Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the ZnII compound poly[[bis­(μ3-cyclo­hexane-1,3,5-tri­carbox­yl­ato)bis­[μ3-1,3,5-tris­(imidazol-1-yl­methyl)benzene]tri­zinc(II)] hexa­hydrate], {[Zn3(C18H18N6)2(C9H9O6)2]·6H2O}n, based on mixed 1,3,5-tris­(imidazol-1-yl­methyl)benzene and cyclo­hexane-1,3,5-tri­carboxyl­ate ligands, there are two types of crystallographically independent ZnII centres, one in a general position and one on a crystallographic twofold axis. They have similar fourfold distorted tetra­hedral coordination geometries, ligated by two monodentate carboxyl­ate groups from two cyclo­hexane-1,3,5-tri­carboxyl­ate ligands and by two N atoms from two 1,3,5-tris­(imidazol-1-yl­methyl)benzene lig­ands. The cyclo­hexane-1,3,5-tri­carboxyl­ate anions link the ZnII cations to generate a two-dimensional layered metal–organic structure running parallel to the (\overline{2}01) plane. Adjacent layers are further connected by tripodal 1,3,5-tris­(imidazol-1-yl­methyl)benzene ligands, resulting in a three-dimensional network. The solvent water mol­ecules are linked to the cyclo­hexane-1,3,5-tri­carboxyl­ate ligands via water–carboxyl­ate O—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229613034347/sk3520sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229613034347/sk3520Isup2.hkl
Contains datablock I

CCDC reference: 978268

Introduction top

Supra­molecular assembly of metal–organic coordination frameworks has attracted increasing attention due to the fascinating structures of these frameworks, as well as their potential applications in materials science (Batten & Robson, 1998; Pan et al., 2004; Zhang et al., 2010; Zhong et al., 2011). The polycarboxyl­ate ligands, such as benzene-1,2,4,5-tetra­carboxyl­ate acid (Fabelo et al., 2008), benzene-1,2,3,4-tetra­carboxyl­ate acid (Zhang et al., 2010), benzene-1,2,4-tri­carboxyl­ate acid (Wang et al., 2006), benzene-1,3,5-tri­carboxyl­ate acid (Hao et al., 2012) and cyclo­hexane-1,3,5-tri­carboxyl­ate acid (Lill & Cahill, 2006), have been widely applied in constructing inter­esting coordination polymers, owing to the fact that the carboxyl­ate group may bind to metal ions in various coordination modes and different directions. The crystal engineering of coordination frameworks based on imidazole-containing multidentate ligands has recently received much attention, for example, 1,3,5-tris­(imidazol-1-yl)benzene (Su et al., 2010), 1,3,5-tris­(imidazol-1-yl­methyl)-2,4,6-tri­methyl­benzene (Zhao et al., 2004), 1,2,4,5-tetra­kis(imidazol-1-yl­methyl)­benzene (Hua et al., 2010), 1,3,5-tris­(imidazol-1-yl­methyl)­benzene (Xu et al., 2009), 1,3-bis­(imidazol-1-yl)-5-(imidazol-1-yl­methyl)­benzene (Fan et al., 2003) and 2,4,6-tris­[4-(imidazol-1-yl­methyl)­phenyl]-1,3,5-triazine (Wan et al., 2004) complexes with suitable metal salts have been synthesized and characterized. We have focused our attention on the synthesis of transition metal coordination polymers with mixed polycarboxyl­ate and imidazole-containing multidentate ligands. We report here the crystal structure of the title three-dimensional ZnII polymeric compound with mixed 1,3,5-tris­(imidazol-1-yl­methyl)­benzene (timb) and cyclo­hexane-1,3,5-tri­carboxyl­ate (chtca) ligands, {[Zn3(chtca)2(timb)2].6H2O}n, (I).

Experimental top

Synthesis and crystallization top

ZnSO4.7H2O (0.1 mmol), 1,3,5-tris­(imidazol-1-yl­methyl)­benzene (0.1 mmol), cyclo­hexane-1,3,5-tri­carb­oxy­lic acid (0.1 mmol) and water (4.0 ml) were mixed and placed in a thick Pyrex tube, which was sealed and heated to 398 K for 72 h. The tube was then left to cool to ambient temperature [Rephrasing OK?], whereupon colourless block-shaped crystals of (I) were obtained. Analysis, found: C 47.31, H 5.01, N 12.17%; calculated for C54H66N12O18Zn3: C 47.40, H 4.83, N 12.29%.

Refinement top

C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C). Water H atoms were either located in difference density Fourier maps or placed in calculated positions so as to form a reasonable hydrogen-bond network, as far as possible. Initially, their positions were refined with tight restraints on the O—H and H···H distances [0.82 (1) and 1.35 (1) Å, respectively] in order to ensure a reasonable geometry. They were then constrained to ride on their parent O atoms, with Uiso(H) = 1.5Ueq(O). One carboxyl­ate group of a cyclo­hexane-1,3,5-carboxyl­ate ligand is disordered over two positions and was refined as two COO- groups with site occupancies of 0.800 (6) and 0.200 (6).

Results and discussion top

The asymmetric unit of (I) (Fig. 1) contains two crystallographically independent ZnII centres, one in a general position and one on a twofold crystallographic axis, both with a distorted tetra­hedral ZnN2O2 environment. Each ZnII cation is coordinated by two N atoms from two different tripodal timb ligands and two O atoms from two individual chtca ligands. Atom Zn1 is coordinated by atoms N2, N4ii, O1 and O4i, and Zn2 is surrounded by atoms N6i, N6iv, O6 and O6iii (see Fig. 1 and Table 2 for symmetry codes). The Zn1—N and Zn1—O bond lengths may be compared with the Zn2—N and Zn1—O bond lengths. The N—Zn1—N and O—Zn1—O angles are different from those observed around Zn2 [Values removed to avoid duplication - OK?] (Fig. 1 and Table 2). The slight difference in the Zn—O coordination distances around the two Zn atoms may be attributed to the different degree of distortion around them.

The two monodetentate carboxyl­ate groups of the chtca ligand link two Zn1 atoms to generate a one-dimensional ···Zn–chtca–Zn··· zigzag chain running parallel to the b axis. The remaining carboxyl­ate group of the chtca ligand connects with the Zn2 centre, leading to a two-dimensional layered structure extending parallel to the (201) plane, with approximate Zn···Zn separations of 10.01 (Zn1···Zn1i), 8.70 (Zn1···Zn2), 18.30 (Zn2···Zn2viii) and 16.35 Å (Zn2···Zn2ix). Within the sheets there are 48-membered macrocyclic rings composed of six chtca ligands and six Zn atoms through Zn—O coordination bonds (Fig. 2). The dihedral angles between each pair of the three coordinating COO- groups of the chtca ligand are 68.6 (3) (O1/C25/O2 and O3/C26/O4), 27.9 (3) (O1/C25/O2 and O5/C27/O6) and 70.3 (5)° (O3/C26/O4 and O5/C27/O6). One carboxyl­ate group of the chtca ligand (O3/C26/O4) is disordered over two positions and was refined with occupancies of 0.800 (6) and 0.200 (6).

The timb ligand, with cis, trans and trans substituent conformations, coordinates to three ZnII centres (two Zn1 and one Zn2), with approximate metal–metal distances (Zn···Zn) of 12.79 (Zn1···Zn1ii), 11.41 (Zn2x···Zn1ii) and 7.25 Å (Zn2x···Zn1), which are evidently different from that observed in the methyl-substituted timb–zinc compound (Zhao et al., 2004). The dihedral angles between the least-squares plane of the timb ligand and those of the coordinated terminal imidazole groups are 77.8 (1) (N1/C12/N2/C11/C10), 68.0 (1) (N3/C15/N4/C14/C13) and 78.0 (1)° (N5/C18/N6/C17/C16). The three planes of the terminal imidazole ring of the timb ligand are oriented with respect to each other at 86.7 (1) (N1/C12/N2/C11/C10 and N3/C15/N4/C14/C13), 75.9 (1) (N1/C12/N2/C11/C10 and N5/C18/N6/C17/C16) and 34.2 (2)° (N3/C15/N4/C14/C13 and N5/C18/N6/C17/C16), which are different from the values found in a previously reported zinc compound (Zhao et al., 2004).

The two timb ligands adopt a face-to-face orientation and are joined together by five ZnII centres (four Zn1 and one Zn2), giving rise to a one-dimensional screw double chain along the [101] direction (Fig. 3). It is noteworthy that these double chains and the above-mentioned two-dimensional sheets inter­sect each other, resulting in a three-dimensional porous structure (Fig. 4).

Analysis of the crystal packing of (I) shows that the solvent water molecules reside in the porous metal–organic framework via classical inter­molecular O—H···O hydrogen-bonding inter­actions involving the carboxyl­ate groups of the chtca ligands (Table 3 and Fig. 4).

Related literature top

For related literature, see: Batten & Robson (1998); Fabelo et al. (2008); Fan et al. (2003); Hao et al. (2012); Hua et al. (2010); Lill & Cahill (2006); Pan et al. (2004); Su et al. (2010); Wan et al. (2004); Wang et al. (2006); Xu et al. (2009); Zhang et al. (2010); Zhao et al. (2004); Zhong et al. (2011).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Fig. 1. The asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines represent intermolecular O—H···O interactions. All C-bound H atoms have been omitted for clarity. [Symmetry codes: (i) -x + 1/2, y + 1/2, -z + 1/2; (ii) x + 1/2, -y + 1/2, z + 1/2; (iii) -x + 1, y, -z + 3/2; (iv) x + 1/2, y + 1/2, z + 1.]

Fig. 2. The two-dimensional polymeric layer in (I), viewed down the a axis. The 48-membered macrocyclic ring is illustrated. The timb ligand, water molecules and H atoms of the chtca ligand have been omitted for clarity. [Symmetry codes: (i) -x + 1/2, y + 1/2, -z + 1/2; (iii) -x + 1, y, -z + 3/2; (vii) -x + 1/2, y - 1/2, -z + 1/2; (viii) x, y + 1, z; (ix) x - 1/2, y + 1/2, z - 1.]

Fig. 3. The one-dimensional double-chain structure of (I), along the [101] direction. The chtca ligand and water molecules have been omitted for clarity. [Symmetry codes: (ii) x + 1/2, -y + 1/2, z + 1/2; (x) -x + 1, -y + 1, -z + 1.]

Fig. 4. The three-dimensional structure of (I), involving two-dimensional layers (blue, green and purple) and one-dimensional double chains (red), viewed down the b axis, showing interactions between adjacent chains and complex cations. Hydrogen bonds are represented by dashed lines. All C-bound H atoms have been omitted for clarity.
Poly[[bis(µ3-cyclohexane-1,3,5-tricarboxylato)bis[µ3-1,3,5-tris(imidazol-1-ylmethyl)benzene]trizinc(II)] hexahydrate] top
Crystal data top
[Zn3(C18H18N6)2(C9H9O6)2]·6H2OF(000) = 2832
Mr = 1367.30Dx = 1.538 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6396 reflections
a = 25.3826 (8) Åθ = 2.5–27.4°
b = 18.3013 (5) ŵ = 1.29 mm1
c = 15.0344 (5) ÅT = 223 K
β = 122.244 (1)°Block, colourless
V = 5906.9 (3) Å30.30 × 0.20 × 0.15 mm
Z = 4
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
7340 independent reflections
Radiation source: fine-focus sealed tube5783 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 28.5714 pixels mm-1θmax = 28.3°, θmin = 1.5°
ω scansh = 3332
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 2324
Tmin = 0.782, Tmax = 1.000l = 920
21212 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0492P)2 + 2.9442P]
where P = (Fo2 + 2Fc2)/3
7340 reflections(Δ/σ)max = 0.001
421 parametersΔρmax = 0.62 e Å3
36 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Zn3(C18H18N6)2(C9H9O6)2]·6H2OV = 5906.9 (3) Å3
Mr = 1367.30Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.3826 (8) ŵ = 1.29 mm1
b = 18.3013 (5) ÅT = 223 K
c = 15.0344 (5) Å0.30 × 0.20 × 0.15 mm
β = 122.244 (1)°
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
7340 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
5783 reflections with I > 2σ(I)
Tmin = 0.782, Tmax = 1.000Rint = 0.022
21212 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03636 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.06Δρmax = 0.62 e Å3
7340 reflectionsΔρmin = 0.43 e Å3
421 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.209200 (11)0.438330 (12)0.09148 (2)0.03888 (8)
Zn20.50000.379001 (17)0.75000.03712 (9)
O10.25408 (7)0.39896 (8)0.23844 (13)0.0502 (4)
O1W0.10266 (8)0.20522 (11)0.11883 (14)0.0665 (5)
H1WA0.13190.23250.13360.100*
H1WB0.09560.20700.16610.100*
O20.19061 (8)0.30946 (10)0.14750 (13)0.0608 (5)
O2W0.45616 (18)0.14046 (15)0.7925 (2)0.1439 (13)
H2WA0.49180.15460.81530.216*
H2WB0.43180.17500.76840.216*
O3W0.35098 (17)0.0338 (2)0.2209 (3)0.1549 (14)
H3WA0.32750.02350.24100.232*
H3WB0.35590.07820.22050.232*
O30.31544 (13)0.06600 (12)0.3318 (2)0.0615 (8)0.800 (6)
O3'0.2919 (5)0.0530 (5)0.5084 (10)0.066 (4)0.200 (6)
O40.27076 (13)0.03843 (14)0.4191 (4)0.0630 (11)0.800 (6)
O4'0.2747 (7)0.0503 (7)0.3505 (9)0.064 (5)0.200 (6)
O50.41330 (10)0.28182 (11)0.70841 (14)0.0711 (5)
O60.43413 (8)0.34540 (10)0.60920 (12)0.0559 (4)
N10.01644 (8)0.42389 (9)0.06275 (14)0.0387 (4)
N20.11558 (8)0.43952 (9)0.00249 (14)0.0399 (4)
N30.17058 (8)0.18462 (10)0.45415 (14)0.0424 (4)
N40.24325 (9)0.11298 (10)0.46554 (16)0.0494 (5)
N50.04348 (8)0.05094 (9)0.11977 (14)0.0377 (4)
N60.04119 (8)0.04597 (9)0.20339 (14)0.0404 (4)
C10.05257 (9)0.31760 (10)0.13575 (17)0.0394 (5)
C20.08144 (9)0.31404 (11)0.24506 (18)0.0421 (5)
H2A0.09500.35670.28460.063*
C30.09000 (9)0.24764 (11)0.29475 (16)0.0384 (4)
C40.06947 (9)0.18399 (11)0.23431 (16)0.0378 (4)
H4A0.07390.13930.26710.045*
C50.04270 (9)0.18622 (10)0.12683 (16)0.0355 (4)
C60.03433 (9)0.25378 (11)0.07837 (16)0.0379 (4)
H6A0.01610.25580.00590.045*
C70.04076 (10)0.39016 (11)0.0800 (2)0.0485 (6)
H7A0.07580.42260.12200.058*
H7B0.03700.38280.01300.058*
C80.12300 (11)0.24252 (13)0.41316 (17)0.0485 (5)
H8A0.14260.28900.44440.058*
H8B0.09290.23210.43240.058*
C90.02313 (11)0.11857 (11)0.05905 (17)0.0436 (5)
H9A0.02190.11810.01340.052*
H9B0.04020.12070.01480.052*
C100.02043 (11)0.47979 (13)0.11864 (19)0.0528 (6)
H10A0.01250.50620.17240.063*
C110.08133 (11)0.48925 (13)0.08077 (19)0.0512 (6)
H11A0.09780.52430.10420.061*
C120.07455 (10)0.40118 (11)0.00575 (18)0.0424 (5)
H12A0.08470.36310.05320.051*
C130.17828 (15)0.12976 (16)0.5202 (2)0.0716 (8)
H13A0.15700.12360.55440.086*
C140.22282 (17)0.08571 (18)0.5270 (3)0.0838 (11)
H14A0.23750.04330.56720.101*
C150.21013 (10)0.17239 (12)0.42341 (19)0.0459 (5)
H15A0.21390.20250.37730.055*
C160.10301 (11)0.02342 (12)0.1757 (2)0.0506 (6)
H16A0.13780.04220.17820.061*
C170.10086 (10)0.03610 (12)0.2263 (2)0.0510 (6)
H17A0.13460.06600.27000.061*
C180.00843 (9)0.00763 (11)0.13935 (16)0.0372 (4)
H18A0.03390.01460.11110.045*
C190.25828 (9)0.29043 (10)0.33223 (17)0.0400 (5)
H19A0.22710.29160.35160.048*
C200.26628 (11)0.21048 (11)0.31258 (19)0.0521 (6)
H20A0.22710.19210.25420.063*
H20B0.29710.20710.29320.063*
C210.28638 (10)0.16433 (11)0.4071 (2)0.0506 (6)
H21A0.25380.16690.42340.061*
C220.34694 (10)0.19285 (11)0.50283 (18)0.0457 (5)
H22A0.35710.16410.56420.055*
H22B0.38070.18740.49080.055*
C230.34084 (10)0.27337 (11)0.52354 (17)0.0395 (4)
H23A0.30820.27580.53960.047*
C240.31853 (10)0.32010 (10)0.42588 (16)0.0383 (4)
H24A0.31190.36980.44020.046*
H24B0.35040.32120.40890.046*
C250.23249 (9)0.33541 (11)0.23277 (17)0.0409 (5)
C260.29175 (16)0.0835 (2)0.3814 (5)0.0426 (8)0.800 (6)
C26'0.2853 (6)0.0848 (8)0.4302 (15)0.042 (3)0.200 (6)
C270.39983 (10)0.30130 (11)0.61991 (17)0.0413 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03507 (13)0.03259 (13)0.04489 (15)0.00156 (9)0.01859 (11)0.00365 (10)
Zn20.04412 (19)0.03156 (17)0.03036 (17)0.0000.01630 (14)0.000
O10.0551 (9)0.0350 (8)0.0465 (9)0.0012 (7)0.0177 (8)0.0060 (7)
O1W0.0547 (10)0.0871 (13)0.0557 (11)0.0159 (9)0.0281 (9)0.0084 (10)
O20.0528 (10)0.0612 (10)0.0437 (9)0.0127 (8)0.0092 (8)0.0056 (8)
O2W0.209 (4)0.0795 (17)0.120 (2)0.048 (2)0.073 (3)0.0434 (17)
O3W0.165 (3)0.174 (3)0.184 (4)0.027 (3)0.132 (3)0.033 (3)
O30.0736 (18)0.0421 (12)0.0721 (17)0.0068 (11)0.0412 (14)0.0035 (11)
O3'0.070 (6)0.045 (5)0.077 (8)0.015 (4)0.035 (6)0.009 (5)
O40.0571 (15)0.0282 (14)0.117 (4)0.0022 (11)0.056 (2)0.0008 (15)
O4'0.065 (8)0.035 (6)0.047 (7)0.001 (5)0.001 (6)0.008 (5)
O50.1017 (15)0.0645 (11)0.0406 (10)0.0027 (11)0.0335 (10)0.0030 (9)
O60.0533 (9)0.0702 (11)0.0385 (9)0.0208 (8)0.0207 (8)0.0098 (8)
N10.0365 (9)0.0280 (8)0.0444 (10)0.0018 (6)0.0167 (8)0.0039 (7)
N20.0385 (9)0.0327 (8)0.0417 (10)0.0027 (7)0.0167 (8)0.0017 (7)
N30.0428 (9)0.0442 (10)0.0338 (9)0.0096 (8)0.0162 (8)0.0022 (8)
N40.0498 (11)0.0461 (10)0.0517 (12)0.0132 (8)0.0267 (9)0.0067 (9)
N50.0433 (9)0.0325 (8)0.0369 (9)0.0068 (7)0.0211 (8)0.0047 (7)
N60.0404 (9)0.0335 (8)0.0440 (10)0.0038 (7)0.0203 (8)0.0012 (7)
C10.0305 (9)0.0332 (10)0.0498 (12)0.0038 (8)0.0183 (9)0.0065 (9)
C20.0362 (10)0.0331 (10)0.0484 (12)0.0054 (8)0.0168 (9)0.0040 (9)
C30.0349 (10)0.0387 (10)0.0365 (11)0.0078 (8)0.0156 (9)0.0023 (9)
C40.0421 (11)0.0324 (9)0.0356 (10)0.0036 (8)0.0185 (9)0.0029 (8)
C50.0337 (9)0.0344 (10)0.0363 (10)0.0019 (8)0.0174 (8)0.0003 (8)
C60.0334 (9)0.0404 (10)0.0359 (11)0.0006 (8)0.0158 (8)0.0056 (9)
C70.0390 (11)0.0378 (11)0.0671 (16)0.0042 (9)0.0274 (11)0.0137 (11)
C80.0482 (12)0.0510 (13)0.0381 (11)0.0172 (10)0.0174 (10)0.0054 (10)
C90.0536 (12)0.0397 (11)0.0333 (11)0.0077 (9)0.0203 (10)0.0000 (9)
C100.0459 (12)0.0446 (12)0.0467 (13)0.0023 (10)0.0105 (10)0.0108 (10)
C110.0494 (13)0.0454 (12)0.0476 (13)0.0049 (10)0.0184 (11)0.0124 (10)
C120.0398 (11)0.0328 (10)0.0473 (13)0.0007 (8)0.0183 (10)0.0054 (9)
C130.092 (2)0.0764 (19)0.0719 (19)0.0347 (16)0.0611 (18)0.0289 (16)
C140.112 (3)0.082 (2)0.088 (2)0.0521 (19)0.074 (2)0.0472 (18)
C150.0457 (12)0.0425 (11)0.0490 (13)0.0082 (9)0.0249 (10)0.0063 (10)
C160.0417 (12)0.0435 (12)0.0702 (16)0.0051 (9)0.0322 (12)0.0052 (11)
C170.0408 (12)0.0399 (11)0.0670 (16)0.0023 (9)0.0253 (11)0.0001 (11)
C180.0354 (10)0.0388 (10)0.0352 (10)0.0046 (8)0.0173 (9)0.0021 (8)
C190.0381 (10)0.0299 (9)0.0441 (12)0.0005 (8)0.0166 (9)0.0032 (9)
C200.0415 (11)0.0335 (10)0.0513 (14)0.0020 (9)0.0047 (10)0.0078 (10)
C210.0386 (11)0.0275 (10)0.0721 (16)0.0012 (8)0.0203 (11)0.0035 (10)
C220.0431 (11)0.0298 (10)0.0498 (13)0.0003 (8)0.0151 (10)0.0053 (9)
C230.0415 (11)0.0350 (10)0.0409 (11)0.0014 (8)0.0212 (9)0.0017 (9)
C240.0421 (11)0.0287 (9)0.0395 (11)0.0039 (8)0.0187 (9)0.0005 (8)
C250.0365 (10)0.0387 (10)0.0436 (12)0.0032 (8)0.0187 (9)0.0034 (9)
C260.0269 (15)0.0316 (18)0.051 (3)0.0011 (12)0.0088 (17)0.0012 (18)
C26'0.030 (6)0.026 (7)0.048 (9)0.000 (4)0.005 (6)0.002 (6)
C270.0508 (12)0.0351 (10)0.0365 (11)0.0044 (9)0.0223 (10)0.0029 (9)
Geometric parameters (Å, º) top
Zn1—O4i1.930 (3)C2—H2A0.9300
Zn1—O12.0032 (16)C3—C41.396 (3)
Zn1—N22.0152 (17)C3—C81.513 (3)
Zn1—N4ii2.0439 (19)C4—C51.379 (3)
Zn1—O4'i2.178 (13)C4—H4A0.9300
Zn2—O61.9692 (15)C5—C61.393 (3)
Zn2—O6iii1.9692 (15)C5—C91.509 (3)
Zn2—N6iv2.0619 (17)C6—H6A0.9300
Zn2—N6i2.0619 (17)C7—H7A0.9700
O1—C251.269 (2)C7—H7B0.9700
O1W—H1WA0.8203C8—H8A0.9700
O1W—H1WB0.8206C8—H8B0.9700
O2—C251.243 (3)C9—H9A0.9700
O2W—H2WA0.8202C9—H9B0.9700
O2W—H2WB0.8200C10—C111.343 (3)
O3W—H3WA0.8201C10—H10A0.9300
O3W—H3WB0.8231C11—H11A0.9300
O3—C261.225 (6)C12—H12A0.9300
O3'—C26'1.24 (2)C13—C141.347 (4)
O4—C261.267 (6)C13—H13A0.9300
O4—Zn1v1.930 (3)C14—H14A0.9300
O4'—C26'1.25 (2)C15—H15A0.9300
O4'—Zn1v2.178 (13)C16—C171.346 (3)
O5—C271.237 (3)C16—H16A0.9300
O6—C271.259 (3)C17—H17A0.9300
N1—C121.337 (3)C18—H18A0.9300
N1—C101.362 (3)C19—C251.516 (3)
N1—C71.468 (3)C19—C241.523 (3)
N2—C121.315 (3)C19—C201.528 (3)
N2—C111.370 (3)C19—H19A0.9800
N3—C151.329 (3)C20—C211.490 (3)
N3—C131.351 (3)C20—H20A0.9700
N3—C81.472 (3)C20—H20B0.9700
N4—C151.312 (3)C21—C26'1.500 (17)
N4—C141.373 (3)C21—C221.532 (3)
N4—Zn1vi2.0439 (19)C21—C261.553 (5)
N5—C181.336 (3)C21—H21A0.9800
N5—C161.374 (3)C22—C231.531 (3)
N5—C91.459 (3)C22—H22A0.9700
N6—C181.314 (3)C22—H22B0.9700
N6—C171.374 (3)C23—C271.513 (3)
N6—Zn2vii2.0619 (17)C23—C241.523 (3)
C1—C61.377 (3)C23—H23A0.9800
C1—C21.399 (3)C24—H24A0.9700
C1—C71.512 (3)C24—H24B0.9700
C2—C31.382 (3)
O4i—Zn1—O1114.34 (14)C11—C10—H10A126.8
O4i—Zn1—N2101.30 (11)N1—C10—H10A126.8
O1—Zn1—N2122.76 (7)C10—C11—N2109.7 (2)
O4i—Zn1—N4ii99.28 (10)C10—C11—H11A125.1
O1—Zn1—N4ii100.47 (7)N2—C11—H11A125.1
N2—Zn1—N4ii116.76 (8)N2—C12—N1111.42 (19)
O1—Zn1—O4'i91.3 (3)N2—C12—H12A124.3
N2—Zn1—O4'i99.8 (4)N1—C12—H12A124.3
N4ii—Zn1—O4'i125.0 (5)C14—C13—N3106.7 (2)
O6—Zn2—O6iii143.60 (11)C14—C13—H13A126.7
O6—Zn2—N6iv106.24 (7)N3—C13—H13A126.7
O6iii—Zn2—N6iv97.83 (7)C13—C14—N4109.5 (2)
O6—Zn2—N6i97.83 (7)C13—C14—H14A125.2
O6iii—Zn2—N6i106.24 (7)N4—C14—H14A125.2
N6iv—Zn2—N6i96.49 (10)N4—C15—N3112.3 (2)
C25—O1—Zn1106.53 (14)N4—C15—H15A123.8
H1WA—O1W—H1WB109.0N3—C15—H15A123.8
H2WA—O2W—H2WB110.1C17—C16—N5106.26 (19)
H3WA—O3W—H3WB111.9C17—C16—H16A126.9
C26—O4—Zn1v112.9 (4)N5—C16—H16A126.9
C26'—O4'—Zn1v101.1 (13)C16—C17—N6109.6 (2)
C27—O6—Zn2108.13 (14)C16—C17—H17A125.2
C12—N1—C10107.11 (18)N6—C17—H17A125.2
C12—N1—C7125.89 (19)N6—C18—N5111.64 (18)
C10—N1—C7126.80 (19)N6—C18—H18A124.2
C12—N2—C11105.29 (18)N5—C18—H18A124.2
C12—N2—Zn1128.68 (15)C25—C19—C24114.24 (16)
C11—N2—Zn1125.44 (14)C25—C19—C20111.19 (19)
C15—N3—C13106.90 (19)C24—C19—C20110.42 (17)
C15—N3—C8125.36 (19)C25—C19—H19A106.9
C13—N3—C8127.4 (2)C24—C19—H19A106.9
C15—N4—C14104.6 (2)C20—C19—H19A106.9
C15—N4—Zn1vi123.22 (17)C21—C20—C19111.8 (2)
C14—N4—Zn1vi129.44 (17)C21—C20—H20A109.3
C18—N5—C16106.95 (18)C19—C20—H20A109.3
C18—N5—C9125.87 (18)C21—C20—H20B109.3
C16—N5—C9126.92 (18)C19—C20—H20B109.3
C18—N6—C17105.51 (18)H20A—C20—H20B107.9
C18—N6—Zn2vii120.58 (14)C20—C21—C26'137.0 (8)
C17—N6—Zn2vii133.90 (16)C20—C21—C22111.36 (18)
C6—C1—C2119.12 (18)C26'—C21—C22104.2 (5)
C6—C1—C7119.8 (2)C20—C21—C26109.5 (3)
C2—C1—C7121.1 (2)C22—C21—C26112.4 (2)
C3—C2—C1120.59 (19)C20—C21—H21A107.8
C3—C2—H2A119.7C26'—C21—H21A82.4
C1—C2—H2A119.7C22—C21—H21A107.8
C2—C3—C4119.05 (19)C26—C21—H21A107.8
C2—C3—C8121.29 (19)C23—C22—C21111.06 (17)
C4—C3—C8119.63 (19)C23—C22—H22A109.4
C5—C4—C3121.15 (19)C21—C22—H22A109.4
C5—C4—H4A119.4C23—C22—H22B109.4
C3—C4—H4A119.4C21—C22—H22B109.4
C4—C5—C6118.77 (18)H22A—C22—H22B108.0
C4—C5—C9123.07 (18)C27—C23—C24113.73 (17)
C6—C5—C9118.14 (18)C27—C23—C22111.36 (17)
C1—C6—C5121.25 (19)C24—C23—C22111.74 (18)
C1—C6—H6A119.4C27—C23—H23A106.5
C5—C6—H6A119.4C24—C23—H23A106.5
N1—C7—C1110.64 (17)C22—C23—H23A106.5
N1—C7—H7A109.5C19—C24—C23111.37 (16)
C1—C7—H7A109.5C19—C24—H24A109.4
N1—C7—H7B109.5C23—C24—H24A109.4
C1—C7—H7B109.5C19—C24—H24B109.4
H7A—C7—H7B108.1C23—C24—H24B109.4
N3—C8—C3110.65 (17)H24A—C24—H24B108.0
N3—C8—H8A109.5O2—C25—O1121.4 (2)
C3—C8—H8A109.5O2—C25—C19119.44 (19)
N3—C8—H8B109.5O1—C25—C19119.20 (19)
C3—C8—H8B109.5O3—C26—O4124.2 (5)
H8A—C8—H8B108.1O3—C26—C21122.5 (4)
N5—C9—C5113.22 (17)O4—C26—C21113.3 (5)
N5—C9—H9A108.9O3'—C26'—O4'121.5 (17)
C5—C9—H9A108.9O3'—C26'—C21131.6 (14)
N5—C9—H9B108.9O4'—C26'—C21107 (2)
C5—C9—H9B108.9O5—C27—O6120.6 (2)
H9A—C9—H9B107.7O5—C27—C23119.8 (2)
C11—C10—N1106.4 (2)O6—C27—C23119.53 (19)
O4i—Zn1—O1—C25175.14 (15)Zn1vi—N4—C15—N3162.91 (15)
N2—Zn1—O1—C2551.98 (16)C13—N3—C15—N40.1 (3)
N4ii—Zn1—O1—C2579.58 (15)C8—N3—C15—N4173.7 (2)
O4'i—Zn1—O1—C25154.5 (5)C18—N5—C16—C170.4 (3)
O6iii—Zn2—O6—C2752.96 (14)C9—N5—C16—C17174.7 (2)
N6iv—Zn2—O6—C2776.42 (16)N5—C16—C17—N60.4 (3)
N6i—Zn2—O6—C27175.56 (15)C18—N6—C17—C160.1 (3)
O4i—Zn1—N2—C12147.8 (2)Zn2vii—N6—C17—C16178.52 (17)
O1—Zn1—N2—C1218.9 (2)C17—N6—C18—N50.2 (2)
N4ii—Zn1—N2—C12105.60 (19)Zn2vii—N6—C18—N5179.04 (13)
O4'i—Zn1—N2—C12116.8 (4)C16—N5—C18—N60.4 (2)
O4i—Zn1—N2—C1122.1 (2)C9—N5—C18—N6174.73 (18)
O1—Zn1—N2—C11151.01 (18)C25—C19—C20—C21175.07 (18)
N4ii—Zn1—N2—C1184.5 (2)C24—C19—C20—C2157.0 (3)
O4'i—Zn1—N2—C1153.1 (4)C19—C20—C21—C26'159.3 (11)
C6—C1—C2—C31.8 (3)C19—C20—C21—C2256.8 (3)
C7—C1—C2—C3177.69 (19)C19—C20—C21—C26178.3 (2)
C1—C2—C3—C40.1 (3)C20—C21—C22—C2354.7 (3)
C1—C2—C3—C8177.98 (19)C26'—C21—C22—C23149.9 (9)
C2—C3—C4—C52.0 (3)C26—C21—C22—C23177.9 (3)
C8—C3—C4—C5175.93 (19)C21—C22—C23—C27178.29 (19)
C3—C4—C5—C62.3 (3)C21—C22—C23—C2453.3 (3)
C3—C4—C5—C9176.43 (19)C25—C19—C24—C23178.59 (17)
C2—C1—C6—C51.6 (3)C20—C19—C24—C2355.2 (2)
C7—C1—C6—C5177.92 (18)C27—C23—C24—C19178.64 (18)
C4—C5—C6—C10.4 (3)C22—C23—C24—C1954.2 (2)
C9—C5—C6—C1178.35 (19)Zn1—O1—C25—O21.2 (3)
C12—N1—C7—C171.4 (3)Zn1—O1—C25—C19178.98 (15)
C10—N1—C7—C1102.7 (3)C24—C19—C25—O2166.6 (2)
C6—C1—C7—N197.1 (2)C20—C19—C25—O240.8 (3)
C2—C1—C7—N182.4 (2)C24—C19—C25—O113.5 (3)
C15—N3—C8—C343.2 (3)C20—C19—C25—O1139.3 (2)
C13—N3—C8—C3129.1 (3)Zn1v—O4—C26—O38.6 (7)
C2—C3—C8—N3131.9 (2)Zn1v—O4—C26—C21169.7 (2)
C4—C3—C8—N346.1 (3)C20—C21—C26—O342.9 (4)
C18—N5—C9—C599.6 (2)C26'—C21—C26—O3162.1 (13)
C16—N5—C9—C573.6 (3)C22—C21—C26—O381.4 (5)
C4—C5—C9—N58.4 (3)C20—C21—C26—O4138.8 (4)
C6—C5—C9—N5170.28 (18)C26'—C21—C26—O416.2 (9)
C12—N1—C10—C110.6 (3)C22—C21—C26—O496.9 (4)
C7—N1—C10—C11175.6 (2)Zn1v—O4'—C26'—O3'10 (2)
N1—C10—C11—N20.6 (3)Zn1v—O4'—C26'—C21170.7 (7)
C12—N2—C11—C100.4 (3)C20—C21—C26'—O3'163.3 (10)
Zn1—N2—C11—C10172.21 (17)C22—C21—C26'—O3'51.2 (18)
C11—N2—C12—N10.0 (3)C26—C21—C26'—O3'161 (2)
Zn1—N2—C12—N1171.48 (14)C20—C21—C26'—O4'15 (2)
C10—N1—C12—N20.4 (3)C22—C21—C26'—O4'130.1 (11)
C7—N1—C12—N2175.47 (19)C26—C21—C26'—O4'20.3 (10)
C15—N3—C13—C140.0 (3)Zn2—O6—C27—O55.6 (3)
C8—N3—C13—C14173.4 (3)Zn2—O6—C27—C23172.99 (15)
N3—C13—C14—N40.2 (4)C24—C23—C27—O5159.9 (2)
C15—N4—C14—C130.3 (4)C22—C23—C27—O572.7 (3)
Zn1vi—N4—C14—C13161.4 (2)C24—C23—C27—O618.6 (3)
C14—N4—C15—N30.2 (3)C22—C23—C27—O6108.7 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y, z+3/2; (iv) x+1/2, y+1/2, z+1; (v) x+1/2, y1/2, z+1/2; (vi) x1/2, y+1/2, z1/2; (vii) x1/2, y1/2, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O20.821.982.790 (2)169
O1W—H1WB···O5viii0.822.032.844 (3)174
O2W—H2WB···O50.822.102.830 (3)148
O2W—H2WA···O2Wiii0.822.593.102 (8)122
O3W—H3WA···O30.822.262.921 (4)139
O3W—H3WB···O2Wix0.822.453.005 (5)126
Symmetry codes: (iii) x+1, y, z+3/2; (viii) x+1/2, y+1/2, z+1; (ix) x, y, z1/2.

Experimental details

Crystal data
Chemical formula[Zn3(C18H18N6)2(C9H9O6)2]·6H2O
Mr1367.30
Crystal system, space groupMonoclinic, C2/c
Temperature (K)223
a, b, c (Å)25.3826 (8), 18.3013 (5), 15.0344 (5)
β (°) 122.244 (1)
V3)5906.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerRigaku Mercury CCD area-detector
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.782, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
21212, 7340, 5783
Rint0.022
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.06
No. of reflections7340
No. of parameters421
No. of restraints36
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.43

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—O4i1.930 (3)Zn2—O61.9692 (15)
Zn1—O12.0032 (16)Zn2—O6iii1.9692 (15)
Zn1—N22.0152 (17)Zn2—N6iv2.0619 (17)
Zn1—N4ii2.0439 (19)Zn2—N6i2.0619 (17)
O4i—Zn1—O1114.34 (14)O6—Zn2—O6iii143.60 (11)
N2—Zn1—N4ii116.76 (8)N6iv—Zn2—N6i96.49 (10)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y, z+3/2; (iv) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O20.821.982.790 (2)169
O1W—H1WB···O5v0.822.032.844 (3)174
O2W—H2WB···O50.822.102.830 (3)148
O2W—H2WA···O2Wiii0.822.593.102 (8)122
O3W—H3WA···O30.822.262.921 (4)139
O3W—H3WB···O2Wvi0.822.453.005 (5)126
Symmetry codes: (iii) x+1, y, z+3/2; (v) x+1/2, y+1/2, z+1; (vi) x, y, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds