Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compounds, [1,2-bis­(isopropyl­sulfan­yl)ethane-2[kappa]2S,S']octa­chlorido-1[kappa]5Cl,2[kappa]3Cl-[mu]-oxido-ditantalum(V), [Ta2Cl8O(C8H18S2)], (I), and [mu]-dimethyl­diselane-[kappa]2Se:Se'-[mu]-oxido-bis­[tetra­chloridotantalum(V)], [Ta2Cl8O(C2H6Se2)], (II), contain six-coordinate TaV centres linked by a nonlinear oxide bridge. Compound (I) contains one TaV centre bonded to a chelating dithio­ether and three terminal chloride ligands, with the second TaV centre bonded to five terminal chloride ligands. In (II), two tetra­chloridotantalum(V) residues are bridged by the diselenide, giving a puckered five-membered Ta/O/Ta/Se/Se ring. The Ta-O distances in the bridges are short in both compounds, indicating that significant multiple-bond character is retained despite the deviation from linearity, and the bond lengths reveal a clear trans influence order of O > Cl > S > Se on the hard TaV centre. The structures are compared with the [Ta2Cl10O]2- anion, which contains a linear oxide bridge.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111022037/sk3411sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111022037/sk3411Isup2.hkl
Contains datablock I

mol

MDL mol file https://doi.org/10.1107/S0108270111022037/sk3411Isup4.mol
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111022037/sk3411IIsup3.hkl
Contains datablock II

mol

MDL mol file https://doi.org/10.1107/S0108270111022037/sk3411IIsup5.mol
Supplementary material

CCDC references: 838128; 838129

Comment top

The centrosymmetric [Ta2OCl10]2– anion, often obtained by serendipitous hydrolysis in syntheses using TaCl5, has D4h symmetry with a linear Ta—O—Ta unit and short Ta—O bonds (1.88–1.90 Å), indicative of some multiple-bonding character [O(pπ)Ta(dπ)] (Cotton & Najjar, 1981; Noll & Mueller, 1999; Xi et al., 2010). The parent oxidechloride, Ta2OCl8, is unknown and analogues with neutral ligands have not been described hitherto. During studies of the complexes of MX5 (M = Nb or Ta; X = F, Cl or Br) with chalcogenoether ligands (Benjamin et al., 2011; Jura et al., 2010, 2009), we obtained crystals of the title compounds, the first two examples of such complexes, [Cl5Ta(µ-O)TaCl3{iPrS(CH2)2SiPr}], (I), and [(TaCl4)2(µ-O)(µ-Me2Se2)], (II), which show very different architectures and significant differences in bond lengths and angles. The formation of these complexes is clearly the result of adventitious hydrolysis during attempts at crystal growth of the corresponding TaCl5 complexes. In (I), the dithioether chelates to one TaCl3 unit which is linked via the oxo-bridge to a TaCl5 unit, whilst in (II) the chalcogen ligand bridges the Ta—O—Ta unit to give a puckered five-membered ring.

The deep-yellow crystals of (I) contain a distorted square-pyramidal TaCl5 unit about atom Ta2 (Fig. 1), with the sixth position occupied by the bridging oxo group [Ta2—O1 = 2.057 (4) Å; Table 1], whereas atom Ta1 has a more distorted octahedral geometry composed of three mer chloride ligands, two cis S atoms from a chelating dithioether and a markedly shorter bond to the bridging oxo group [Ta1—O1 = 1.787 (4) Å]. The dithioether is in the DL conformation (the iPr groups are on opposite sides of the TaS2 plane) with long Ta—S bonds (Table 1), reflecting the weak affinity of the hard TaV centre for the soft neutral S donor. The bond-length distribution about the Ta centres shows clear evidence for the trans influence order O > Cl > S on the hard TaV centre. The Ta2—O1—Ta1 bridge is nonlinear [165.9 (3) °], in contrast with that in [Ta2OCl10]2-.

The deep-orange crystals of (II) also contain a nonlinear [164.3 (2)°] oxo-bridge, with Ta1—O1 = 1.874 (2) Å and Ta2—O1 = 1.917 (2) Å (Table 2), linking two distorted octahedral TaV centres. The diselenide bridges the Ta—O—Ta unit [Ta1—Se1 = 2.8715 (4) and Ta2—Se2 = 2.8701 (4) Å; Table 2], forming a nonplanar five-membered ring with acute O—Ta—Se angles and much wider Ta—Se—Se angles (Table 2). The Se—Se distance is rather longer than in the gas-phase diselenide [2.326 (3) Å; D'Antonio et al., 1971]. Notably, the Ta—O—Ta angles in both (I) and (II) differ by <2°, suggesting that the constraints of the ring in (II) are not responsible for the deviation from linearity.

Comparison of the core geometries in (I), (II) and [Ta2OCl10]2- (Cotton & Najjar, 1981) reveal that in [Ta2OCl10]2- the Ta—CltransO bond [2.381 (6) Å] is longer than the Ta—CltransCl bond. In (II), the corresponding trend is not clear. However, as noted above, in (I) the bridging oxide interacts more strongly with Ta1 [Ta1—O1 = 1.787 (4) Å], with greater [O(pπ)Ta(dπ)] donation compensating for the presence of only three π-donor chlorides and weak donation from the S atoms. In contrast, for atom Ta2, which carries five π-donor chlorides, the Ta2—O1 bond is much longer [2.057 (4) Å], and this correlates with Ta—CltransO being shorter [2.292 (2) Å] than Ta—CltransCl [2.317 (2)–2.362 (2) Å]. Consideration of the patterns in the bond lengths and the trans influence order described above would suggest that, despite the different architectures in the three compounds, the dominant interactions are those between the electron-poor TaV centres and the π-donor oxo and chloride ligands, with the neutral chalcogenoethers weakly bound and filling available coordination sites. The strong Ta—O—Ta bonds are evident from the IR spectra of all three compounds, which show a very strong and broad feature at ca 800 cm-1 ascribed to the antisymmetric stretching vibration of this unit (Dehnicke & Prinz, 1982).

Related literature top

For related literature, see: Benjamin et al. (2011); Cotton & Najjar (1981); D'Antonio, George, Lowrey & Karle (1971); Dehnicke & Prinz (1982); Jura et al. (2009, 2010); Noll & Mueller (1999); Sheldrick (2008); Xi et al. (2010).

Experimental top

[Cl5Ta(µ-O)TaCl3{iPrS(CH2)2SiPr}], (I), was prepared as follows. [(TaCl5)2{µ-iPrS(CH2)2SiPr}] (0.2 g) [prepared from TaCl5 and iPrS(CH2)2SiPr in anhydrous CH2Cl2] was dissolved in anhydrous CH2Cl2 (3 ml), n-hexane (2 ml) was layered on top, and the mixture refrigerated. Small yellow crystals of (I) grew after a few days, and these were isolated by decanting off the mother liquor and then dried in vacuo. Spectroscopic analysis: 1H NMR (CD2Cl2, 295 K, δ, p.p.m.): 1.43 [d, J = 6 Hz (6H)], 1.63 [d, J = 6 Hz (6H)], 3.29 [m, (2H)], 3.54 [m, (2H)], 3.62–3.69 [m, (2H)]; IR (Nujol, ν, cm-1): 801 (vs, br) (Ta—O—Ta), 368 (m), 349 (s), 317 (s) (Ta—Cl).

[(TaCl4)2(µ-O)(µ-Me2Se2)], (II), was prepared as follows. TaCl5 (0.36 g, 1.0 mmol) was suspended in anhydrous CH2Cl2 (10 ml) and stirred whilst Me2Se2 (0.37 g, 1.0 mmol) was slowly added. The reaction mixture rapidly turned a deep orange and after 10 min was concentrated to 3 ml in vacuo. The orange precipitate was separated off and washed with dry hexane (10 ml). Refrigeration of the filtrate for several days gave deep-orange crystals of (II), which were manually separated from an orange oil and rinsed with n-hexane. Spectroscopic analysis: 1H NMR (CD2Cl2, 295 K, δ, p.p.m.): 3.15 (s); IR (Nujol, ν, cm-1): 800 (vs) (Ta—O—Ta), 336 (sh), 315 (vs, br) (Ta—Cl).

Refinement top

H atoms were placed in calculated positions, with C—H = 0.98 (methyl H) or 0.99 Å (CH2), and with Uiso(H) = 1.5Ueq(methyl C) or 1.2Ueq(methylene C). The AFIX 137 command (SHELXL97; Sheldrick, 2008) was used with the Me groups to estimate their initial conformations.

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1998) and DENZO (Otwinowski & Minor, 1997); cell refinement: COLLECT (Nonius, 1998) and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT (Nonius, 1998) and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The discrete molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The discrete molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
(I) [1,2-bis(isopropylsulfanyl)ethane-2κ2S,S']octachlorido- 1κ5Cl,2κ3Cl-µ-oxido-ditantalum(V) top
Crystal data top
[Ta2Cl8O(C8H18S2)]Dx = 2.488 Mg m3
Mr = 839.84Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 100483 reflections
a = 15.684 (3) Åθ = 2.9–27.5°
b = 13.007 (2) ŵ = 10.89 mm1
c = 21.981 (4) ÅT = 120 K
V = 4484.4 (14) Å3Plate, yellow
Z = 80.15 × 0.06 × 0.01 mm
F(000) = 3104
Data collection top
Bruker Nonius APEXII CCD camera on κ-goniostat
diffractometer
5139 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode4364 reflections with I > 2σ(I)
10cm confocal mirrors monochromatorRint = 0.055
Detector resolution: 4096x4096pixels / 62x62mm pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 1420
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1616
Tmin = 0.425, Tmax = 0.897l = 2828
36044 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + 47.4498P]
where P = (Fo2 + 2Fc2)/3
5139 reflections(Δ/σ)max = 0.001
194 parametersΔρmax = 1.26 e Å3
0 restraintsΔρmin = 1.23 e Å3
Crystal data top
[Ta2Cl8O(C8H18S2)]V = 4484.4 (14) Å3
Mr = 839.84Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.684 (3) ŵ = 10.89 mm1
b = 13.007 (2) ÅT = 120 K
c = 21.981 (4) Å0.15 × 0.06 × 0.01 mm
Data collection top
Bruker Nonius APEXII CCD camera on κ-goniostat
diffractometer
5139 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
4364 reflections with I > 2σ(I)
Tmin = 0.425, Tmax = 0.897Rint = 0.055
36044 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + 47.4498P]
where P = (Fo2 + 2Fc2)/3
5139 reflectionsΔρmax = 1.26 e Å3
194 parametersΔρmin = 1.23 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ta10.122173 (17)0.67937 (2)0.450206 (12)0.02203 (7)
Ta20.028140 (18)0.85299 (2)0.327462 (12)0.02434 (8)
Cl10.15077 (11)0.54250 (13)0.38585 (8)0.0309 (4)
Cl20.13947 (11)0.79462 (12)0.53118 (8)0.0288 (3)
Cl30.00818 (10)0.62581 (12)0.48379 (8)0.0293 (4)
Cl40.06825 (12)0.72523 (13)0.25984 (8)0.0333 (4)
Cl50.09426 (11)0.75863 (14)0.35272 (8)0.0334 (4)
Cl60.00228 (11)0.96675 (13)0.40917 (8)0.0320 (4)
Cl70.15599 (11)0.93887 (13)0.30790 (8)0.0326 (4)
Cl80.04585 (12)0.94923 (14)0.25791 (8)0.0367 (4)
O10.0917 (3)0.7684 (3)0.3922 (2)0.0273 (10)
S10.28316 (11)0.73779 (12)0.43775 (7)0.0252 (3)
S20.19843 (10)0.53807 (12)0.52560 (7)0.0238 (3)
C10.2940 (5)0.7191 (7)0.3132 (3)0.0386 (18)
H1A0.23590.69120.31320.058*
H1B0.32490.69320.27770.058*
H1C0.29160.79430.31160.058*
C20.3397 (5)0.6857 (6)0.3710 (3)0.0308 (15)
H20.34030.60890.37320.037*
C30.4306 (4)0.7255 (6)0.3725 (4)0.0377 (17)
H3A0.45830.70310.41020.057*
H3B0.43010.80080.37080.057*
H3C0.46210.69840.33750.057*
C40.3349 (5)0.6676 (5)0.4989 (3)0.0312 (15)
H4A0.39740.67130.49310.037*
H4B0.32130.70160.53810.037*
C50.3088 (4)0.5558 (5)0.5029 (3)0.0272 (14)
H5A0.34620.52040.53250.033*
H5B0.31770.52310.46270.033*
C60.1081 (5)0.5689 (6)0.6289 (3)0.0364 (17)
H6A0.07380.61780.60550.055*
H6B0.10580.58680.67210.055*
H6C0.08560.49930.62300.055*
C70.2003 (4)0.5730 (6)0.6070 (3)0.0286 (15)
H70.22280.64460.61170.034*
C80.2563 (5)0.4987 (6)0.6428 (3)0.0383 (17)
H8A0.31480.50200.62740.057*
H8B0.23430.42860.63810.057*
H8C0.25560.51780.68590.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ta10.02237 (14)0.02247 (14)0.02124 (13)0.00038 (10)0.00053 (11)0.00019 (10)
Ta20.02700 (15)0.02398 (14)0.02203 (14)0.00050 (11)0.00095 (11)0.00123 (11)
Cl10.0339 (9)0.0302 (8)0.0286 (8)0.0014 (7)0.0016 (7)0.0061 (7)
Cl20.0339 (9)0.0261 (8)0.0263 (8)0.0001 (7)0.0012 (7)0.0025 (6)
Cl30.0244 (8)0.0288 (8)0.0348 (9)0.0025 (6)0.0022 (7)0.0033 (7)
Cl40.0385 (10)0.0316 (9)0.0297 (9)0.0030 (7)0.0062 (7)0.0058 (7)
Cl50.0309 (9)0.0367 (9)0.0326 (9)0.0065 (7)0.0027 (7)0.0031 (7)
Cl60.0317 (9)0.0335 (9)0.0306 (9)0.0007 (7)0.0040 (7)0.0050 (7)
Cl70.0345 (9)0.0297 (8)0.0337 (9)0.0068 (7)0.0077 (7)0.0036 (7)
Cl80.0401 (10)0.0407 (10)0.0293 (9)0.0110 (8)0.0011 (8)0.0083 (8)
O10.030 (2)0.028 (2)0.024 (2)0.003 (2)0.003 (2)0.000 (2)
S10.0255 (8)0.0249 (8)0.0250 (8)0.0027 (6)0.0028 (7)0.0005 (6)
S20.0242 (8)0.0230 (8)0.0240 (8)0.0010 (6)0.0013 (7)0.0009 (6)
C10.030 (4)0.060 (5)0.025 (4)0.007 (4)0.006 (3)0.004 (4)
C20.033 (4)0.033 (4)0.027 (3)0.005 (3)0.009 (3)0.003 (3)
C30.027 (4)0.048 (5)0.038 (4)0.001 (3)0.005 (3)0.001 (4)
C40.029 (4)0.036 (4)0.028 (4)0.007 (3)0.002 (3)0.006 (3)
C50.028 (4)0.029 (3)0.025 (3)0.001 (3)0.004 (3)0.010 (3)
C60.037 (4)0.047 (4)0.025 (4)0.004 (3)0.004 (3)0.004 (3)
C70.031 (4)0.035 (4)0.020 (3)0.003 (3)0.001 (3)0.000 (3)
C80.039 (4)0.047 (4)0.029 (4)0.001 (4)0.000 (3)0.004 (3)
Geometric parameters (Å, º) top
Ta1—O11.787 (4)C2—C31.518 (10)
Ta1—Cl32.2826 (17)C2—H21.0000
Ta1—Cl12.3177 (16)C3—H3A0.9800
Ta1—Cl22.3429 (17)C3—H3B0.9800
Ta1—S12.6511 (17)C3—H3C0.9800
Ta1—S22.7486 (16)C4—C51.513 (9)
Ta2—O12.057 (4)C4—H4A0.9900
Ta2—Cl82.2916 (17)C4—H4B0.9900
Ta2—Cl42.3166 (17)C5—H5A0.9900
Ta2—Cl72.3354 (17)C5—H5B0.9900
Ta2—Cl52.3452 (17)C6—C71.525 (10)
Ta2—Cl62.3622 (17)C6—H6A0.9800
S1—C41.817 (7)C6—H6B0.9800
S1—C21.844 (7)C6—H6C0.9800
S2—C51.817 (7)C7—C81.524 (10)
S2—C71.846 (7)C7—H71.0000
C1—C21.521 (10)C8—H8A0.9800
C1—H1A0.9800C8—H8B0.9800
C1—H1B0.9800C8—H8C0.9800
C1—H1C0.9800
O1—Ta1—Cl3100.88 (16)C3—C2—C1111.3 (6)
O1—Ta1—Cl196.58 (15)C3—C2—S1108.0 (5)
Cl3—Ta1—Cl197.83 (6)C1—C2—S1109.4 (5)
O1—Ta1—Cl299.07 (15)C3—C2—H2109.4
Cl3—Ta1—Cl293.06 (6)C1—C2—H2109.4
Cl1—Ta1—Cl2158.87 (6)S1—C2—H2109.4
O1—Ta1—S189.74 (15)C2—C3—H3A109.5
Cl3—Ta1—S1166.90 (6)C2—C3—H3B109.5
Cl1—Ta1—S188.44 (6)H3A—C3—H3B109.5
Cl2—Ta1—S177.57 (6)C2—C3—H3C109.5
O1—Ta1—S2168.44 (15)H3A—C3—H3C109.5
Cl3—Ta1—S289.47 (6)H3B—C3—H3C109.5
Cl1—Ta1—S276.71 (6)C5—C4—S1113.8 (5)
Cl2—Ta1—S285.38 (5)C5—C4—H4A108.8
S1—Ta1—S280.76 (5)S1—C4—H4A108.8
O1—Ta2—Cl8177.98 (14)C5—C4—H4B108.8
O1—Ta2—Cl485.94 (13)S1—C4—H4B108.8
Cl8—Ta2—Cl495.81 (6)H4A—C4—H4B107.7
O1—Ta2—Cl788.12 (14)C4—C5—S2113.3 (5)
Cl8—Ta2—Cl792.91 (7)C4—C5—H5A108.9
Cl4—Ta2—Cl789.53 (6)S2—C5—H5A108.9
O1—Ta2—Cl587.30 (14)C4—C5—H5B108.9
Cl8—Ta2—Cl591.68 (7)S2—C5—H5B108.9
Cl4—Ta2—Cl589.93 (7)H5A—C5—H5B107.7
Cl7—Ta2—Cl5175.41 (6)C7—C6—H6A109.5
O1—Ta2—Cl683.78 (13)C7—C6—H6B109.5
Cl8—Ta2—Cl694.48 (7)H6A—C6—H6B109.5
Cl4—Ta2—Cl6169.68 (6)C7—C6—H6C109.5
Cl7—Ta2—Cl689.30 (6)H6A—C6—H6C109.5
Cl5—Ta2—Cl690.42 (6)H6B—C6—H6C109.5
Ta1—O1—Ta2165.9 (3)C6—C7—C8111.1 (6)
C4—S1—C2100.9 (3)C6—C7—S2106.4 (5)
C4—S1—Ta1101.8 (2)C8—C7—S2110.7 (5)
C2—S1—Ta1115.8 (2)C6—C7—H7109.5
C5—S2—C7102.7 (3)C8—C7—H7109.5
C5—S2—Ta199.4 (2)S2—C7—H7109.5
C7—S2—Ta1115.3 (2)C7—C8—H8A109.5
C2—C1—H1A109.5C7—C8—H8B109.5
C2—C1—H1B109.5H8A—C8—H8B109.5
H1A—C1—H1B109.5C7—C8—H8C109.5
C2—C1—H1C109.5H8A—C8—H8C109.5
H1A—C1—H1C109.5H8B—C8—H8C109.5
H1B—C1—H1C109.5
S1—C4—C5—S267.7 (6)
(II) µ-dimethyldiselane-κ2Se:Se'-µ-oxido- bis[tetrachloridotantalum(V)] top
Crystal data top
[Ta2Cl8O(C2H6Se2)]F(000) = 3008
Mr = 849.49Dx = 3.450 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 28.447 (3) ÅCell parameters from 19057 reflections
b = 8.2681 (5) Åθ = 2.9–27.5°
c = 16.2051 (10) ŵ = 19.10 mm1
β = 120.875 (5)°T = 120 K
V = 3271.3 (4) Å3Prism, yellow
Z = 80.15 × 0.10 × 0.04 mm
Data collection top
Bruker Nonius APEXII CCD camera on κ-goniostat
diffractometer
3762 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode3585 reflections with I > 2σ(I)
10cm confocal mirrors monochromatorRint = 0.035
Detector resolution: 4096x4096pixels / 62x62mm pixels mm-1θmax = 27.6°, θmin = 2.9°
ϕ and ω scansh = 3626
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1010
Tmin = 0.219, Tmax = 0.466l = 2121
21221 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.041H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + 21.4847P]
where P = (Fo2 + 2Fc2)/3
3762 reflections(Δ/σ)max = 0.004
138 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 1.16 e Å3
Crystal data top
[Ta2Cl8O(C2H6Se2)]V = 3271.3 (4) Å3
Mr = 849.49Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.447 (3) ŵ = 19.10 mm1
b = 8.2681 (5) ÅT = 120 K
c = 16.2051 (10) Å0.15 × 0.10 × 0.04 mm
β = 120.875 (5)°
Data collection top
Bruker Nonius APEXII CCD camera on κ-goniostat
diffractometer
3762 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3585 reflections with I > 2σ(I)
Tmin = 0.219, Tmax = 0.466Rint = 0.035
21221 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.041H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + 21.4847P]
where P = (Fo2 + 2Fc2)/3
3762 reflectionsΔρmax = 0.89 e Å3
138 parametersΔρmin = 1.16 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ta10.634454 (6)0.603645 (17)0.482247 (10)0.01236 (5)
Ta20.580482 (6)0.728943 (18)0.641016 (9)0.01242 (5)
Se10.688628 (15)0.89793 (4)0.57786 (3)0.01552 (8)
Se20.612013 (15)1.00843 (4)0.57574 (2)0.01501 (8)
Cl10.56640 (4)0.77033 (11)0.36969 (6)0.01810 (18)
Cl20.68325 (4)0.64564 (12)0.40248 (6)0.01975 (18)
Cl30.71437 (4)0.49008 (11)0.61030 (6)0.02066 (19)
Cl40.59268 (4)0.36547 (11)0.41676 (6)0.01928 (18)
Cl50.67014 (4)0.73427 (12)0.77105 (6)0.0214 (2)
Cl60.55522 (4)0.92489 (12)0.71354 (7)0.0238 (2)
Cl70.49864 (4)0.77211 (11)0.49799 (6)0.01925 (19)
Cl80.55424 (4)0.50337 (11)0.68478 (6)0.02059 (19)
O10.60785 (10)0.6356 (3)0.56555 (17)0.0144 (5)
C10.68573 (18)1.0363 (5)0.4778 (3)0.0222 (8)
H1A0.64871.03370.42110.033*
H1B0.71200.99710.46030.033*
H1C0.69501.14750.50170.033*
C20.64923 (18)1.1504 (5)0.6876 (3)0.0252 (9)
H2A0.67271.08560.74500.038*
H2B0.62201.20800.69630.038*
H2C0.67171.22870.67770.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ta10.01322 (8)0.01403 (8)0.01283 (7)0.00285 (5)0.00883 (6)0.00179 (5)
Ta20.01289 (8)0.01520 (8)0.01164 (7)0.00059 (5)0.00806 (6)0.00125 (5)
Se10.01300 (18)0.01649 (18)0.01897 (17)0.00161 (13)0.00956 (15)0.00215 (13)
Se20.01533 (19)0.01437 (18)0.01838 (17)0.00213 (14)0.01085 (15)0.00126 (13)
Cl10.0171 (5)0.0208 (4)0.0158 (4)0.0051 (3)0.0080 (4)0.0047 (3)
Cl20.0201 (5)0.0264 (5)0.0205 (4)0.0027 (4)0.0159 (4)0.0019 (4)
Cl30.0161 (5)0.0247 (5)0.0208 (4)0.0075 (4)0.0092 (4)0.0071 (4)
Cl40.0241 (5)0.0164 (4)0.0207 (4)0.0006 (4)0.0139 (4)0.0013 (3)
Cl50.0179 (5)0.0250 (5)0.0155 (4)0.0030 (4)0.0044 (4)0.0009 (3)
Cl60.0318 (6)0.0246 (5)0.0238 (4)0.0011 (4)0.0205 (4)0.0062 (4)
Cl70.0126 (4)0.0247 (5)0.0182 (4)0.0024 (3)0.0063 (4)0.0019 (3)
Cl80.0252 (5)0.0207 (4)0.0197 (4)0.0058 (4)0.0143 (4)0.0007 (3)
O10.0126 (13)0.0135 (12)0.0156 (12)0.0024 (10)0.0061 (10)0.0013 (10)
C10.025 (2)0.022 (2)0.032 (2)0.0074 (17)0.0232 (18)0.0106 (16)
C20.028 (2)0.0173 (19)0.031 (2)0.0052 (17)0.0159 (19)0.0102 (17)
Geometric parameters (Å, º) top
Ta1—O11.874 (2)Ta2—Se22.8701 (4)
Ta1—Cl42.2632 (9)Se1—C11.952 (4)
Ta1—Cl12.3130 (9)Se1—Se22.3471 (6)
Ta1—Cl32.3483 (9)Se2—C21.953 (4)
Ta1—Cl22.3578 (9)C1—H1A0.9800
Ta1—Se12.8715 (4)C1—H1B0.9800
Ta2—O11.917 (2)C1—H1C0.9800
Ta2—Cl82.2543 (9)C2—H2A0.9800
Ta2—Cl72.3198 (9)C2—H2B0.9800
Ta2—Cl62.3215 (9)C2—H2C0.9800
Ta2—Cl52.3305 (10)
O1—Ta1—Cl498.71 (8)O1—Ta2—Se277.46 (7)
O1—Ta1—Cl190.00 (8)Cl8—Ta2—Se2177.01 (2)
Cl4—Ta1—Cl197.07 (3)Cl7—Ta2—Se281.44 (3)
O1—Ta1—Cl389.17 (8)Cl6—Ta2—Se282.02 (3)
Cl4—Ta1—Cl395.95 (3)Cl5—Ta2—Se285.07 (3)
Cl1—Ta1—Cl3166.93 (3)C1—Se1—Se296.71 (12)
O1—Ta1—Cl2160.54 (8)C1—Se1—Ta1105.43 (13)
Cl4—Ta1—Cl2100.73 (3)Se2—Se1—Ta194.861 (16)
Cl1—Ta1—Cl288.27 (3)C2—Se2—Se199.40 (13)
Cl3—Ta1—Cl288.17 (3)C2—Se2—Ta2105.35 (13)
O1—Ta1—Se178.18 (8)Se1—Se2—Ta298.318 (16)
Cl4—Ta1—Se1176.03 (2)Ta1—O1—Ta2164.26 (15)
Cl1—Ta1—Se185.46 (3)Se1—C1—H1A109.5
Cl3—Ta1—Se181.60 (3)Se1—C1—H1B109.5
Cl2—Ta1—Se182.36 (3)H1A—C1—H1B109.5
O1—Ta2—Cl8100.14 (8)Se1—C1—H1C109.5
O1—Ta2—Cl787.27 (8)H1A—C1—H1C109.5
Cl8—Ta2—Cl796.72 (4)H1B—C1—H1C109.5
O1—Ta2—Cl6159.48 (8)Se2—C2—H2A109.5
Cl8—Ta2—Cl6100.34 (4)Se2—C2—H2B109.5
Cl7—Ta2—Cl689.18 (4)H2A—C2—H2B109.5
O1—Ta2—Cl588.29 (8)Se2—C2—H2C109.5
Cl8—Ta2—Cl596.69 (3)H2A—C2—H2C109.5
Cl7—Ta2—Cl5166.42 (4)H2B—C2—H2C109.5
Cl6—Ta2—Cl590.49 (4)

Experimental details

(I)(II)
Crystal data
Chemical formula[Ta2Cl8O(C8H18S2)][Ta2Cl8O(C2H6Se2)]
Mr839.84849.49
Crystal system, space groupOrthorhombic, PbcaMonoclinic, C2/c
Temperature (K)120120
a, b, c (Å)15.684 (3), 13.007 (2), 21.981 (4)28.447 (3), 8.2681 (5), 16.2051 (10)
α, β, γ (°)90, 90, 9090, 120.875 (5), 90
V3)4484.4 (14)3271.3 (4)
Z88
Radiation typeMo KαMo Kα
µ (mm1)10.8919.10
Crystal size (mm)0.15 × 0.06 × 0.010.15 × 0.10 × 0.04
Data collection
DiffractometerBruker Nonius APEXII CCD camera on κ-goniostat
diffractometer
Bruker Nonius APEXII CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Multi-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.425, 0.8970.219, 0.466
No. of measured, independent and
observed [I > 2σ(I)] reflections
36044, 5139, 4364 21221, 3762, 3585
Rint0.0550.035
(sin θ/λ)max1)0.6510.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.072, 1.10 0.018, 0.041, 1.10
No. of reflections51393762
No. of parameters194138
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
w = 1/[σ2(Fo2) + 47.4498P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + 21.4847P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.26, 1.230.89, 1.16

Computer programs: COLLECT (Nonius, 1998) and DENZO (Otwinowski & Minor, 1997), DIRDIF99 (Beurskens et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) for (I) top
Ta1—O11.787 (4)Ta2—O12.057 (4)
Ta1—Cl32.2826 (17)Ta2—Cl82.2916 (17)
Ta1—Cl12.3177 (16)Ta2—Cl42.3166 (17)
Ta1—Cl22.3429 (17)Ta2—Cl72.3354 (17)
Ta1—S12.6511 (17)Ta2—Cl52.3452 (17)
Ta1—S22.7486 (16)Ta2—Cl62.3622 (17)
O1—Ta1—S189.74 (15)S1—Ta1—S280.76 (5)
O1—Ta1—S2168.44 (15)Ta1—O1—Ta2165.9 (3)
Selected geometric parameters (Å, º) for (II) top
Ta1—O11.874 (2)Ta2—Cl82.2543 (9)
Ta1—Cl42.2632 (9)Ta2—Cl72.3198 (9)
Ta1—Cl12.3130 (9)Ta2—Cl62.3215 (9)
Ta1—Cl32.3483 (9)Ta2—Cl52.3305 (10)
Ta1—Cl22.3578 (9)Ta2—Se22.8701 (4)
Ta1—Se12.8715 (4)Se1—Se22.3471 (6)
Ta2—O11.917 (2)
O1—Ta1—Se178.18 (8)C2—Se2—Ta2105.35 (13)
O1—Ta2—Se277.46 (7)Se1—Se2—Ta298.318 (16)
C1—Se1—Ta1105.43 (13)Ta1—O1—Ta2164.26 (15)
Se2—Se1—Ta194.861 (16)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds