) | 0.7106 (3) | 0.0419 (5) | |
C1 | 0.2890 (4) | 0.65767 (9) | 0.7160 (4) | 0.0297 (6) | |
C2 | 0.2984 (4) | 0.56819 (8) | 0.7102 (3) | 0.0237 (5) | |
C3 | 0.4996 (3) | 0.58123 (8) | 0.7505 (3) | 0.0224 (5) | |
C4 | 0.5062 (3) | 0.49208 (8) | 0.7510 (3) | 0.0211 (5) | |
C5 | 0.5620 (3) | 0.44691 (8) | 0.7616 (3) | 0.0210 (5) | |
C6 | 0.5612 (3) | 0.35650 (8) | 0.7635 (3) | 0.0221 (5) | |
C7 | 0.7634 (3) | 0.36881 (8) | 0.8038 (3) | 0.0230 (5) | |
C8 | 0.6771 (5) | 0.26441 (10) | 0.8235 (6) | 0.0497 (9) | |
H82 | 0.635 (4) | 0.2334 (11) | 0.768 (4) | 0.047 (8)* | |
H81 | 0.723 (7) | 0.2684 (14) | 0.978 (6) | 0.114 (16)* | |
C9 | 0.8722 (5) | 0.27810 (10) | 0.7581 (6) | 0.0482 (8) | |
H92 | 0.813 (7) | 0.2784 (14) | 0.609 (6) | 0.105 (14)* | |
H91 | 0.978 (5) | 0.2573 (12) | 0.811 (5) | 0.071 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0304 (3) | 0.0158 (3) | 0.0388 (4) | −0.0014 (2) | 0.0048 (3) | −0.0005 (3) |
S2 | 0.0260 (3) | 0.0200 (3) | 0.0385 (4) | 0.0049 (2) | 0.0034 (3) | 0.0014 (3) |
S3 | 0.0211 (3) | 0.0167 (3) | 0.0454 (4) | −0.0008 (2) | 0.0039 (3) | 0.0004 (3) |
S4 | 0.0202 (3) | 0.0176 (3) | 0.0478 (4) | −0.0004 (2) | 0.0027 (3) | 0.0008 (3) |
S5 | 0.0189 (3) | 0.0177 (3) | 0.0388 (4) | −0.0014 (2) | 0.0034 (2) | 0.0005 (2) |
S6 | 0.0187 (3) | 0.0162 (3) | 0.0394 (4) | 0.0001 (2) | 0.0013 (2) | 0.0009 (2) |
S7 | 0.0199 (3) | 0.0225 (3) | 0.0616 (5) | 0.0037 (2) | 0.0041 (3) | 0.0013 (3) |
S8 | 0.0227 (3) | 0.0157 (3) | 0.0581 (4) | −0.0012 (2) | 0.0038 (3) | −0.0028 (3) |
O1 | 0.0480 (11) | 0.0179 (10) | 0.0611 (13) | 0.0077 (8) | 0.0126 (10) | 0.0026 (9) |
C1 | 0.0354 (14) | 0.0211 (13) | 0.0334 (14) | 0.0026 (10) | 0.0076 (11) | 0.0025 (10) |
C2 | 0.0248 (12) | 0.0175 (12) | 0.0285 (13) | 0.0008 (9) | 0.0041 (10) | 0.0009 (10) |
C3 | 0.0242 (12) | 0.0165 (12) | 0.0264 (13) | 0.0017 (9) | 0.0034 (10) | 0.0009 (9) |
C4 | 0.0191 (11) | 0.0180 (12) | 0.0262 (13) | −0.0010 (8) | 0.0035 (10) | 0.0001 (9) |
C5 | 0.0210 (11) | 0.0181 (12) | 0.0243 (12) | −0.0015 (9) | 0.0049 (9) | −0.0001 (9) |
C6 | 0.0219 (11) | 0.0159 (12) | 0.0285 (13) | 0.0014 (9) | 0.0047 (10) | −0.0002 (9) |
C7 | 0.0222 (11) | 0.0173 (12) | 0.0299 (13) | 0.0014 (9) | 0.0055 (10) | 0.0004 (10) |
C8 | 0.0322 (15) | 0.0203 (15) | 0.093 (3) | 0.0010 (11) | 0.0003 (16) | 0.0012 (15) |
C9 | 0.0335 (15) | 0.0253 (16) | 0.084 (3) | 0.0082 (12) | 0.0051 (16) | −0.0029 (15) |
S1—C3 | 1.728 (2) | S7—C9 | 1.793 (3) |
S1—C1 | 1.780 (3) | S8—C6 | 1.751 (2) |
S2—C2 | 1.728 (2) | S8—C8 | 1.799 (3) |
S2—C1 | 1.768 (3) | O1—C1 | 1.211 (3) |
S3—C3 | 1.744 (2) | C2—C3 | 1.344 (3) |
S3—C4 | 1.765 (2) | C4—C5 | 1.346 (3) |
S4—C2 | 1.742 (2) | C6—C7 | 1.344 (3) |
S4—C4 | 1.768 (2) | C8—C9 | 1.475 (4) |
S5—C5 | 1.756 (2) | C8—H82 | 0.99 (3) |
S5—C7 | 1.757 (2) | C8—H81 | 1.10 (4) |
S6—C5 | 1.756 (2) | C9—H92 | 1.07 (4) |
S6—C6 | 1.759 (2) | C9—H91 | 0.94 (3) |
S7—C7 | 1.748 (2) | ||
C3—S1—C1 | 94.53 (11) | C4—C5—S5 | 122.96 (17) |
C2—S2—C1 | 94.67 (11) | S6—C5—S5 | 115.00 (12) |
C3—S3—C4 | 93.73 (10) | C7—C6—S8 | 128.46 (18) |
C2—S4—C4 | 93.66 (11) | C7—C6—S6 | 116.99 (17) |
C5—S5—C7 | 94.94 (10) | S8—C6—S6 | 114.56 (12) |
C5—S6—C6 | 95.23 (11) | C6—C7—S7 | 128.22 (18) |
C7—S7—C9 | 101.04 (13) | C6—C7—S5 | 117.81 (17) |
C6—S8—C8 | 102.25 (12) | S7—C7—S5 | 113.96 (12) |
O1—C1—S2 | 123.1 (2) | C9—C8—S8 | 115.8 (2) |
O1—C1—S1 | 122.7 (2) | C9—C8—H82 | 107.6 (17) |
S2—C1—S1 | 114.27 (13) | S8—C8—H82 | 103.5 (16) |
C3—C2—S2 | 118.36 (18) | C9—C8—H81 | 101 (2) |
C3—C2—S4 | 118.41 (18) | S8—C8—H81 | 109 (2) |
S2—C2—S4 | 123.22 (13) | H82—C8—H81 | 120 (3) |
C2—C3—S1 | 118.15 (18) | C8—C9—S7 | 115.6 (2) |
C2—C3—S3 | 118.19 (18) | C8—C9—H92 | 98 (2) |
S1—C3—S3 | 123.64 (13) | S7—C9—H92 | 114 (2) |
C5—C4—S3 | 122.69 (17) | C8—C9—H91 | 108 (2) |
C5—C4—S4 | 121.31 (17) | S7—C9—H91 | 101 (2) |
S3—C4—S4 | 116.00 (13) | H92—C9—H91 | 121 (3) |
C4—C5—S6 | 122.03 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H82···O1i | 0.99 (3) | 2.64 (3) | 3.266 (3) | 121 (2) |
C8—H81···O1ii | 1.10 (4) | 2.40 (4) | 3.456 (5) | 161 (3) |
C9—H92···O1iii | 1.07 (4) | 2.35 (4) | 3.378 (4) | 160 (3) |
C9—H91···O1iv | 0.94 (3) | 2.54 (4) | 3.407 (3) | 153 (3) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) −x+1, −y+1, −z+2; (iii) −x+1, −y+1, −z+1; (iv) −x+3/2, y−1/2, −z+3/2. |
C9H4OS8 | F(000) = 776 |
Mr = 384.60 | Dx = 1.964 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 6877 reflections |
a = 6.4762 (4) Å | θ = 2.8–28.5° |
b = 28.7451 (16) Å | µ = 1.35 mm−1 |
c = 7.0792 (4) Å | T = 120 K |
β = 99.322 (1)° | Plate, orange |
V = 1300.45 (13) Å3 | 0.23 × 0.19 × 0.02 mm |
Z = 4 |
Siemens SMART 1K CCD area-detector diffractometer | 3072 independent reflections |
Radiation source: fine-focus sealed tube | 2537 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
Detector resolution: 8 pixels mm-1 | θmax = 28.6°, θmin = 1.4° |
Ω scans | h = −8→8 |
Absorption correction: multi-scan (SADABS 2006/1; Bruker, 2005), R(int)=0.046 before correction | k = −38→37 |
Tmin = 0.746, Tmax = 0.974 | l = −9→8 |
12766 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.061 | All H-atom parameters refined |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0194P)2 + 0.9207P] where P = (Fo2 + 2Fc2)/3 |
3072 reflections | (Δ/σ)max = 0.001 |
179 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
C9H4OS8 | V = 1300.45 (13) Å3 |
Mr = 384.60 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 6.4762 (4) Å | µ = 1.35 mm−1 |
b = 28.7451 (16) Å | T = 120 K |
c = 7.0792 (4) Å | 0.23 × 0.19 × 0.02 mm |
β = 99.322 (1)° |
Siemens SMART 1K CCD area-detector diffractometer | 3072 independent reflections |
Absorption correction: multi-scan (SADABS 2006/1; Bruker, 2005), R(int)=0.046 before correction | 2537 reflections with I > 2σ(I) |
Tmin = 0.746, Tmax = 0.974 | Rint = 0.032 |
12766 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.061 | All H-atom parameters refined |
S = 1.10 | Δρmax = 0.44 e Å−3 |
3072 reflections | Δρmin = −0.34 e Å−3 |
179 parameters |
Experimental. The data collection nominally covered full sphere of reciprocal space, by a combination of 4 runs of narrow-frame ω-scans (scan width 0.3° ω, 20 s exposure), every run at a different ϕ angle. Crystal to detector distance 4.94 cm |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.55521 (8) | 0.640266 (17) | 0.76487 (8) | 0.01651 (12) | |
S2 | 0.10727 (8) | 0.611130 (17) | 0.67498 (8) | 0.01651 (12) | |
S3 | 0.69030 (8) | 0.537928 (16) | 0.79101 (8) | 0.01609 (12) | |
S4 | 0.23974 (8) | 0.508942 (17) | 0.69930 (8) | 0.01651 (12) | |
S5 | 0.82440 (8) | 0.428497 (16) | 0.81116 (8) | 0.01471 (11) | |
S6 | 0.37596 (8) | 0.401928 (16) | 0.72511 (8) | 0.01443 (11) | |
S7 | 0.98460 (8) | 0.332565 (18) | 0.84717 (9) | 0.02016 (13) | |
S8 | 0.45296 (8) | 0.300408 (17) | 0.73851 (9) | 0.01901 (12) | |
O1 | 0.2343 (3) | 0.69836 (5) | 0.7113 (2) | 0.0254 (4) | |
C1 | 0.2883 (3) | 0.65784 (7) | 0.7165 (3) | 0.0189 (4) | |
C2 | 0.2970 (3) | 0.56818 (7) | 0.7098 (3) | 0.0140 (4) | |
C3 | 0.4995 (3) | 0.58123 (7) | 0.7502 (3) | 0.0138 (4) | |
C4 | 0.5061 (3) | 0.49214 (7) | 0.7512 (3) | 0.0129 (4) | |
C5 | 0.5624 (3) | 0.44699 (7) | 0.7615 (3) | 0.0130 (4) | |
C6 | 0.5611 (3) | 0.35643 (6) | 0.7623 (3) | 0.0139 (4) | |
C7 | 0.7640 (3) | 0.36865 (7) | 0.8029 (3) | 0.0150 (4) | |
C8 | 0.6768 (4) | 0.26454 (8) | 0.8292 (4) | 0.0261 (5) | |
H82 | 0.626 (4) | 0.2329 (10) | 0.777 (4) | 0.036 (8)* | |
H81 | 0.696 (5) | 0.2667 (11) | 0.979 (5) | 0.063 (10)* | |
C9 | 0.8741 (4) | 0.27770 (8) | 0.7562 (4) | 0.0253 (5) | |
H92 | 0.844 (4) | 0.2794 (9) | 0.615 (4) | 0.036 (8)* | |
H91 | 0.984 (4) | 0.2560 (10) | 0.805 (4) | 0.040 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0178 (3) | 0.0097 (2) | 0.0217 (3) | −0.00067 (18) | 0.0023 (2) | −0.00041 (19) |
S2 | 0.0155 (3) | 0.0121 (2) | 0.0215 (3) | 0.00255 (18) | 0.0015 (2) | 0.00088 (19) |
S3 | 0.0122 (3) | 0.0101 (2) | 0.0257 (3) | −0.00073 (18) | 0.0023 (2) | 0.00013 (19) |
S4 | 0.0118 (3) | 0.0110 (2) | 0.0262 (3) | −0.00019 (18) | 0.0016 (2) | 0.0004 (2) |
S5 | 0.0116 (2) | 0.0108 (2) | 0.0215 (3) | −0.00073 (17) | 0.0020 (2) | 0.00005 (19) |
S6 | 0.0111 (2) | 0.0098 (2) | 0.0218 (3) | 0.00014 (17) | 0.0009 (2) | 0.00035 (19) |
S7 | 0.0116 (3) | 0.0143 (3) | 0.0341 (3) | 0.00208 (19) | 0.0020 (2) | 0.0009 (2) |
S8 | 0.0133 (3) | 0.0101 (2) | 0.0329 (3) | −0.00043 (18) | 0.0015 (2) | −0.0013 (2) |
O1 | 0.0281 (9) | 0.0121 (7) | 0.0368 (10) | 0.0046 (6) | 0.0074 (7) | 0.0021 (7) |
C1 | 0.0221 (12) | 0.0164 (10) | 0.0189 (11) | 0.0019 (8) | 0.0056 (9) | 0.0020 (8) |
C2 | 0.0162 (10) | 0.0099 (9) | 0.0156 (10) | −0.0001 (7) | 0.0022 (8) | 0.0007 (7) |
C3 | 0.0149 (11) | 0.0111 (9) | 0.0151 (11) | 0.0015 (7) | 0.0017 (8) | 0.0000 (7) |
C4 | 0.0112 (10) | 0.0126 (9) | 0.0147 (10) | −0.0011 (7) | 0.0013 (8) | 0.0003 (7) |
C5 | 0.0124 (10) | 0.0135 (9) | 0.0132 (10) | −0.0011 (7) | 0.0025 (8) | −0.0002 (7) |
C6 | 0.0136 (10) | 0.0089 (9) | 0.0189 (11) | 0.0015 (7) | 0.0022 (8) | −0.0013 (7) |
C7 | 0.0151 (10) | 0.0109 (9) | 0.0192 (11) | 0.0003 (7) | 0.0037 (8) | 0.0016 (8) |
C8 | 0.0186 (12) | 0.0137 (11) | 0.0452 (16) | 0.0013 (8) | 0.0033 (11) | 0.0037 (10) |
C9 | 0.0196 (12) | 0.0153 (11) | 0.0402 (16) | 0.0049 (9) | 0.0026 (11) | −0.0028 (10) |
S1—C3 | 1.735 (2) | S7—C9 | 1.807 (2) |
S1—C1 | 1.780 (2) | S8—C6 | 1.753 (2) |
S2—C2 | 1.731 (2) | S8—C8 | 1.810 (2) |
S2—C1 | 1.775 (2) | O1—C1 | 1.215 (2) |
S3—C3 | 1.745 (2) | C2—C3 | 1.350 (3) |
S3—C4 | 1.768 (2) | C4—C5 | 1.347 (3) |
S4—C2 | 1.742 (2) | C6—C7 | 1.346 (3) |
S4—C4 | 1.772 (2) | C8—C9 | 1.503 (3) |
S5—C5 | 1.758 (2) | C8—H82 | 1.02 (3) |
S5—C7 | 1.763 (2) | C8—H81 | 1.05 (3) |
S6—C5 | 1.761 (2) | C9—H92 | 0.99 (3) |
S6—C6 | 1.765 (2) | C9—H91 | 0.97 (3) |
S7—C7 | 1.752 (2) | ||
C3—S1—C1 | 94.58 (10) | C4—C5—S6 | 121.84 (16) |
C2—S2—C1 | 94.67 (10) | S5—C5—S6 | 115.05 (11) |
C3—S3—C4 | 93.62 (9) | C7—C6—S8 | 128.43 (16) |
C2—S4—C4 | 93.69 (10) | C7—C6—S6 | 117.05 (15) |
C5—S5—C7 | 94.98 (9) | S8—C6—S6 | 114.52 (11) |
C5—S6—C6 | 95.17 (9) | C6—C7—S7 | 128.56 (16) |
C7—S7—C9 | 100.88 (10) | C6—C7—S5 | 117.74 (15) |
C6—S8—C8 | 101.80 (10) | S7—C7—S5 | 113.69 (11) |
O1—C1—S2 | 122.77 (18) | C9—C8—S8 | 114.31 (17) |
O1—C1—S1 | 122.91 (18) | C9—C8—H82 | 110.1 (16) |
S2—C1—S1 | 114.32 (11) | S8—C8—H82 | 100.7 (15) |
C3—C2—S2 | 118.36 (15) | C9—C8—H81 | 111.3 (19) |
C3—C2—S4 | 118.26 (16) | S8—C8—H81 | 106.4 (18) |
S2—C2—S4 | 123.37 (12) | H82—C8—H81 | 114 (2) |
C2—C3—S1 | 118.05 (15) | C8—C9—S7 | 114.01 (17) |
C2—C3—S3 | 118.35 (15) | C8—C9—H92 | 108.7 (16) |
S1—C3—S3 | 123.59 (12) | S7—C9—H92 | 108.6 (16) |
C5—C4—S3 | 122.60 (16) | C8—C9—H91 | 109.2 (17) |
C5—C4—S4 | 121.33 (16) | S7—C9—H91 | 102.2 (17) |
S3—C4—S4 | 116.06 (11) | H92—C9—H91 | 114 (2) |
C4—C5—S5 | 123.12 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H82···O1i | 1.02 (3) | 2.55 (3) | 3.247 (3) | 126 (2) |
C8—H81···O1ii | 1.05 (3) | 2.39 (3) | 3.382 (3) | 158 (3) |
C9—H92···O1iii | 0.99 (3) | 2.37 (3) | 3.342 (3) | 167 (2) |
C9—H91···O1iv | 0.97 (3) | 2.48 (3) | 3.390 (3) | 156 (2) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) −x+1, −y+1, −z+2; (iii) −x+1, −y+1, −z+1; (iv) −x+3/2, y−1/2, −z+3/2. |
C9H2OS8 | F(000) = 1536 |
Mr = 382.59 | Dx = 1.934 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 4164 reflections |
a = 7.3308 (1) Å | θ = 2.8–27.6° |
b = 12.7832 (3) Å | µ = 1.34 mm−1 |
c = 28.0416 (6) Å | T = 296 K |
V = 2627.81 (9) Å3 | Prism, orange |
Z = 8 | 0.26 × 0.14 × 0.10 mm |
Bruker APEXII CCD area-detector diffractometer | 3037 independent reflections |
Radiation source: fine-focus sealed tube | 2499 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
Detector resolution: 10.00 pixels mm-1 | θmax = 27.6°, θmin = 1.5° |
phi and ω scans | h = −9→8 |
Absorption correction: multi-scan (APEX2; Bruker, 2005) | k = −16→15 |
Tmin = 0.723, Tmax = 0.881 | l = −31→36 |
13259 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.070 | All H-atom parameters refined |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0355P)2] where P = (Fo2 + 2Fc2)/3 |
3037 reflections | (Δ/σ)max = 0.001 |
171 parameters | Δρmax = 0.35 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C9H2OS8 | V = 2627.81 (9) Å3 |
Mr = 382.59 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 7.3308 (1) Å | µ = 1.34 mm−1 |
b = 12.7832 (3) Å | T = 296 K |
c = 28.0416 (6) Å | 0.26 × 0.14 × 0.10 mm |
Bruker APEXII CCD area-detector diffractometer | 3037 independent reflections |
Absorption correction: multi-scan (APEX2; Bruker, 2005) | 2499 reflections with I > 2σ(I) |
Tmin = 0.723, Tmax = 0.881 | Rint = 0.028 |
13259 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.070 | All H-atom parameters refined |
S = 1.10 | Δρmax = 0.35 e Å−3 |
3037 reflections | Δρmin = −0.20 e Å−3 |
171 parameters |
Experimental. Scan width 0.5° ω, Crystal to detector distance 6.02 cm |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S6 | 0.17125 (7) | 0.56037 (4) | 0.157258 (16) | 0.03599 (13) | |
S5 | 0.18475 (7) | 0.78527 (4) | 0.181888 (16) | 0.03560 (13) | |
S2 | 0.20160 (8) | 0.44062 (4) | 0.372378 (18) | 0.04552 (15) | |
S4 | 0.12762 (7) | 0.50196 (4) | 0.268638 (16) | 0.03799 (13) | |
S3 | 0.17168 (7) | 0.72691 (4) | 0.294304 (16) | 0.03699 (13) | |
S1 | 0.25268 (7) | 0.66455 (4) | 0.397878 (16) | 0.04074 (14) | |
S7 | 0.30583 (8) | 0.84719 (4) | 0.083145 (17) | 0.04230 (14) | |
S8 | 0.27217 (8) | 0.60166 (4) | 0.054395 (17) | 0.04196 (14) | |
C9 | 0.1733 (3) | 0.80180 (19) | 0.03483 (7) | 0.0467 (5) | |
H9 | 0.112 (3) | 0.8484 (18) | 0.0213 (8) | 0.056 (7)* | |
C8 | 0.1606 (3) | 0.70287 (18) | 0.02319 (7) | 0.0445 (5) | |
H8 | 0.084 (3) | 0.6804 (17) | −0.0022 (7) | 0.055 (6)* | |
C7 | 0.2563 (2) | 0.74924 (14) | 0.12440 (6) | 0.0312 (4) | |
C6 | 0.2468 (3) | 0.64740 (14) | 0.11290 (6) | 0.0318 (4) | |
C5 | 0.1749 (2) | 0.65570 (14) | 0.20241 (6) | 0.0302 (4) | |
C4 | 0.1628 (2) | 0.63128 (14) | 0.24913 (6) | 0.0298 (4) | |
C3 | 0.2032 (2) | 0.63382 (15) | 0.33907 (6) | 0.0337 (4) | |
C2 | 0.1812 (2) | 0.53272 (16) | 0.32764 (6) | 0.0338 (4) | |
C1 | 0.2519 (3) | 0.53244 (18) | 0.41809 (7) | 0.0438 (5) | |
O1 | 0.2813 (3) | 0.50819 (13) | 0.45880 (5) | 0.0667 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S6 | 0.0550 (3) | 0.0300 (3) | 0.0230 (2) | −0.0031 (2) | −0.0029 (2) | 0.00213 (18) |
S5 | 0.0521 (3) | 0.0297 (3) | 0.0251 (2) | 0.0062 (2) | 0.0017 (2) | 0.00128 (18) |
S2 | 0.0710 (4) | 0.0366 (3) | 0.0290 (3) | −0.0045 (2) | −0.0032 (2) | 0.0087 (2) |
S4 | 0.0557 (3) | 0.0336 (3) | 0.0247 (2) | −0.0076 (2) | −0.0035 (2) | 0.00213 (19) |
S3 | 0.0553 (3) | 0.0314 (3) | 0.0243 (2) | 0.0053 (2) | −0.0008 (2) | 0.00116 (18) |
S1 | 0.0590 (3) | 0.0406 (3) | 0.0226 (2) | 0.0035 (2) | −0.0022 (2) | −0.0014 (2) |
S7 | 0.0631 (3) | 0.0323 (3) | 0.0315 (3) | −0.0047 (2) | 0.0063 (2) | 0.0050 (2) |
S8 | 0.0667 (4) | 0.0365 (3) | 0.0227 (2) | 0.0012 (2) | 0.0011 (2) | −0.0015 (2) |
C9 | 0.0615 (14) | 0.0510 (14) | 0.0276 (10) | 0.0075 (12) | 0.0005 (9) | 0.0125 (10) |
C8 | 0.0583 (14) | 0.0520 (14) | 0.0232 (9) | −0.0043 (11) | −0.0054 (9) | 0.0071 (9) |
C7 | 0.0391 (10) | 0.0336 (10) | 0.0209 (9) | 0.0003 (8) | −0.0008 (8) | 0.0026 (7) |
C6 | 0.0415 (10) | 0.0336 (10) | 0.0204 (8) | 0.0000 (8) | −0.0027 (7) | 0.0030 (7) |
C5 | 0.0379 (10) | 0.0298 (9) | 0.0231 (8) | 0.0021 (8) | −0.0019 (7) | 0.0015 (7) |
C4 | 0.0357 (10) | 0.0320 (9) | 0.0217 (8) | 0.0019 (8) | −0.0007 (7) | 0.0010 (7) |
C3 | 0.0427 (11) | 0.0368 (10) | 0.0216 (8) | 0.0011 (8) | −0.0005 (7) | 0.0029 (8) |
C2 | 0.0422 (10) | 0.0371 (10) | 0.0220 (8) | −0.0016 (9) | −0.0026 (7) | 0.0047 (8) |
C1 | 0.0592 (13) | 0.0471 (12) | 0.0251 (10) | 0.0061 (11) | 0.0047 (9) | 0.0053 (9) |
O1 | 0.1162 (14) | 0.0594 (11) | 0.0245 (8) | 0.0124 (10) | −0.0044 (8) | 0.0099 (7) |
S6—C6 | 1.7583 (18) | S7—C7 | 1.7430 (18) |
S6—C5 | 1.7575 (18) | S7—C9 | 1.765 (2) |
S5—C5 | 1.7549 (19) | S8—C6 | 1.7515 (18) |
S5—C7 | 1.7567 (17) | S8—C8 | 1.763 (2) |
S2—C2 | 1.7269 (19) | C9—C8 | 1.309 (3) |
S2—C1 | 1.777 (2) | C9—H9 | 0.84 (2) |
S4—C2 | 1.7455 (18) | C8—H8 | 0.95 (2) |
S4—C4 | 1.7603 (18) | C7—C6 | 1.343 (2) |
S3—C3 | 1.7450 (18) | C5—C4 | 1.350 (2) |
S3—C4 | 1.7617 (18) | C3—C2 | 1.341 (3) |
S1—C3 | 1.7337 (18) | C1—O1 | 1.202 (2) |
S1—C1 | 1.781 (2) | ||
C6—S6—C5 | 93.80 (9) | C7—C6—S6 | 117.37 (14) |
C5—S5—C7 | 93.77 (8) | S8—C6—S6 | 119.01 (11) |
C2—S2—C1 | 95.26 (9) | C4—C5—S5 | 122.64 (14) |
C2—S4—C4 | 92.87 (9) | C4—C5—S6 | 122.54 (15) |
C3—S3—C4 | 92.80 (9) | S5—C5—S6 | 114.76 (9) |
C3—S1—C1 | 95.00 (9) | C5—C4—S4 | 121.91 (14) |
C7—S7—C9 | 99.12 (10) | C5—C4—S3 | 122.35 (14) |
C6—S8—C8 | 99.82 (10) | S4—C4—S3 | 115.69 (9) |
C8—C9—S7 | 123.22 (18) | C2—C3—S1 | 118.08 (14) |
C8—C9—H9 | 122.3 (16) | C2—C3—S3 | 118.00 (14) |
S7—C9—H9 | 114.3 (16) | S1—C3—S3 | 123.88 (12) |
C9—C8—S8 | 123.50 (17) | C3—C2—S2 | 118.23 (14) |
C9—C8—H8 | 121.3 (13) | C3—C2—S4 | 118.07 (14) |
S8—C8—H8 | 115.1 (13) | S2—C2—S4 | 123.68 (12) |
C6—C7—S7 | 123.22 (14) | O1—C1—S2 | 123.50 (18) |
C6—C7—S5 | 117.32 (14) | O1—C1—S1 | 123.08 (18) |
S7—C7—S5 | 118.87 (11) | S2—C1—S1 | 113.42 (10) |
C7—C6—S8 | 122.89 (14) | ||
C7—S7—C9—C8 | −40.3 (2) | S6—C5—C4—S3 | 178.52 (10) |
S7—C9—C8—S8 | 0.6 (3) | C2—S4—C4—C5 | 167.20 (16) |
C6—S8—C8—C9 | 38.6 (2) | C2—S4—C4—S3 | −15.30 (11) |
C9—S7—C7—C6 | 41.53 (19) | C3—S3—C4—C5 | −166.67 (16) |
C9—S7—C7—S5 | −129.46 (13) | C3—S3—C4—S4 | 15.84 (11) |
C5—S5—C7—C6 | 11.58 (17) | C1—S1—C3—C2 | 0.18 (18) |
C5—S5—C7—S7 | −176.90 (11) | C1—S1—C3—S3 | 177.61 (13) |
S7—C7—C6—S8 | −3.2 (3) | C4—S3—C3—C2 | −10.26 (17) |
S5—C7—C6—S8 | 167.92 (10) | C4—S3—C3—S1 | 172.30 (13) |
S7—C7—C6—S6 | −173.28 (10) | S1—C3—C2—S2 | 0.6 (2) |
S5—C7—C6—S6 | −2.2 (2) | S3—C3—C2—S2 | −177.00 (10) |
C8—S8—C6—C7 | −37.0 (2) | S1—C3—C2—S4 | 178.95 (10) |
C8—S8—C6—S6 | 132.90 (12) | S3—C3—C2—S4 | 1.4 (2) |
C5—S6—C6—C7 | −8.49 (17) | C1—S2—C2—C3 | −1.01 (18) |
C5—S6—C6—S8 | −178.97 (12) | C1—S2—C2—S4 | −179.27 (13) |
C7—S5—C5—C4 | 165.70 (16) | C4—S4—C2—C3 | 8.37 (17) |
C7—S5—C5—S6 | −17.12 (11) | C4—S4—C2—S2 | −173.37 (13) |
C6—S6—C5—C4 | −166.57 (16) | C2—S2—C1—O1 | −179.4 (2) |
C6—S6—C5—S5 | 16.25 (12) | C2—S2—C1—S1 | 1.07 (14) |
S5—C5—C4—S4 | 172.82 (10) | C3—S1—C1—O1 | 179.6 (2) |
S6—C5—C4—S4 | −4.1 (2) | C3—S1—C1—S2 | −0.84 (13) |
S5—C5—C4—S3 | −4.5 (2) |
Experimental details
(I) | (II) | (III) | |
Crystal data | |||
Chemical formula | C9H4OS8 | C9H4OS8 | C9H2OS8 |
Mr | 384.60 | 384.60 | 382.59 |
Crystal system, space group | Monoclinic, P21/n | Monoclinic, P21/n | Orthorhombic, Pbca |
Temperature (K) | 220 | 120 | 296 |
a, b, c (Å) | 6.4948 (4), 28.7194 (16), 7.1503 (4) | 6.4762 (4), 28.7451 (16), 7.0792 (4) | 7.3308 (1), 12.7832 (3), 28.0416 (6) |
α, β, γ (°) | 90, 99.548 (1), 90 | 90, 99.322 (1), 90 | 90, 90, 90 |
V (Å3) | 1315.25 (13) | 1300.45 (13) | 2627.81 (9) |
Z | 4 | 4 | 8 |
Radiation type | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 1.34 | 1.35 | 1.34 |
Crystal size (mm) | 0.23 × 0.19 × 0.02 | 0.23 × 0.19 × 0.02 | 0.26 × 0.14 × 0.10 |
Data collection | |||
Diffractometer | Siemens SMART 1K CCD area-detector diffractometer | Siemens SMART 1K CCD area-detector diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS 2006/1; Bruker, 2005), R(int)=0.047 before correction | Multi-scan (SADABS 2006/1; Bruker, 2005), R(int)=0.046 before correction | Multi-scan (APEX2; Bruker, 2005) |
Tmin, Tmax | 0.749, 0.974 | 0.746, 0.974 | 0.723, 0.881 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11099, 2682, 2107 | 12766, 3072, 2537 | 13259, 3037, 2499 |
Rint | 0.032 | 0.032 | 0.028 |
(sin θ/λ)max (Å−1) | 0.643 | 0.674 | 0.651 |
Refinement | |||
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.064, 1.09 | 0.029, 0.061, 1.10 | 0.027, 0.070, 1.10 |
No. of reflections | 2682 | 3072 | 3037 |
No. of parameters | 179 | 179 | 171 |
H-atom treatment | All H-atom parameters refined | All H-atom parameters refined | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.54, −0.32 | 0.44, −0.34 | 0.35, −0.20 |
Computer programs: SMART (Version 5.049; Bruker, 1998), APEX2 (Bruker, 2005), SAINT (Version 7.46A; Bruker, 2007), SHELXTL (Version 6.14; Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).
S1—C3 | 1.728 (2) | S6—C6 | 1.759 (2) |
S1—C1 | 1.780 (3) | S7—C7 | 1.748 (2) |
S2—C2 | 1.728 (2) | S7—C9 | 1.793 (3) |
S2—C1 | 1.768 (3) | S8—C6 | 1.751 (2) |
S3—C3 | 1.744 (2) | S8—C8 | 1.799 (3) |
S3—C4 | 1.765 (2) | O1—C1 | 1.211 (3) |
S4—C2 | 1.742 (2) | C2—C3 | 1.344 (3) |
S4—C4 | 1.768 (2) | C4—C5 | 1.346 (3) |
S5—C5 | 1.756 (2) | C6—C7 | 1.344 (3) |
S5—C7 | 1.757 (2) | C8—C9 | 1.475 (4) |
S6—C5 | 1.756 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H82···O1i | 0.99 (3) | 2.64 (3) | 3.266 (3) | 121 (2) |
C8—H81···O1ii | 1.10 (4) | 2.40 (4) | 3.456 (5) | 161 (3) |
C9—H92···O1iii | 1.07 (4) | 2.35 (4) | 3.378 (4) | 160 (3) |
C9—H91···O1iv | 0.94 (3) | 2.54 (4) | 3.407 (3) | 153 (3) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) −x+1, −y+1, −z+2; (iii) −x+1, −y+1, −z+1; (iv) −x+3/2, y−1/2, −z+3/2. |
S1—C3 | 1.735 (2) | S6—C6 | 1.765 (2) |
S1—C1 | 1.780 (2) | S7—C7 | 1.752 (2) |
S2—C2 | 1.731 (2) | S7—C9 | 1.807 (2) |
S2—C1 | 1.775 (2) | S8—C6 | 1.753 (2) |
S3—C3 | 1.745 (2) | S8—C8 | 1.810 (2) |
S3—C4 | 1.768 (2) | O1—C1 | 1.215 (2) |
S4—C2 | 1.742 (2) | C2—C3 | 1.350 (3) |
S4—C4 | 1.772 (2) | C4—C5 | 1.347 (3) |
S5—C5 | 1.758 (2) | C6—C7 | 1.346 (3) |
S5—C7 | 1.763 (2) | C8—C9 | 1.503 (3) |
S6—C5 | 1.761 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H82···O1i | 1.02 (3) | 2.55 (3) | 3.247 (3) | 126 (2) |
C8—H81···O1ii | 1.05 (3) | 2.39 (3) | 3.382 (3) | 158 (3) |
C9—H92···O1iii | 0.99 (3) | 2.37 (3) | 3.342 (3) | 167 (2) |
C9—H91···O1iv | 0.97 (3) | 2.48 (3) | 3.390 (3) | 156 (2) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) −x+1, −y+1, −z+2; (iii) −x+1, −y+1, −z+1; (iv) −x+3/2, y−1/2, −z+3/2. |
S6—C6 | 1.7583 (18) | S3—C4 | 1.7617 (18) |
S6—C5 | 1.7575 (18) | S1—C3 | 1.7337 (18) |
S5—C5 | 1.7549 (19) | S1—C1 | 1.781 (2) |
S5—C7 | 1.7567 (17) | S7—C7 | 1.7430 (18) |
S2—C2 | 1.7269 (19) | S7—C9 | 1.765 (2) |
S2—C1 | 1.777 (2) | S8—C6 | 1.7515 (18) |
S4—C2 | 1.7455 (18) | S8—C8 | 1.763 (2) |
S4—C4 | 1.7603 (18) | C9—C8 | 1.309 (3) |
S3—C3 | 1.7450 (18) |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
Chalcogen-rich electronic donors have been playing a central role in the field of molecular conductors. Except for several alkali metal salts of C60, all the reported organic charge-transfer superconductors belong to the chalcogen-rich type. In fact chalcogen-rich donors have more important applications, for example, as single component molecular conductors (Ashizawa et al., 2004) or as organic field-effect transistors in the field of semi-conductors. Some tetrathiafulvalene (TTF) derivatives were recently reported to have a very high field-effect mobility, which can well match the mobility of the silicon-based inorganic field-effect transistors (Mass-Torrent et al., 2004). It is well known that the basic structural necessity for molecular conductors and semi-conductors is the existence of strong intermolecular interactions in the crystals.
For a long time, TTF and its derivative bis(ethylenedithio)tetrathiafulvalene (BEDT–TTF) have been regarded as the most dominant electronic donors (Williams et al., 1992). In recent years, a new multi-sulfur moiety, 1,3,4,6-tetrathiapentalene (TTP) has received intense attention, and various TTP-based novel electronic donors have been synthesized. Several 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene (BDA–TTP) based charge-transfer salts, among other TTP derivatives, have been reported to exhibit superconductivity (Misaki et al., 1993; Yamada et al., 1999; Yamada et al., 2001). Our strategy in exploring new molecular conductors is to combine structural factors of TTF and TTP together. With this idea in mind, we synthesized the title compounds (namely EDTO–TTP and VDTO–TTP) and determined their X-ray structures. The synthesis of EDTO–TTP was once briefly mentioned by Mori et al. (1998), but no details of the synthesis or the crystal structure have been reported. We report here the structure at 220 K, (I), and 120 K, (II). VDTO–TTP, (III), is a new compound.
In (I) and (II), the EDTO–TTP molecule takes a planar conformation. Except for the terminal –CH2—CH2– ethylene group, all the other atoms are perfectly coplanar, and the least-squares plane based on these atoms is defined as the molecular plane hereafter (see Fig. 1). In (III), the curved VDTO–TTP molecule looks like a wingless jet with its terminal –CH═CH– vinylene group being the empennage (see Fig. 2). Atoms O1, C1, C2, C3, S1, S2, S3 and S4 (plane 1), atoms C6, C7, S5, S6, S7 and S8 (plane 2) and the empennage atoms (C8, C9, S7, S8, H8 and H9; plane 3) form three separate planes, the dihedral angles being 26.6 (1)° (between planes 1 and 2) and 53.3 (1)° (planes 2 and 3).
As shown in Tables 1 and 3, the bond characteristics of (I) and (II) are the same. Any non-H bond of (II) is slightly longer than its corresponding bond in (I), i.e. the EDTO–TTP molecule appears larger at low temperature. Thus, when discussing general bond characteristics below, structure (II) is not discussed unless (I) and (II) are being compared. For the three structures, all the C—S bonds, except the two terminal C—S single bonds in (I), lie between the single C—S and double C═S bonds, showing the π-conjugated nature of these molecules. The terminal S7—C9 and S8—C8 bonds in (I), involving the ethylene group, are single bonds with an average length of 1.796 (3) Å. The average of the S7—C9 and S8—C8 bond lengths [1.764 (2) Å] in (III), however, is obviously shorter than its counterpart in (I) because of the influence of the vinylene group. Three C═C bonds in the TTF moiety and the C═O bond are double bonds. Owing to the influence of the neighbouring C═O bond, the C1—S1 and C1—S2 bonds are the longest π-conjugated C—S bonds, while C2—S2 and C3—S1 are the shortest. The single C8—C9 bond [1.475 (4) Å] in terminal ethylene group in (I) and the double C8═C9 bond [1.309 (3) Å] in the vinylene group in (III) have been confirmed.
The planar EDTO–TTP molecules pack as parallel layers. As shown in Fig. 3, all the molecular planes can be indexed as (-105); they lie parallel to the b axis and roughly perpendicular to the c axis [87.04 (1)°]. In a molecular layer, the sum of the molecular dipole moments is along the +b direction. In a neighbouring molecular layer, however, the sum of the dipole moments is along the opposite, -b, direction, causing the polarization of the crystal to vanishing. There are several transverse short intermolecular S···S and S···O contacts between neighbouring molecules. In (I), for example, the S6···S7(x - 1, y, z), S8···S7(x - 1, y, z) and S8···O1(-x + 1/2, y - 1/2, -z + 3/2) distances are 3.470 (1), 3.396 (1) and 3.225 (2) Å, respectively. At low temperature in (II), these contacts have shortened to 3.443 (1), 3.377 (1) and 3.216 (2) Å, respectively. Along the c-axis direction, molecules are face-to-face overlapped, forming eclipsed molecular columns or stacks (see Fig. 4). The alternate spacings of the neighbouring molecular planes in the one-dimensional stacks are 3.540 (3) and 3.601 (3) Å in (I), and 3.507 (3) and 3.561 (3) Å in (II), showing the much enhanced π–π longitudinal intermolecular interactions at low temperature. The average thermal expansion coefficients are αa = 2.9 × 10 -5 K-1, αb = -0.90 × 10 -5 K-1 and αc = 10.0 × 10-5 K-1. The high anisotropy of the thermal expansion and the large αc value indicate that the π-stack direction is more condensable and has more potential to strengthen π–π interactions. Moreover there are four C—H···O hydrogen bonds: the two stronger bonds, C8—H81···O1(-x + 1, -y + 1, -z + 2) and C9—H92···O1(-x + 1, -y + 1, –z+1), are longitudinal and the the other two are transverse (see Fig. 4 and Table 2). Again, the hydrogen bonds in (II) are stronger than those in (I). It is thus revealed that, when cooling the EDTO–TTP crystal, the cell dimensions and the intermolecular distances become shorter, while the intramolecular bonds become longer.
The packing of the curved molecule of (III) shows some differences from the packing of the planar EDTO–TTP molecule. If a pencil-like molecule is put into a `pencil box', the dipolar molecule has two ways of packing: head-to-tail [the case of the longitudinal face-to-face neighbourhood of (I)] or head-to-head [the transverse side-by-side neighbourhood of (I)]. The curved `pencil' of molecule (III), however, has four ways of arranging: head-right, head-left, curve-up and curve-down. As shown in Fig. 5, among the four neighbours of a molecule of (III), none of its neighbours takes the same way of arranging with the central molecule. In another word, crystal (III) is fully depolarized. Although crystals (I) is also centrosymmetric, it is not fully depolarized. There are also strong transverse S···S and S···O intermolecular short contacts in (III), characterized by the lengths of 3.431 (1) for S6···S7(-x + 1/2, y - 1/2, z), 3.400 (1) for S8···S7(-x + 1/2, y - 1/2, z), and 3.052 (2) for O1···S8(-x + 1/2, -y + 1, z + 1/2) (Fig. 6). However, the π–π interactions in (III) are relatively weak, since the overlap of the two face-to-face molecules is staggered rather than eclipsed and the planarity of the molecule is poor. Most distinguishingly, there are no hydrogen bonds in (III). Thus the intermolecular interactions of (III) should be weaker than that of (I).
Above all, the EDTO–TTP crystal exhibits strong intermolecular interactions, including transverse S···S interactions, longitudinal π–π interactions and hydrogen bonding. We believe that these strong intermolecular interactions may endow it with some applications in the semi-conductor field.