Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
(2RS,4RS)-7-Fluoro-2-(2-phenyl­ethyl)-2,3,4,5-tetra­hydro-1H-1,4-ep­oxy-1-benzazepine, C18H18FNO, (I), and (2RS,4RS)-7-chloro-2-(2-phenyl­ethyl)-2,3,4,5-tetra­hydro-1H-1,4-ep­oxy-1-benzazepine, C18H18ClNO, (II), are isomorphous but not strictly isostructural, as the slight differences in the unit-cell dimensions and mol­ecular conformations are sufficient to preclude, in the structure of (I), the direction-specific inter­molecular inter­actions present in the structure of (II), where the mol­ecules are linked into sheets by a combination of C-H...N and C-H...[pi](arene) hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827011201654X/sk3435sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011201654X/sk3435Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011201654X/sk3435IIsup3.hkl
Contains datablock II

CCDC references: 879462; 879463

Comment top

We report here the structures of the two title compounds, (I) and (II) (Figs. 1 and 2), which we compare with their 2-styryl analogues (Acosta et al., 2008). The present work forms part of a continuing study of the structures of substituted tetrahydro-1,4-epoxy-1-benzazepines (Acosta et al., 2008, 2010a,b; Blanco et al., 2008, 2009, 2012; Gómez et al., 2008, 2009, 2010; Palma et al., 2009; Sanabria et al., 2010). Compounds (I) and (II) were prepared by appropriate modification of the method previously reported (Acosta et al., 2008). The importance of compounds of this general type arises from their high potential value as anti-Chagasic and anti-leishmanicidal agents (Gómez-Ayala et al., 2010).

Compounds (I) and (II) are isomorphous, although with modest differences between the corresponding pairs of unit-cell dimensions. Thus, for example, the a repeat distance is greater in (II) than in (I) by ca 4.8%, while the b repeat distance is smaller in (II) by ca 2.7%. Both compounds crystallize as true racemates in space group P21/c and they are approximately isostructural, in that each structure can be refined using the atomic coordinates of the other as the starting point, provided that due allowance is made for the presence in (I) of a 7-fluoro substituent as opposed to a 7-chloro substituent in (II).

There are, however, some detailed differences between the molecular conformations of (I) and (II), in particular the conformation of the 2-phenylethyl side chain and its orientation relative to the rest of the molecule, as indicated by the values of the torsion angles C2—C21—C22—C221 and C21—C22—C221—C222 (Table 1; Figs. 1 and 2). On the other hand, the conformations of the heterobicyclic ring systems, as shown by the values (Table 1) of the ring-puckering parameters (Cremer & Pople, 1975), are very similar. In each of (I) and (II), the five-membered ring adopts the half-chair conformation, for which the ideal value of the puckering angle ϕ2 is (36k + 18)°, where k represents an integer. The conformations of the six-membered rings are intermediate between the envelope form, for which the idealized puckering angles are θ = 54.7° and ϕ = (60k)°, and the half-chair form, where the idealized puckering angles are θ = 50.8° and ϕ = (60k + 30)°, where k again represents an integer.

The crystallization behaviour of (I) and (II) may be contrasted with that of the 2-styryl analogues (Acosta et al., 2008), the molecular constitutions of which differ from those of (I) and (II) only by having two fewer H atoms in the hydrocarbyl side chain. The 2-styryl compounds crystallize in different crystal systems, both in Sohnke space groups and neither of them as a true racemate, although their method of synthesis is expected to lead to the formation of racemic mixtures (Acosta et al., 2008). The 2-styryl analogue of (I) crystallizes as a single enantiomorph in space group P21, i.e. as a conglomerate, while the 2-styryl analogue of (II) crystallizes as an inversion twin in space group P212121. Hence, these two styryl compounds are neither isomorphous with one another nor with their 2-phenylethyl analogues.

In the crystal structure of (II), the molecules are linked into sheets by a combination of C—H···N and C—H···π(arene) hydrogen bonds (Table 2), and the formation of this hydrogen-bonded sheet can be readily analysed in terms of two substructures (Ferguson et al., 1998a,b; Gregson et al., 2000), each in the form of a simple chain. Molecules of (II) related by the 21 axis along (1, y, 1/4) are linked by C—H···N hydrogen bonds to form a C(9) (Bernstein et al., 1995) chain running parallel to the [010] direction (Fig. 3). In addition, molecules related by translation along [100] are linked by a C—H···π(arene) to form a second chain motif, and the combination of chains along [100] and [010] leads to the formation of a sheet lying parallel to (001) in the form of (4,4) net containing just one type of ring (Fig. 3).

The geometric parameters (Table 2) for the intermolecular contacts in the structure of (I) which correspond to hydrogen bonds in the structure of (II) show some significantly longer distances, particularly for the H···A contacts. Thus, for example, while the H···N distance in the C—H···N hydrogen bond in (II) is well below the sum of the van der Waals radii for H and N (2.64 Å; Bondi, 1964; Rowland & Taylor, 1996), the corresponding distance in (I) is markedly greater than this van der Waals sum. At the same time, the C—H···N angle in (I) is ca 40° smaller than that in (II) and this angle in itself would be sufficient to raise doubts about the structural significance of this contact (cf. Wood et al., 2009), irrespective of the H···A distance. In a similar way, the H···A and D···A distances for the C—H···π(arene) contact are much longer for (I) than for (II). Hence, the modest differences in unit-cell dimensions and atomic coordinates between (I) and (II) are sufficient to render the contacts in (I), which correspond to the hydrogen bonds in (II), far too long to be regarded as hydrogen bonds or as structurally significant. It is for this reason that the isomorphous compounds (I) and (II) are not strictly isostructural, but only approximately so.

We have recently reported a similar phenomenon in a series of isomorphous 4-hydroxy-2-vinyl-2,3,4,5–1-benzazepines, (III)–(V) (Acosta et al., 2009), where modest but monotonic changes in all of the unit-cell dimensions from (III) via (IV) to (V) are sufficient to preclude, in the structure of (V), the occurrence of one of the hydrogen bonds present in the structures of (III) and (IV).

Related literature top

For related literature, see: Acosta et al. (2008, 2009, 2010a, 2010b); Bernstein et al. (1995); Blanco et al. (2008, 2009, 2012); Bondi (1964); Cremer & Pople (1975); Ferguson et al. (1998a, 1998b); Gómez et al. (2008, 2009, 2010); Gómez-Ayala, Castrillón, Palma, Leal, Escobar & Bahsas (2010); Gregson et al. (2000); Palma et al. (2009); Rowland & Taylor (1996); Sanabria et al. (2010); Wood et al. (2009).

Experimental top

For the synthesis of (I) and (II), sodium tungstate dihydrate (10 mol% Na2WO4.2H2O), followed by 30% aqueous hydrogen peroxide solution (12 mmol), were added to a stirred and cooled (ice-bath) solution of the appropriate substituted 2-allyl-N-(3-phenylpropyl)aniline (4 mmol) in methanol (30 ml). The resulting mixtures were stirred at 273 K for 2–8 h, and then at ambient temperature for an additional 12–20 h (the progress of the reactions was monitored by thin-layer chromatography). Each mixture was filtered and then extracted with ethyl acetate (2 × 50 ml) and, for each, the combined extracts were dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and toluene (30 ml) was added to the organic residue. The resulting solution was heated under reflux for 6–8 h. After cooling each solution to ambient temperature, the solvent was removed under reduced pressure and the crude products were purified by column chromatography on silica gel using heptane–ethyl acetate (compositions 50:1 to 10:1 v/v) as eluant. Crystallization from heptane or heptane–ethyl acetate [Solvent ratio?], at ambient temperature and exposed to air, gave colourless crystals suitable for single-crystal X-ray diffraction. Compound (I): yield 42%, m.p. 371 K; MS (70 eV) m/z (%) = 283 (M+, 15), 266 (2), 253 (1), 148 (18), 136 (100), 122 (18), 91 (48). Compound (II), yield 32%, m.p. 374 K; MS (70 eV) m/z (%) = 299 (M+, 35Cl, 15), 282 (3), 269 (1), 164 (12), 152 (100), 138 (15), 91 (67).

Refinement top

All H atoms were located in difference maps and then treated as riding in geometrically idealized positions, with C—H = 0.95 (aromatic), 0.99 (CH2) or 1.00 Å (aliphatic CH), and with Uiso(H) = 1.2Ueq(C). In each compound, the reference molecule was selected to have the R configuration at atom C4, and on this basis the configuration at atom C2 is S [R?]. The centrosymmetric space group thus accommodates equal numbers of the (2R,4R) and (2S,4S) enantiomers in each unit cell.

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the (2R,4R) enantiomer of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular structure of the (2R,4R) enantiomer of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of (II), showing the formation of a hydrogen-bonded (dashed lines) sheet parallel to (001). For the sake of clarity, H atoms bonded to C atoms which are not involved in the motifs shown have been omitted.
(I) (2RS,4RS)-7-Fluoro-2-(2-phenylethyl)-2,3,4,5-tetrahydro- 1H-1,4-epoxy-1-benzazepine top
Crystal data top
C18H18FNOF(000) = 600
Mr = 283.33Dx = 1.299 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3324 reflections
a = 9.6285 (4) Åθ = 2.8–27.5°
b = 11.2875 (5) ŵ = 0.09 mm1
c = 13.5147 (6) ÅT = 120 K
β = 99.565 (3)°Block, colourless
V = 1448.38 (11) Å30.45 × 0.31 × 0.16 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3324 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2004 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.8°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1414
Tmin = 0.961, Tmax = 0.986l = 1717
20017 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.4791P]
where P = (Fo2 + 2Fc2)/3
3324 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C18H18FNOV = 1448.38 (11) Å3
Mr = 283.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6285 (4) ŵ = 0.09 mm1
b = 11.2875 (5) ÅT = 120 K
c = 13.5147 (6) Å0.45 × 0.31 × 0.16 mm
β = 99.565 (3)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3324 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2004 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.986Rint = 0.068
20017 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
3324 reflectionsΔρmin = 0.22 e Å3
190 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.59693 (15)0.58170 (13)0.32908 (10)0.0235 (4)
C20.59285 (19)0.46297 (15)0.37747 (13)0.0235 (4)
H20.59850.47220.45160.028*
C30.44774 (19)0.41139 (16)0.33073 (13)0.0257 (4)
H3A0.45720.32940.30670.031*
H3B0.38210.41160.37980.031*
C40.39692 (19)0.49517 (16)0.24318 (13)0.0260 (4)
H40.35640.44950.18170.031*
C50.29254 (19)0.58747 (16)0.26785 (13)0.0270 (4)
H5A0.25270.63160.20640.032*
H5B0.21420.54790.29380.032*
C5a0.36658 (19)0.67200 (15)0.34554 (13)0.0233 (4)
C60.2928 (2)0.75762 (16)0.39015 (13)0.0266 (4)
H60.19360.76450.37170.032*
C70.3655 (2)0.83210 (16)0.46127 (13)0.0271 (4)
F70.29029 (12)0.91484 (9)0.50416 (8)0.0378 (3)
C80.5089 (2)0.82680 (16)0.49151 (13)0.0268 (4)
H80.55560.87850.54180.032*
C90.5830 (2)0.74319 (15)0.44597 (13)0.0245 (4)
H90.68250.73800.46430.029*
C9a0.51255 (19)0.66690 (15)0.37359 (13)0.0223 (4)
O140.52379 (13)0.55798 (11)0.22789 (8)0.0281 (3)
C210.71349 (19)0.38671 (16)0.35503 (13)0.0266 (4)
H21A0.70950.38430.28140.032*
H21B0.69850.30490.37740.032*
C220.86159 (19)0.42607 (17)0.40323 (14)0.0310 (5)
H22A0.88150.50570.37820.037*
H22B0.86750.43080.47700.037*
C2210.96877 (18)0.33860 (17)0.37783 (14)0.0287 (4)
C2221.0046 (2)0.23890 (18)0.43690 (15)0.0337 (5)
H2220.96730.22960.49720.040*
C2231.0936 (2)0.15280 (19)0.40971 (17)0.0413 (5)
H2231.11600.08510.45100.050*
C2241.1497 (2)0.1651 (2)0.32291 (18)0.0453 (6)
H2241.21130.10640.30430.054*
C2251.1156 (2)0.2635 (2)0.26324 (17)0.0436 (6)
H2251.15400.27250.20330.052*
C2261.0259 (2)0.34936 (18)0.29000 (15)0.0357 (5)
H2261.00300.41640.24800.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0292 (9)0.0230 (8)0.0181 (7)0.0009 (7)0.0034 (6)0.0020 (6)
C20.0280 (10)0.0223 (9)0.0205 (9)0.0007 (8)0.0050 (8)0.0007 (7)
C30.0291 (10)0.0219 (9)0.0270 (10)0.0010 (9)0.0073 (8)0.0004 (8)
C40.0295 (11)0.0243 (10)0.0240 (9)0.0054 (9)0.0033 (8)0.0018 (8)
C50.0274 (10)0.0263 (10)0.0261 (10)0.0015 (9)0.0003 (8)0.0024 (8)
C5a0.0263 (10)0.0214 (9)0.0218 (9)0.0007 (8)0.0031 (8)0.0049 (8)
C60.0249 (10)0.0274 (10)0.0275 (10)0.0039 (9)0.0040 (8)0.0068 (8)
C70.0358 (11)0.0217 (10)0.0256 (10)0.0080 (9)0.0105 (9)0.0025 (8)
F70.0437 (7)0.0322 (6)0.0388 (6)0.0124 (6)0.0108 (5)0.0047 (5)
C80.0331 (11)0.0223 (10)0.0245 (9)0.0008 (9)0.0036 (8)0.0013 (8)
C90.0248 (10)0.0223 (10)0.0261 (10)0.0015 (8)0.0034 (8)0.0028 (8)
C9a0.0265 (10)0.0195 (9)0.0216 (9)0.0012 (8)0.0055 (8)0.0049 (8)
O140.0329 (8)0.0329 (7)0.0188 (6)0.0055 (6)0.0050 (5)0.0002 (6)
C210.0282 (10)0.0249 (10)0.0274 (10)0.0009 (9)0.0065 (8)0.0025 (8)
C220.0303 (11)0.0282 (10)0.0332 (11)0.0016 (9)0.0017 (9)0.0040 (9)
C2210.0204 (10)0.0301 (11)0.0347 (11)0.0024 (9)0.0014 (8)0.0084 (9)
C2220.0245 (11)0.0376 (12)0.0381 (11)0.0033 (9)0.0023 (9)0.0026 (10)
C2230.0283 (11)0.0359 (12)0.0568 (14)0.0064 (10)0.0020 (10)0.0069 (11)
C2240.0204 (11)0.0532 (15)0.0607 (15)0.0033 (11)0.0022 (10)0.0286 (13)
C2250.0280 (11)0.0599 (16)0.0443 (13)0.0085 (12)0.0103 (10)0.0164 (12)
C2260.0276 (11)0.0401 (12)0.0393 (12)0.0069 (10)0.0049 (9)0.0063 (10)
Geometric parameters (Å, º) top
N1—C9a1.452 (2)C8—C91.387 (2)
N1—O141.4553 (17)C8—H80.9500
N1—C21.495 (2)C9—C9a1.392 (2)
C2—C211.516 (2)C9—H90.9500
C2—C31.548 (2)C21—C221.532 (3)
C2—H21.0000C21—H21A0.9900
C3—C41.530 (2)C21—H21B0.9900
C3—H3A0.9900C22—C2211.509 (3)
C3—H3B0.9900C22—H22A0.9900
C4—O141.457 (2)C22—H22B0.9900
C4—C51.522 (2)C221—C2221.390 (3)
C4—H41.0000C221—C2261.394 (3)
C5—C5a1.507 (2)C222—C2231.385 (3)
C5—H5A0.9900C222—H2220.9500
C5—H5B0.9900C223—C2241.378 (3)
C5a—C61.394 (2)C223—H2230.9500
C5a—C9a1.395 (2)C224—C2251.380 (3)
C6—C71.377 (3)C224—H2240.9500
C6—H60.9500C225—C2261.386 (3)
C7—F71.368 (2)C225—H2250.9500
C7—C81.375 (3)C226—H2260.9500
C9a—N1—O14107.12 (13)C9—C8—H8121.2
C9a—N1—C2110.82 (13)C8—C9—C9a120.38 (17)
O14—N1—C2101.67 (12)C8—C9—H9119.8
N1—C2—C21110.17 (14)C9a—C9—H9119.8
N1—C2—C3104.26 (14)C9—C9a—C5a121.13 (16)
C21—C2—C3111.98 (14)C9—C9a—N1117.36 (15)
N1—C2—H2110.1C5a—C9a—N1121.51 (16)
C21—C2—H2110.1N1—O14—C4104.04 (11)
C3—C2—H2110.1C2—C21—C22116.12 (15)
C4—C3—C2103.53 (14)C2—C21—H21A108.3
C4—C3—H3A111.1C22—C21—H21A108.3
C2—C3—H3A111.1C2—C21—H21B108.3
C4—C3—H3B111.1C22—C21—H21B108.3
C2—C3—H3B111.1H21A—C21—H21B107.4
H3A—C3—H3B109.0C221—C22—C21109.70 (15)
O14—C4—C5107.32 (14)C221—C22—H22A109.7
O14—C4—C3104.04 (14)C21—C22—H22A109.7
C5—C4—C3113.05 (14)C221—C22—H22B109.7
O14—C4—H4110.7C21—C22—H22B109.7
C5—C4—H4110.7H22A—C22—H22B108.2
C3—C4—H4110.7C222—C221—C226117.66 (18)
C5a—C5—C4109.43 (15)C222—C221—C22120.88 (17)
C5a—C5—H5A109.8C226—C221—C22121.23 (18)
C4—C5—H5A109.8C223—C222—C221121.4 (2)
C5a—C5—H5B109.8C223—C222—H222119.3
C4—C5—H5B109.8C221—C222—H222119.3
H5A—C5—H5B108.2C224—C223—C222120.2 (2)
C6—C5a—C9a118.27 (17)C224—C223—H223119.9
C6—C5a—C5121.61 (16)C222—C223—H223119.9
C9a—C5a—C5120.12 (16)C223—C224—C225119.3 (2)
C7—C6—C5a119.28 (17)C223—C224—H224120.4
C7—C6—H6120.4C225—C224—H224120.4
C5a—C6—H6120.4C224—C225—C226120.6 (2)
F7—C7—C8118.67 (16)C224—C225—H225119.7
F7—C7—C6118.01 (16)C226—C225—H225119.7
C8—C7—C6123.32 (17)C225—C226—C221120.9 (2)
C7—C8—C9117.60 (17)C225—C226—H226119.6
C7—C8—H8121.2C221—C226—H226119.6
C9a—N1—C2—C21162.34 (14)C6—C5a—C9a—N1178.82 (15)
O14—N1—C2—C2184.07 (16)C5—C5a—C9a—N10.4 (2)
C9a—N1—C2—C377.34 (16)O14—N1—C9a—C9150.96 (14)
O14—N1—C2—C336.25 (15)C2—N1—C9a—C998.94 (17)
N1—C2—C3—C411.95 (16)O14—N1—C9a—C5a29.4 (2)
C21—C2—C3—C4107.15 (16)C2—N1—C9a—C5a80.73 (19)
C2—C3—C4—O1416.74 (16)C9a—N1—O14—C467.96 (15)
C2—C3—C4—C599.36 (16)C2—N1—O14—C448.36 (15)
O14—C4—C5—C5a46.56 (18)C5—C4—O14—N179.43 (15)
C3—C4—C5—C5a67.57 (19)C3—C4—O14—N140.62 (15)
C4—C5—C5a—C6172.79 (15)N1—C2—C21—C2268.0 (2)
C4—C5—C5a—C9a8.1 (2)C3—C2—C21—C22176.49 (15)
C9a—C5a—C6—C71.3 (2)C2—C21—C22—C221177.41 (15)
C5—C5a—C6—C7179.53 (16)C21—C22—C221—C22287.2 (2)
C5a—C6—C7—F7179.67 (15)C21—C22—C221—C22687.1 (2)
C5a—C6—C7—C80.1 (3)C226—C221—C222—C2230.2 (3)
F7—C7—C8—C9179.17 (15)C22—C221—C222—C223174.38 (18)
C6—C7—C8—C91.3 (3)C221—C222—C223—C2240.5 (3)
C7—C8—C9—C9a1.0 (3)C222—C223—C224—C2250.4 (3)
C8—C9—C9a—C5a0.4 (3)C223—C224—C225—C2260.0 (3)
C8—C9—C9a—N1179.97 (15)C224—C225—C226—C2210.4 (3)
C6—C5a—C9a—C91.5 (2)C222—C221—C226—C2250.3 (3)
C5—C5a—C9a—C9179.29 (16)C22—C221—C226—C225174.79 (18)
(II) (2RS,4RS)-7-chloro-2-(2-phenylethyl)-2,3,4,5-tetrahydro- 1H-1,4-epoxy-1-benzazepine top
Crystal data top
C18H18ClNOF(000) = 632
Mr = 299.78Dx = 1.304 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3506 reflections
a = 10.0891 (10) Åθ = 2.7–27.5°
b = 10.981 (2) ŵ = 0.25 mm1
c = 13.7952 (18) ÅT = 120 K
β = 92.771 (11)°Block, colourless
V = 1526.6 (4) Å30.32 × 0.26 × 0.20 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3506 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2409 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.7°
ϕ and ω scansh = 1213
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1414
Tmin = 0.925, Tmax = 0.952l = 1717
22115 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.037P)2 + 0.7043P]
where P = (Fo2 + 2Fc2)/3
3506 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C18H18ClNOV = 1526.6 (4) Å3
Mr = 299.78Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0891 (10) ŵ = 0.25 mm1
b = 10.981 (2) ÅT = 120 K
c = 13.7952 (18) Å0.32 × 0.26 × 0.20 mm
β = 92.771 (11)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3506 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2409 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.952Rint = 0.055
22115 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.05Δρmax = 0.25 e Å3
3506 reflectionsΔρmin = 0.31 e Å3
190 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.57949 (15)0.59495 (14)0.32933 (10)0.0227 (4)
C20.58623 (17)0.47172 (16)0.37488 (13)0.0219 (4)
H20.58790.47930.44720.026*
C30.45627 (18)0.40941 (17)0.33744 (13)0.0248 (4)
H3A0.47370.32640.31320.030*
H3B0.39190.40430.38930.030*
C40.40463 (18)0.49283 (17)0.25492 (13)0.0248 (4)
H40.37450.44400.19680.030*
C50.29577 (19)0.57919 (17)0.28453 (14)0.0265 (4)
H5A0.25700.62150.22650.032*
H5B0.22440.53240.31440.032*
C5a0.35249 (18)0.67128 (17)0.35597 (13)0.0222 (4)
C60.27197 (19)0.75463 (17)0.40087 (13)0.0246 (4)
H60.17900.75490.38610.029*
C70.32673 (19)0.83715 (17)0.46696 (13)0.0257 (4)
Cl70.22206 (5)0.94235 (5)0.51950 (4)0.03639 (16)
C80.46189 (19)0.83834 (17)0.49189 (13)0.0266 (4)
H80.49780.89320.53950.032*
C90.54282 (19)0.75730 (17)0.44536 (13)0.0242 (4)
H90.63580.75800.46000.029*
C9a0.48956 (18)0.67498 (16)0.37753 (13)0.0212 (4)
O140.51930 (12)0.56742 (12)0.23372 (9)0.0264 (3)
C210.70888 (17)0.40527 (17)0.34434 (13)0.0240 (4)
H21A0.70860.40470.27260.029*
H21B0.70380.31960.36620.029*
C220.84035 (18)0.45963 (18)0.38382 (14)0.0268 (4)
H22A0.84550.54610.36410.032*
H22B0.84420.45630.45560.032*
C2210.95691 (18)0.39081 (17)0.34607 (14)0.0262 (4)
C2221.0290 (2)0.30931 (19)0.40455 (17)0.0365 (5)
H2221.00880.30010.47070.044*
C2231.1310 (2)0.2409 (2)0.3669 (2)0.0504 (7)
H2231.17980.18530.40750.061*
C2241.1614 (2)0.2534 (2)0.2708 (2)0.0525 (7)
H2241.23100.20690.24530.063*
C2251.0898 (2)0.3343 (2)0.21217 (18)0.0447 (6)
H2251.10990.34280.14590.054*
C2260.9888 (2)0.40310 (19)0.24932 (16)0.0332 (5)
H2260.94090.45910.20850.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0241 (8)0.0244 (8)0.0196 (8)0.0016 (7)0.0021 (6)0.0009 (6)
C20.0216 (9)0.0215 (10)0.0227 (9)0.0013 (8)0.0035 (7)0.0026 (7)
C30.0244 (10)0.0225 (10)0.0276 (10)0.0011 (8)0.0034 (8)0.0005 (8)
C40.0254 (10)0.0252 (10)0.0235 (10)0.0028 (8)0.0001 (8)0.0030 (8)
C50.0252 (10)0.0285 (11)0.0253 (10)0.0000 (9)0.0027 (8)0.0026 (8)
C5a0.0235 (10)0.0228 (10)0.0201 (9)0.0006 (8)0.0002 (7)0.0043 (8)
C60.0256 (10)0.0257 (10)0.0222 (9)0.0025 (8)0.0005 (8)0.0042 (8)
C70.0344 (11)0.0205 (10)0.0225 (10)0.0049 (9)0.0045 (8)0.0029 (8)
Cl70.0451 (3)0.0320 (3)0.0321 (3)0.0120 (2)0.0022 (2)0.0059 (2)
C80.0362 (12)0.0202 (10)0.0230 (10)0.0030 (9)0.0013 (8)0.0011 (8)
C90.0242 (10)0.0215 (10)0.0265 (10)0.0039 (8)0.0029 (8)0.0039 (8)
C9a0.0239 (10)0.0194 (9)0.0205 (9)0.0013 (8)0.0036 (7)0.0040 (7)
O140.0296 (7)0.0308 (7)0.0189 (7)0.0021 (6)0.0025 (5)0.0002 (6)
C210.0238 (10)0.0228 (10)0.0256 (10)0.0009 (8)0.0026 (8)0.0010 (8)
C220.0248 (10)0.0279 (11)0.0278 (10)0.0018 (8)0.0012 (8)0.0019 (8)
C2210.0189 (9)0.0237 (10)0.0360 (11)0.0045 (8)0.0013 (8)0.0063 (9)
C2220.0281 (11)0.0333 (12)0.0472 (14)0.0021 (10)0.0064 (10)0.0000 (10)
C2230.0267 (12)0.0312 (13)0.091 (2)0.0061 (10)0.0162 (13)0.0099 (14)
C2240.0220 (12)0.0429 (15)0.093 (2)0.0038 (11)0.0085 (13)0.0365 (15)
C2250.0282 (12)0.0521 (15)0.0550 (15)0.0150 (11)0.0146 (11)0.0261 (12)
C2260.0272 (11)0.0346 (12)0.0382 (12)0.0085 (9)0.0040 (9)0.0059 (10)
Geometric parameters (Å, º) top
N1—C9a1.448 (2)C8—C91.386 (3)
N1—O141.4568 (18)C8—H80.9500
N1—C21.492 (2)C9—C9a1.390 (3)
C2—C211.514 (2)C9—H90.9500
C2—C31.546 (3)C21—C221.531 (3)
C2—H21.0000C21—H21A0.9900
C3—C41.533 (3)C21—H21B0.9900
C3—H3A0.9900C22—C2211.511 (3)
C3—H3B0.9900C22—H22A0.9900
C4—O141.459 (2)C22—H22B0.9900
C4—C51.522 (3)C221—C2221.387 (3)
C4—H41.0000C221—C2261.394 (3)
C5—C5a1.506 (3)C222—C2231.395 (3)
C5—H5A0.9900C222—H2220.9500
C5—H5B0.9900C223—C2241.381 (4)
C5a—C61.389 (2)C223—H2230.9500
C5a—C9a1.401 (3)C224—C2251.381 (4)
C6—C71.382 (3)C224—H2240.9500
C6—H60.9500C225—C2261.387 (3)
C7—C81.390 (3)C225—H2250.9500
C7—Cl71.7462 (19)C226—H2260.9500
C9a—N1—O14107.38 (13)C7—C8—H8120.9
C9a—N1—C2111.96 (13)C8—C9—C9a120.79 (17)
O14—N1—C2101.63 (13)C8—C9—H9119.6
N1—C2—C21109.95 (14)C9a—C9—H9119.6
N1—C2—C3103.89 (14)C9—C9a—C5a120.48 (17)
C21—C2—C3112.66 (15)C9—C9a—N1118.26 (16)
N1—C2—H2110.1C5a—C9a—N1121.26 (16)
C21—C2—H2110.1N1—O14—C4103.59 (12)
C3—C2—H2110.1C2—C21—C22114.77 (15)
C4—C3—C2103.65 (14)C2—C21—H21A108.6
C4—C3—H3A111.0C22—C21—H21A108.6
C2—C3—H3A111.0C2—C21—H21B108.6
C4—C3—H3B111.0C22—C21—H21B108.6
C2—C3—H3B111.0H21A—C21—H21B107.6
H3A—C3—H3B109.0C221—C22—C21110.96 (15)
O14—C4—C5107.07 (15)C221—C22—H22A109.4
O14—C4—C3103.90 (14)C21—C22—H22A109.4
C5—C4—C3113.38 (15)C221—C22—H22B109.4
O14—C4—H4110.7C21—C22—H22B109.4
C5—C4—H4110.7H22A—C22—H22B108.0
C3—C4—H4110.7C222—C221—C226118.71 (19)
C5a—C5—C4109.74 (15)C222—C221—C22121.14 (18)
C5a—C5—H5A109.7C226—C221—C22120.04 (18)
C4—C5—H5A109.7C221—C222—C223120.4 (2)
C5a—C5—H5B109.7C221—C222—H222119.8
C4—C5—H5B109.7C223—C222—H222119.8
H5A—C5—H5B108.2C224—C223—C222120.4 (2)
C6—C5a—C9a118.60 (17)C224—C223—H223119.8
C6—C5a—C5121.49 (16)C222—C223—H223119.8
C9a—C5a—C5119.90 (16)C223—C224—C225119.5 (2)
C7—C6—C5a120.16 (18)C223—C224—H224120.3
C7—C6—H6119.9C225—C224—H224120.3
C5a—C6—H6119.9C224—C225—C226120.4 (2)
C6—C7—C8121.71 (17)C224—C225—H225119.8
C6—C7—Cl7118.50 (15)C226—C225—H225119.8
C8—C7—Cl7119.79 (15)C225—C226—C221120.6 (2)
C9—C8—C7118.18 (17)C225—C226—H226119.7
C9—C8—H8120.9C221—C226—H226119.7
C9a—N1—C2—C21162.56 (15)C6—C5a—C9a—N1176.68 (16)
O14—N1—C2—C2183.12 (16)C5—C5a—C9a—N12.6 (3)
C9a—N1—C2—C376.65 (17)O14—N1—C9a—C9150.75 (15)
O14—N1—C2—C337.67 (15)C2—N1—C9a—C998.51 (18)
N1—C2—C3—C413.20 (17)O14—N1—C9a—C5a28.4 (2)
C21—C2—C3—C4105.76 (17)C2—N1—C9a—C5a82.3 (2)
C2—C3—C4—O1416.04 (17)C9a—N1—O14—C468.36 (16)
C2—C3—C4—C599.84 (17)C2—N1—O14—C449.31 (15)
O14—C4—C5—C5a45.98 (19)C5—C4—O14—N179.67 (16)
C3—C4—C5—C5a68.0 (2)C3—C4—O14—N140.57 (16)
C4—C5—C5a—C6174.54 (16)N1—C2—C21—C2267.6 (2)
C4—C5—C5a—C9a6.2 (2)C3—C2—C21—C22177.07 (15)
C9a—C5a—C6—C71.5 (3)C2—C21—C22—C221177.52 (16)
C5—C5a—C6—C7179.26 (17)C21—C22—C221—C222103.9 (2)
C5a—C6—C7—C81.2 (3)C21—C22—C221—C22672.3 (2)
C5a—C6—C7—Cl7178.59 (14)C226—C221—C222—C2230.2 (3)
C6—C7—C8—C92.7 (3)C22—C221—C222—C223175.96 (19)
Cl7—C7—C8—C9177.02 (14)C221—C222—C223—C2240.0 (3)
C7—C8—C9—C9a1.7 (3)C222—C223—C224—C2250.1 (3)
C8—C9—C9a—C5a0.9 (3)C223—C224—C225—C2260.5 (3)
C8—C9—C9a—N1178.28 (16)C224—C225—C226—C2210.7 (3)
C6—C5a—C9a—C92.5 (3)C222—C221—C226—C2250.6 (3)
C5—C5a—C9a—C9178.21 (16)C22—C221—C226—C225175.64 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···Cgi0.992.853.721 (2)148
C224—H224···N1ii0.952.533.481 (3)176
Symmetry codes: (i) x1, y, z; (ii) x+2, y1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC18H18FNOC18H18ClNO
Mr283.33299.78
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)120120
a, b, c (Å)9.6285 (4), 11.2875 (5), 13.5147 (6)10.0891 (10), 10.981 (2), 13.7952 (18)
β (°) 99.565 (3) 92.771 (11)
V3)1448.38 (11)1526.6 (4)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.090.25
Crystal size (mm)0.45 × 0.31 × 0.160.32 × 0.26 × 0.20
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.961, 0.9860.925, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
20017, 3324, 2004 22115, 3506, 2409
Rint0.0680.055
(sin θ/λ)max1)0.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.117, 1.04 0.047, 0.104, 1.05
No. of reflections33243506
No. of parameters190190
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.220.25, 0.31

Computer programs: COLLECT (Nonius, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, °) for (I) and (II) top
(a)Torsion angles
Parameter(I)(II)
N1—C2—C21—C2268.0 (2)67.6 (2)
C2—C21—C22—C221177.41 (15)-177.52 (16)
C21—C22—C2221—C222-87.2 (2)-103.9 (2)
(b)Ring-puckering parameters
(i)Five-membered rings
CompoundQ2ϕ2
(I)0.4409 (17)196.2 (2)
(II)0.4498 (7)196.5 (2)
(ii)Six-membered rings
CompoundQθϕ
(I)0.6234 (16)52.04 (16)346.9 (2)
(II)0.6325 (17)53.54 (16)347.2 (2)
(iii)Seven-membered rings
CompoundQϕ2ϕ3
(I)1.1031 (18)196.89 (10)119.2 (3)
(II)1.0877 (18)196.26 (11)117.9 (3)
Ring-puckering angles in the five-membered rings refer to the atom sequence O14—N1—C2—C3—C4, those in the six-membered rings refer to the atom sequence O14—N1—C9a—C5a—C5—C4 and those in the seven-membered rings refer to the atom sequence N1—C2—C3—C4—C5—C5a—C9a.
Parameters (Å, °) for hydrogen bonds in (II) and the corresponding intramolecular contacts in (I) top
CompoundD—H···AD—HH···AD···AD—H···A
(II)C5—H5B···Cgi0.992.853.721 (2)148
C224—H224···N1ii0.952.533.481 (3)176
(I)C5—H5B···Cgi0.993.794.635 (3)145
C224—H224···N1ii0.952.803.567 (3)138
Cg represents the centroid of the C221–C226 ring. Symmetry codes: (i) x - 1, y, z; (ii) -x + 2, y - 1/2, -z + 1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds