Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Two polymorphs of L-aspartic acid hydro­chloride, C4H8NO4+·Cl, were obtained from the same aqueous solution. Their crystal structures have been determined from single-crystal data collected at 100 K. The crystal structures revealed three- and two-dimensional hydrogen-bonding networks for the triclinic and ortho­rhom­bic polymorphs, respectively. The cations and anions are connected to one another via N—H...Cl and O—H...Cl inter­actions and form alternating cation–anion layer-like structures. The two polymorphs share common structural features; however, the conformations of the L-aspartate cations and the crystal packings are different. Furthermore, the mol­ecular packing of the orthorhombic polymorph contains more inter­esting inter­actions which seems to be a favourable factor for more efficient charge transfer within the crystal.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614013163/sk3547sup1.cif
Contains datablocks global, II, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614013163/sk3547Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614013163/sk3547IIsup3.hkl
Contains datablock II

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614013163/sk3547Isup4.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614013163/sk3547IIsup5.cml
Supplementary material

CCDC references: 1006982; 1006983

Computing details top

For both compounds, data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008) and WinGX (Farrugia, 2012); molecular graphics: Mercury (Macrae et al., 2006) and PLATON (Spek, 2003).; software used to prepare material for publication: enCIFer (Allen et al., 2004).

(I) L-Aspartic acid hydrochloride top
Crystal data top
C4H8NO4+·ClZ = 1
Mr = 169.56F(000) = 88
Triclinic, P1Dx = 1.642 Mg m3
a = 5.5888 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 5.6045 (6) ÅCell parameters from 4428 reflections
c = 6.1697 (7) Åθ = 3.7–32.8°
α = 114.57 (1)°µ = 0.51 mm1
β = 97.752 (9)°T = 100 K
γ = 95.720 (8)°Prism, colourless
V = 171.52 (3) Å30.14 × 0.09 × 0.06 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
2273 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2259 reflections with I > 2σ(I)
Detector resolution: 10.4508 pixels mm-1Rint = 0.020
ω scansθmax = 32.8°, θmin = 3.7°
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]
h = 88
Tmin = 0.963, Tmax = 0.981k = 88
4428 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022All H-atom parameters refined
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.033P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2273 reflectionsΔρmax = 0.30 e Å3
123 parametersΔρmin = 0.18 e Å3
3 restraintsAbsolute structure: Flack x determined using 1069 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (3)
Special details top

Experimental. Absorption correction: CrysAlisPro (2012), Agilent Technologies UK Ltd, Oxford, UK, Version 1.171.36.24 (release 03-12-2012 CrysAlis171 .NET) (compiled Dec 3 2012,18:21:49) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid, 1995.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.33694 (3)0.19280 (4)0.00641 (3)0.01163 (9)
O11.1985 (2)0.4542 (3)0.6692 (2)0.0134 (2)
O20.8786 (3)0.5621 (3)0.8553 (2)0.0200 (3)
O30.3787 (2)0.9020 (3)0.3361 (2)0.0156 (3)
O40.7723 (2)1.0058 (3)0.3238 (2)0.0169 (3)
N10.9237 (3)0.4702 (3)0.2710 (2)0.0096 (2)
C10.9953 (3)0.5527 (4)0.7016 (3)0.0110 (3)
C20.9217 (3)0.6696 (3)0.5227 (3)0.0087 (3)
C30.6740 (3)0.7536 (3)0.5416 (3)0.0110 (3)
C40.6157 (3)0.8998 (3)0.3881 (3)0.0100 (3)
H11.228 (6)0.381 (7)0.756 (6)0.039 (9)*
H21.049 (4)0.826 (5)0.561 (4)0.008 (5)*
H31.074 (5)0.403 (6)0.259 (5)0.023 (7)*
H40.806 (5)0.331 (6)0.226 (5)0.023 (6)*
H50.894 (5)0.539 (6)0.160 (5)0.028 (7)*
H60.669 (5)0.880 (5)0.712 (4)0.013 (6)*
H70.544 (5)0.609 (6)0.497 (5)0.020 (6)*
H80.353 (5)0.978 (6)0.245 (5)0.026 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01271 (15)0.01316 (16)0.01092 (14)0.00439 (11)0.00192 (11)0.00671 (11)
O10.0120 (6)0.0198 (6)0.0144 (5)0.0055 (5)0.0030 (4)0.0125 (5)
O20.0207 (6)0.0352 (8)0.0165 (6)0.0132 (6)0.0095 (5)0.0195 (6)
O30.0114 (6)0.0211 (6)0.0223 (6)0.0060 (5)0.0041 (5)0.0163 (5)
O40.0127 (5)0.0209 (6)0.0250 (6)0.0030 (5)0.0040 (5)0.0176 (5)
N10.0110 (5)0.0123 (6)0.0078 (5)0.0030 (5)0.0031 (5)0.0058 (5)
C10.0104 (7)0.0139 (7)0.0103 (6)0.0028 (5)0.0012 (5)0.0069 (5)
C20.0099 (6)0.0101 (7)0.0072 (6)0.0020 (5)0.0017 (5)0.0049 (5)
C30.0111 (7)0.0144 (7)0.0123 (7)0.0050 (6)0.0044 (5)0.0091 (6)
C40.0103 (7)0.0101 (7)0.0100 (7)0.0031 (5)0.0019 (5)0.0045 (6)
Geometric parameters (Å, º) top
O1—C11.315 (2)N1—H40.89 (3)
O1—H10.81 (3)N1—H50.92 (3)
O2—C11.208 (2)C1—C21.533 (2)
O3—C41.323 (2)C2—C31.510 (3)
O3—H80.84 (3)C2—H20.99 (2)
O4—C41.209 (2)C3—C41.513 (2)
N1—C21.492 (2)C3—H61.00 (3)
N1—H30.95 (3)C3—H70.95 (3)
C1—O1—H1111 (2)C3—C2—C1111.37 (13)
C4—O3—H8110 (2)N1—C2—H2107.2 (13)
C2—N1—H3112.2 (16)C3—C2—H2110.1 (14)
C2—N1—H4109.9 (19)C1—C2—H2107.7 (13)
H3—N1—H4106 (3)C2—C3—C4111.26 (13)
C2—N1—H5112 (2)C2—C3—H6111.3 (15)
H3—N1—H5109 (2)C4—C3—H6106.2 (15)
H4—N1—H5107 (2)C2—C3—H7113.3 (17)
O2—C1—O1126.37 (16)C4—C3—H7108.9 (16)
O2—C1—C2121.88 (16)H6—C3—H7105 (2)
O1—C1—C2111.72 (14)O4—C4—O3124.22 (14)
N1—C2—C3111.06 (12)O4—C4—C3122.70 (14)
N1—C2—C1109.32 (13)O3—C4—C3113.07 (14)
O2—C1—C2—N1131.63 (18)N1—C2—C3—C464.97 (17)
O1—C1—C2—N150.39 (19)C1—C2—C3—C4172.92 (13)
O2—C1—C2—C38.5 (2)C2—C3—C4—O421.3 (2)
O1—C1—C2—C3173.49 (14)C2—C3—C4—O3159.64 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H5···O2i0.92 (3)1.93 (3)2.8030 (19)158 (3)
N1—H4···O4ii0.89 (3)2.14 (3)2.817 (2)132 (2)
O1—H1···Cl1iii0.81 (3)2.26 (3)3.0657 (13)176 (3)
O3—H8···Cl1iv0.84 (3)2.26 (3)3.0909 (14)173 (3)
N1—H5···O40.92 (3)2.58 (3)3.099 (2)116 (2)
N1—H3···Cl1v0.95 (3)2.33 (3)3.1682 (15)147 (2)
N1—H4···Cl10.89 (3)2.66 (3)3.3562 (15)136 (2)
C2—H2···O3v0.99 (2)2.56 (2)3.305 (2)132.1 (18)
C3—H7···O1vi0.95 (3)2.57 (3)3.357 (2)141 (2)
Symmetry codes: (i) x, y, z1; (ii) x, y1, z; (iii) x+1, y, z+1; (iv) x, y+1, z; (v) x+1, y, z; (vi) x1, y, z.
(II) L-Aspartic acid hydrochloride top
Crystal data top
C4H8NO4+·ClDx = 1.535 Mg m3
Mr = 169.56Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P21212Cell parameters from 17470 reflections
a = 9.7082 (2) Åθ = 3.2–45.5°
b = 8.9123 (3) ŵ = 0.48 mm1
c = 8.4820 (2) ÅT = 100 K
V = 733.88 (3) Å3Prism, colourless
Z = 40.20 × 0.14 × 0.12 mm
F(000) = 352
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
6012 independent reflections
Radiation source: SuperNova (Mo) X-ray Source5353 reflections with I > 2σ(I)
Detector resolution: 10.4508 pixels mm-1Rint = 0.027
ω scansθmax = 45.5°, θmin = 3.2°
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]
h = 1919
Tmin = 0.936, Tmax = 0.955k = 1712
17470 measured reflectionsl = 1617
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037All H-atom parameters refined
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.017P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.003
6012 reflectionsΔρmax = 0.46 e Å3
123 parametersΔρmin = 0.57 e Å3
0 restraintsAbsolute structure: Flack x determined using 2029 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.031 (16)
Special details top

Experimental. Absorption correction: CrysAlisPro (2012), Agilent Technologies UK Ltd, Oxford, UK, Version 1.171.36.24 (release 03-12-2012 CrysAlis171 .NET) (compiled Dec 3 2012,18:21:49) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid, 1995.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.66179 (2)0.17292 (3)0.26316 (3)0.01443 (5)
O10.30341 (12)0.50000 (11)0.17327 (10)0.02335 (19)
O20.34892 (10)0.45850 (9)0.42956 (9)0.01692 (14)
O30.04610 (10)0.18092 (13)0.14412 (12)0.0262 (2)
O40.04221 (9)0.29182 (10)0.35986 (10)0.01801 (15)
N10.32151 (10)0.16396 (11)0.40818 (11)0.01400 (13)
C10.32323 (10)0.41414 (12)0.29825 (12)0.01320 (15)
C20.31630 (9)0.24865 (11)0.25713 (12)0.01193 (13)
C30.19377 (10)0.20373 (12)0.15602 (12)0.01299 (15)
C40.05605 (10)0.23073 (11)0.23259 (13)0.01351 (15)
H10.322 (3)0.587 (4)0.200 (4)0.070 (9)*
H20.3993 (18)0.227 (2)0.199 (2)0.020 (4)*
H30.3987 (18)0.184 (2)0.460 (2)0.020 (4)*
H40.2485 (17)0.185 (2)0.465 (2)0.016 (4)*
H50.328 (3)0.070 (3)0.386 (3)0.042 (6)*
H60.1978 (19)0.255 (2)0.061 (2)0.020 (4)*
H70.201 (2)0.103 (2)0.127 (2)0.019 (4)*
H80.119 (3)0.192 (3)0.195 (3)0.046 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01398 (8)0.01229 (9)0.01702 (9)0.00002 (7)0.00008 (7)0.00187 (7)
O10.0429 (6)0.0118 (3)0.0153 (3)0.0024 (3)0.0019 (3)0.0018 (3)
O20.0210 (4)0.0143 (3)0.0155 (3)0.0013 (3)0.0019 (3)0.0028 (2)
O30.0128 (3)0.0382 (5)0.0277 (5)0.0020 (3)0.0017 (3)0.0158 (4)
O40.0143 (3)0.0265 (4)0.0132 (3)0.0004 (3)0.0012 (2)0.0036 (3)
N10.0161 (3)0.0119 (3)0.0140 (3)0.0002 (3)0.0025 (3)0.0010 (3)
C10.0132 (3)0.0121 (3)0.0142 (3)0.0008 (3)0.0012 (3)0.0001 (3)
C20.0121 (3)0.0116 (3)0.0121 (3)0.0000 (2)0.0006 (3)0.0003 (3)
C30.0136 (3)0.0141 (4)0.0113 (3)0.0003 (3)0.0002 (3)0.0022 (3)
C40.0122 (3)0.0142 (4)0.0142 (4)0.0005 (3)0.0007 (3)0.0009 (3)
Geometric parameters (Å, º) top
O1—C11.3215 (14)N1—H40.876 (17)
O1—H10.83 (3)N1—H50.86 (2)
O2—C11.2079 (13)C1—C21.5171 (14)
O3—C41.3204 (13)C2—C31.5201 (14)
O3—H80.84 (3)C2—H20.963 (18)
O4—C41.2165 (13)C3—C41.5058 (14)
N1—C21.4879 (14)C3—H60.929 (18)
N1—H30.888 (18)C3—H70.937 (18)
C1—O1—H1107 (2)C1—C2—C3114.86 (8)
C4—O3—H8107.7 (18)N1—C2—H2108.0 (12)
C2—N1—H3110.6 (12)C1—C2—H2105.9 (11)
C2—N1—H4109.7 (12)C3—C2—H2108.3 (11)
H3—N1—H4111.7 (15)C4—C3—C2114.17 (8)
C2—N1—H5107.9 (16)C4—C3—H6109.5 (12)
H3—N1—H5104 (2)C2—C3—H6109.2 (12)
H4—N1—H5113 (2)C4—C3—H7109.7 (12)
O2—C1—O1125.47 (10)C2—C3—H7110.0 (12)
O2—C1—C2122.64 (9)H6—C3—H7103.8 (16)
O1—C1—C2111.84 (8)O4—C4—O3124.87 (10)
N1—C2—C1107.08 (8)O4—C4—C3123.53 (9)
N1—C2—C3112.26 (8)O3—C4—C3111.59 (9)
O2—C1—C2—N19.71 (13)N1—C2—C3—C460.53 (11)
O1—C1—C2—N1172.76 (9)C1—C2—C3—C462.11 (12)
O2—C1—C2—C3135.10 (10)C2—C3—C4—O44.49 (15)
O1—C1—C2—C347.36 (13)C2—C3—C4—O3175.92 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H4···O2i0.876 (17)2.400 (18)2.8257 (13)110.3 (14)
N1—H3···O4ii0.888 (18)2.078 (18)2.9354 (12)162.0 (16)
N1—H4···O40.877 (17)2.390 (17)2.9696 (13)123.9 (14)
O3—H8···Cl1iii0.84 (3)2.21 (3)3.0111 (10)160 (2)
O1—H1···Cl1iv0.83 (3)2.21 (3)3.0320 (10)172 (3)
N1—H5···Cl1v0.86 (2)2.40 (2)3.2487 (10)167 (2)
N1—H4···Cl1vi0.876 (17)2.766 (18)3.5056 (10)143.1 (14)
C2—H2···Cl10.963 (18)2.650 (18)3.4217 (10)137.5 (15)
Symmetry codes: (i) x+1/2, y1/2, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x1, y, z; (iv) x+1, y+1, z; (v) x+1, y, z; (vi) x1/2, y+1/2, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds