Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
We have determined the crystal structures of two tetra­chlorido­aluminate salts. Tetra­butyl­ammonium tetra­chlorido­aluminate benzene hemisolvate, (C16H36N)[AlCl4]·0.5C6H6, (I), crystallizes with discrete cations, anions and solvent mol­ecules. The benzene mol­ecule is located on a centre of inversion. The structure of the benzene-free polymorph has been determined previously. Tetra­ethyl­ammonium tetra­chlorido­aluminate, (C8H20N)[AlCl4], (II), also crystallizes with discrete cations and anions, and forms crystals which appear trigonal but are actually ortho­rhom­bic. With the additional reflections of the second and third domains of this nonmerohedral twin, a trigonal lattice is emulated, although the correct crystal system is ortho­rhom­bic.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614022621/sk3567sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614022621/sk3567Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614022621/sk3567IIsup3.hkl
Contains datablock II

CCDC references: 1029250; 1029251

Introduction top

In the course of our investigations of low-coordinate triele compounds (Wiberg et al., 1998; Budanow et al., 2012), we prepared (tBu3Si)2ECl from ECl3 (E = Al, Ga) and tri-tert-butyl­silanide (supersilanide) Na[SitBu3] (Lerner, 2005). When ECl3 (E = Al, Ga) in pentane was treated with one or two molar equivalents of Na[SitBu3] (Lerner, 2005), the reaction mixture underwent a colour change to bright yellow (Wiberg et al., 1998). It is worth mentioning that in both cases we isolated colourless crystals of (tBu3Si)2ECl. Therefore, we suggested that in solution an equilibrium of (tBu3Si)2ECl and ECl3 (E = Al, Ga) with the related ion pairs [tBu3Si–E–SitBu3][ECl4] exists and the yellow colour proceeds from the cation [tBu3Si–E–SitBu3]+. However, up to now we could not isolate the ion pairs [tBu3Si–E–SitBu3][ECl4]. Very recently, we synthesized the two-coordinate cations [tBu3Si–E–SitBu3][Al{OC(CF3)3}4] (E = Al, Ga) (Budanow et al., 2012; Budanow, 2014). As a consequence thereof, the synthesis of [tBu3Si–E–SitBu3][ECl4] (E = Al, Ga) is now possible by the reaction of [tBu3Si–E–SitBu3][Al{OC(CF3)3}4] with [nBu4N][ECl4]. For this approach we synthesized [nBu4N][AlCl4] as a starting material. Apart from the benzene-free pseudopolymorph of (I), there is no structure in the Cambridge Crystallographic Database (Groom & Allen, 2014) containing the AlCl4 anion and an ammonium cation with the N atom bonded to four C atoms.

Experimental top

Synthesis and crystallization top

All experiments were carried out using standard Schlenk techniques. The ammonium salts were obtained from commercial sources and used as purchased. AlCl3 was prepared from Al and HCl gas. C6H6 was dried over Na and CH2Cl2 was dried over CaH2. The solvents were freshly distilled prior to use.

Compound (I) was crystallized from a 1:1 mixture of Bu4NCl and AlCl3 in C6H6. The mixture was stirred for 1 h and filtered through a paper filter. The crystals grew on the paper at the upper rim of the filter. Crystals of (II) grew when the solvent of a clear and colourless solution of Et4NCl and AlCl3 (1:1) in CH2Cl2 was evaporated slowly.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were refined using a riding model, with aromatic C—H = 0.95 Å, methyl C—H = 0.98 Å and methyl­ene C—H = 0.99 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) otherwise.

Compound (II) is a nonmerohedral twin. The initial cell determination gave a trigonal cell (a = b = 16.242 Å, c = 12.902 Å, α = β = 90°, γ = 120°). However, since the Rint value (0.399) for merging the data in this setting was rather high, the data were transformed to an orthorhombic C-centred lattice with a = 16.242 Å, b = 28.131 Å and c = 12.902 Å, and α = β = γ = 90°, leading to an acceptable Rint value of 0.060. However, the space group extinctions (h0l for h=2n weak and h0l for h + l=2n weak) did not match any space group. A thorough inspection of the reflection data revealed that all reflections with an odd sum of h + k were significantly weaker [mean I/σ(I) = 4.2] than the remaining [mean I/σ(I) = 22.2] reflections. Thus, the cell was transformed by (0.5 0.5 0/0 0 1/-0.5 0.5 0) to an orthorhombic primitive one with a = 8.119 Å, b = 12.902 Å and c = 14.063 Å, and α = β = γ = 90°. Now the systematic absence exceptions pointed to the space group Pc21b which is just another setting of Pca21 (transformation matrix: 001/100/010). In this space group, the structure could be solved, but refinement did not proceed satisfactorily (wR2 = 0.374, R1 = 0.121 for all data; one nonpositive definite atom). As a result, it became obvious that the structure was twinned. A test for twinning with the TWINROTMAT option in PLATON (Spek, 2009) gave two twin laws, i.e. (0.503 1.491 0.000/0.501 -0.503 0.000/0.000 0.000 -1.000) and (-0.497 1.497 0.000/0.503 0.497 0.000/0.000 0.000 -1.000).

For the refinement, the reflection data have to be read in via the HKLF 5 option in SHELXL (Sheldrick, 2008) and two additional parameters, called BASF, describing the fractional contribution of the twin domains had to be introduced. With these modifications, the structure can be satisfactorily refined (Table 1). The fractional contributions of the two minor twin domains refined to 0.1622 (16) and 0.1636 (19).

Results and discussion top

Tetra­butyl­ammonium tetra­chloridoaluminate benzene hemisolvate, (I) crystallizes with discrete cations and anions and solvent molecules (Fig. 1). The benzene molecule is located on a centre of inversion. The four Al—Cl distances do not vary markedly [2.1195 (10)–2.1389 (11) Å; Table 2] and the six bond angles at Al are close to ideal tetra­hedral values [108.12 (5)–111.33 (5)°] (Table 2). All four butyl chains of the cation display an all-trans conformation. The packing diagram (Fig. 2) shows that the three entities are located in layers parallel to the bc plane. There are two Al···N distances below 6 Å [N1···Al1 = 5.5296 (18) Å and N1···Al1i = 5.5764 (18) Å; symmetry code: (i) -x+1/2, y+1/2, -z+1/2] and five N···Cl contacts below 5 Å [N1···Cl3ii = 4.4060 (18) Å, N1···Cl1 = 4.4814 (18) Å, N1···Cl2i = 4.7479 (18) Å, N1···Cl4i = 4.753 (2) Å and N1···Cl2 = 4.8726 (18) Å; symmetry codes: (i) -x+1/2, y+1/2, -z+1/2; (ii) x+1, y, z]. The shortest Al···Al and N···N distances are listed in Table 3.

The structure of the benzene-free pseudo-polymorph of (I) has already been determined (Kanazawa et al., 2012), hereafter (Ia). It crystallizes with two half ions in the asymmetric unit, both of which are located on a twofold rotation axis parallel to [100]. The crystal packing (Fig. 3) shows that every cation is surrounded by six anions and vice versa. As a result, cations and anions are perfectly shielded from each other. There are two Al···N distances below 6 Å (5.766 Å) and four N···Cl contacts below 5 Å (4.471–4.523 Å). The shortest Al···Al and N···N distances are in the same range as for (I).

It is noteworthy, that tetra-n-butyl­ammonium tetra­bromidoaluminate (Rudawska-Frąckiewicz & Siekierski, 2004) is isomorphous (orthorhombic space group Pnna) with (Ia), whereas tetra-n-butyl­ammonium tetra­iodidoaluminate (Rogers et al., 1984) crystallizes in a different crystal system, i.e. monoclinic P21/n.

The crystal packing patterns of (I) and (Ia) resemble each other. The only difference is that in (I) additional solvent molecules are included in the crystal. Comparing the selected short distances in Table 3, there is only a difference for the N···N distances; the N···Al, N···Cl and Al···Al distances are in the same range.

Tetra­ethyl­ammonium tetra­chloridoaluminate, (II), also crystallizes with discrete cations and anions. The AlCl42- anion is essentially tetra­hedral, with Al—Cl bond distances ranging from 2.1313 (14) Å for Al1—Cl3 to 2.1383 (14) Å for Al1—Cl4 (Table 4). The bond angles at Al are almost equal [108.14 (6)–110.38 (6)°; Table 4]. The bond lengths and angles at atom N1 differ slightly more from ideal tetra­hedral values [1.503 (5)–1.524 (4) Å and 107.7 (3)–111.6 (3)°; Table 4]. The ions form layers in the ac plane.

There are five N···Al distances below 6 Å ranging from 5.537 (8) [symmetry code for Al1 (x, y-1, z)] to 5.832 (8) Å [symmetry code for Al1 (-x+1/2, y, z-1/2)] and 11 N···Cl distances below 5 Å ranging from 4.460 (9) (N1···Cl1) to 4.999 Å [N1···Cl1(x, -y+1, z-1/2)].

Due to the change of butyl chains to ethyl chains, the cations of (II) are smaller than in (I) and (Ia). As a result, the Al···Al and N···N distances become significantly shorter (Table 3). On the other hand, the shortest N···Al and N···Cl distances do not show marked differences.

Related literature top

For related literature, see: Budanow (2014); Budanow et al. (2012); Groom & Allen (2014); Kanazawa et al. (2012); Lerner (2005); Rogers et al. (1984); Rudawska-Frąckiewicz & Siekierski (2004); Sheldrick (2008); Spek (2009); Wiberg et al. (1998).

Computing details top

For both compounds, data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for (I); SHELXS97(Sheldrick, 2008) for (II). For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of (I), with displacement ellipsoids drawn at the 50% probability level. Atoms with suffix `A' were generated using the symmetry operator (-x, -y+2, -z).
[Figure 2] Fig. 2. Packing diagram of (I), viewed in the ac plane. H atoms have been omitted for clarity. [Please provide a version with a white background]
[Figure 3] Fig. 3. Packing diagram of solvent-free tetrabutylammonium tetrachloridoaluminate. H atoms have been omitted for clarity. [Please provide a version with a white background]
[Figure 4] Fig. 4. Perspective view of (II), with displacement ellipsoids drawn at the 50% probability level.
[Figure 5] Fig. 5. Packing diagram of (II), viewed in the bc plane. H atoms have been omitted for clarity.
(I) Tetrabutylammonium tetrachloridoaluminate benzene hemisolvate top
Crystal data top
(C16H36N)[AlCl4]·0.5C6H6F(000) = 964
Mr = 450.29Dx = 1.154 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.6887 (5) ÅCell parameters from 29120 reflections
b = 13.8505 (5) Åθ = 1.9–26.7°
c = 17.5554 (10) ŵ = 0.49 mm1
β = 93.926 (4)°T = 173 K
V = 2592.9 (2) Å3Block, colourless
Z = 40.40 × 0.30 × 0.30 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
4643 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray sourceRint = 0.072
ω scansθmax = 26.2°, θmin = 2.3°
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
h = 1313
Tmin = 0.781, Tmax = 0.844k = 1617
20778 measured reflectionsl = 2121
5137 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.0825P)2 + 1.8021P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5137 reflectionsΔρmax = 1.15 e Å3
226 parametersΔρmin = 0.66 e Å3
Crystal data top
(C16H36N)[AlCl4]·0.5C6H6V = 2592.9 (2) Å3
Mr = 450.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.6887 (5) ŵ = 0.49 mm1
b = 13.8505 (5) ÅT = 173 K
c = 17.5554 (10) Å0.40 × 0.30 × 0.30 mm
β = 93.926 (4)°
Data collection top
Stoe IPDS II two-circle
diffractometer
5137 independent reflections
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
4643 reflections with I > 2σ(I)
Tmin = 0.781, Tmax = 0.844Rint = 0.072
20778 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.04Δρmax = 1.15 e Å3
5137 reflectionsΔρmin = 0.66 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.04187 (7)0.64919 (5)0.23509 (4)0.0440 (2)
Cl10.14201 (7)0.77756 (5)0.21111 (4)0.0557 (2)
Cl20.17312 (6)0.54100 (5)0.27113 (5)0.0612 (2)
Cl30.07795 (8)0.67600 (6)0.32452 (6)0.0748 (3)
Cl40.06447 (10)0.59758 (8)0.13572 (6)0.0954 (4)
N10.52474 (15)0.75811 (12)0.33139 (10)0.0306 (4)
C10.6011 (2)0.81451 (15)0.27622 (12)0.0337 (4)
H1A0.62390.87760.29970.040*
H1B0.68000.77890.26980.040*
C20.5368 (2)0.83264 (17)0.19788 (13)0.0412 (5)
H2A0.52440.77060.17040.049*
H2B0.45340.86200.20330.049*
C30.6156 (3)0.8996 (2)0.15254 (14)0.0504 (6)
H3A0.69540.86710.14280.061*
H3B0.63600.95830.18310.061*
C40.5489 (3)0.9287 (3)0.07683 (16)0.0649 (8)
H4A0.60300.97190.04950.097*
H4B0.47060.96210.08620.097*
H4C0.53010.87090.04600.097*
C50.47169 (19)0.66614 (14)0.29444 (13)0.0345 (4)
H5A0.42800.62950.33310.041*
H5B0.40830.68420.25310.041*
C60.5675 (2)0.60024 (16)0.26130 (16)0.0438 (5)
H6A0.61550.63690.22470.053*
H6B0.62720.57670.30280.053*
C70.5038 (2)0.51476 (16)0.22092 (14)0.0415 (5)
H7A0.46250.47510.25880.050*
H7B0.43790.53880.18330.050*
C80.5933 (3)0.4524 (2)0.1806 (2)0.0659 (8)
H8A0.54740.39830.15590.099*
H8B0.65800.42740.21760.099*
H8C0.63270.49070.14190.099*
C90.41782 (19)0.82216 (15)0.35351 (13)0.0354 (4)
H9A0.36420.83690.30670.042*
H9B0.45390.88400.37290.042*
C100.3346 (2)0.78246 (17)0.41280 (14)0.0408 (5)
H10A0.38660.76200.45880.049*
H10B0.28780.72550.39200.049*
C110.2432 (3)0.8606 (2)0.43385 (17)0.0541 (6)
H11A0.29110.91590.45660.065*
H11B0.19610.88370.38690.065*
C120.1513 (3)0.8257 (3)0.4897 (2)0.0723 (9)
H12A0.09490.87870.50140.109*
H12B0.19730.80390.53670.109*
H12C0.10200.77200.46690.109*
C130.61026 (19)0.73041 (15)0.40056 (12)0.0337 (4)
H13A0.56360.68660.43300.040*
H13B0.68220.69370.38280.040*
C140.6609 (2)0.81388 (17)0.44949 (13)0.0396 (5)
H14A0.69810.86290.41680.048*
H14B0.59160.84460.47520.048*
C150.7598 (3)0.7778 (2)0.50888 (14)0.0508 (6)
H15A0.72180.72890.54140.061*
H15B0.82790.74610.48280.061*
C160.8147 (3)0.8585 (2)0.55898 (16)0.0570 (7)
H16A0.87840.83200.59610.085*
H16B0.74800.88900.58610.085*
H16C0.85340.90670.52710.085*
C210.0328 (4)0.9353 (2)0.05424 (18)0.0691 (9)
H210.05650.89040.09150.083*
C220.1185 (3)0.9645 (2)0.0030 (2)0.0713 (9)
H220.20150.93960.00510.086*
C230.0848 (4)1.0298 (2)0.05744 (18)0.0659 (8)
H230.14441.04990.09690.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0351 (4)0.0420 (4)0.0545 (4)0.0019 (3)0.0003 (3)0.0010 (3)
Cl10.0558 (4)0.0428 (3)0.0686 (4)0.0031 (3)0.0066 (3)0.0098 (3)
Cl20.0422 (3)0.0436 (4)0.0982 (6)0.0037 (3)0.0086 (3)0.0057 (3)
Cl30.0619 (5)0.0603 (5)0.1069 (7)0.0075 (3)0.0408 (4)0.0004 (4)
Cl40.0945 (7)0.1003 (7)0.0853 (6)0.0225 (6)0.0387 (5)0.0065 (5)
N10.0276 (8)0.0271 (8)0.0367 (9)0.0008 (6)0.0003 (6)0.0025 (7)
C10.0328 (10)0.0321 (10)0.0360 (10)0.0044 (8)0.0003 (8)0.0061 (8)
C20.0447 (12)0.0425 (12)0.0357 (11)0.0014 (10)0.0023 (9)0.0032 (9)
C30.0538 (14)0.0565 (15)0.0411 (12)0.0021 (12)0.0040 (11)0.0157 (11)
C40.077 (2)0.077 (2)0.0408 (13)0.0145 (16)0.0046 (13)0.0165 (13)
C50.0305 (10)0.0277 (10)0.0449 (11)0.0034 (8)0.0002 (8)0.0002 (8)
C60.0326 (11)0.0345 (11)0.0640 (15)0.0007 (9)0.0021 (10)0.0071 (10)
C70.0397 (11)0.0339 (11)0.0504 (13)0.0017 (9)0.0013 (9)0.0033 (9)
C80.0523 (15)0.0499 (16)0.096 (2)0.0045 (13)0.0076 (15)0.0250 (15)
C90.0306 (10)0.0299 (10)0.0454 (11)0.0034 (8)0.0011 (8)0.0045 (8)
C100.0351 (11)0.0385 (11)0.0494 (13)0.0016 (9)0.0074 (9)0.0039 (9)
C110.0426 (13)0.0542 (15)0.0669 (16)0.0105 (11)0.0146 (12)0.0021 (13)
C120.0513 (16)0.089 (2)0.080 (2)0.0063 (16)0.0264 (15)0.0020 (18)
C130.0312 (10)0.0336 (10)0.0359 (10)0.0028 (8)0.0002 (8)0.0067 (8)
C140.0401 (11)0.0393 (11)0.0389 (11)0.0018 (9)0.0017 (9)0.0022 (9)
C150.0565 (15)0.0523 (14)0.0417 (12)0.0092 (12)0.0095 (11)0.0022 (11)
C160.0571 (16)0.0672 (17)0.0447 (13)0.0022 (13)0.0107 (11)0.0068 (12)
C210.106 (3)0.0486 (15)0.0554 (16)0.0004 (17)0.0273 (17)0.0043 (13)
C220.0611 (18)0.0637 (19)0.091 (2)0.0059 (15)0.0170 (17)0.0332 (18)
C230.084 (2)0.0569 (17)0.0552 (16)0.0186 (16)0.0095 (15)0.0169 (13)
Geometric parameters (Å, º) top
Al1—Cl22.1195 (10)C9—C101.518 (3)
Al1—Cl32.1257 (11)C9—H9A0.9900
Al1—Cl12.1321 (10)C9—H9B0.9900
Al1—Cl42.1389 (11)C10—C111.520 (3)
N1—C91.518 (3)C10—H10A0.9900
N1—C131.518 (3)C10—H10B0.9900
N1—C51.521 (3)C11—C121.514 (4)
N1—C11.524 (3)C11—H11A0.9900
C1—C21.516 (3)C11—H11B0.9900
C1—H1A0.9900C12—H12A0.9800
C1—H1B0.9900C12—H12B0.9800
C2—C31.515 (3)C12—H12C0.9800
C2—H2A0.9900C13—C141.518 (3)
C2—H2B0.9900C13—H13A0.9900
C3—C41.519 (4)C13—H13B0.9900
C3—H3A0.9900C14—C151.517 (3)
C3—H3B0.9900C14—H14A0.9900
C4—H4A0.9800C14—H14B0.9900
C4—H4B0.9800C15—C161.516 (4)
C4—H4C0.9800C15—H15A0.9900
C5—C61.517 (3)C15—H15B0.9900
C5—H5A0.9900C16—H16A0.9800
C5—H5B0.9900C16—H16B0.9800
C6—C71.517 (3)C16—H16C0.9800
C6—H6A0.9900C21—C23i1.344 (5)
C6—H6B0.9900C21—C221.373 (5)
C7—C81.502 (4)C21—H210.9500
C7—H7A0.9900C22—C231.382 (5)
C7—H7B0.9900C22—H220.9500
C8—H8A0.9800C23—C21i1.344 (5)
C8—H8B0.9800C23—H230.9500
C8—H8C0.9800
Cl2—Al1—Cl3108.84 (5)H8B—C8—H8C109.5
Cl2—Al1—Cl1108.52 (4)N1—C9—C10116.78 (17)
Cl3—Al1—Cl1109.64 (5)N1—C9—H9A108.1
Cl2—Al1—Cl4108.12 (5)C10—C9—H9A108.1
Cl3—Al1—Cl4110.33 (5)N1—C9—H9B108.1
Cl1—Al1—Cl4111.33 (5)C10—C9—H9B108.1
C9—N1—C13111.45 (16)H9A—C9—H9B107.3
C9—N1—C5109.46 (15)C9—C10—C11108.97 (19)
C13—N1—C5108.41 (15)C9—C10—H10A109.9
C9—N1—C1107.96 (15)C11—C10—H10A109.9
C13—N1—C1108.56 (15)C9—C10—H10B109.9
C5—N1—C1111.01 (16)C11—C10—H10B109.9
C2—C1—N1115.61 (17)H10A—C10—H10B108.3
C2—C1—H1A108.4C12—C11—C10112.7 (2)
N1—C1—H1A108.4C12—C11—H11A109.0
C2—C1—H1B108.4C10—C11—H11A109.0
N1—C1—H1B108.4C12—C11—H11B109.0
H1A—C1—H1B107.4C10—C11—H11B109.0
C3—C2—C1110.15 (19)H11A—C11—H11B107.8
C3—C2—H2A109.6C11—C12—H12A109.5
C1—C2—H2A109.6C11—C12—H12B109.5
C3—C2—H2B109.6H12A—C12—H12B109.5
C1—C2—H2B109.6C11—C12—H12C109.5
H2A—C2—H2B108.1H12A—C12—H12C109.5
C2—C3—C4112.2 (2)H12B—C12—H12C109.5
C2—C3—H3A109.2C14—C13—N1115.60 (17)
C4—C3—H3A109.2C14—C13—H13A108.4
C2—C3—H3B109.2N1—C13—H13A108.4
C4—C3—H3B109.2C14—C13—H13B108.4
H3A—C3—H3B107.9N1—C13—H13B108.4
C3—C4—H4A109.5H13A—C13—H13B107.4
C3—C4—H4B109.5C15—C14—C13110.05 (19)
H4A—C4—H4B109.5C15—C14—H14A109.7
C3—C4—H4C109.5C13—C14—H14A109.7
H4A—C4—H4C109.5C15—C14—H14B109.7
H4B—C4—H4C109.5C13—C14—H14B109.7
C6—C5—N1115.19 (17)H14A—C14—H14B108.2
C6—C5—H5A108.5C16—C15—C14112.3 (2)
N1—C5—H5A108.5C16—C15—H15A109.1
C6—C5—H5B108.5C14—C15—H15A109.1
N1—C5—H5B108.5C16—C15—H15B109.1
H5A—C5—H5B107.5C14—C15—H15B109.1
C7—C6—C5110.83 (18)H15A—C15—H15B107.9
C7—C6—H6A109.5C15—C16—H16A109.5
C5—C6—H6A109.5C15—C16—H16B109.5
C7—C6—H6B109.5H16A—C16—H16B109.5
C5—C6—H6B109.5C15—C16—H16C109.5
H6A—C6—H6B108.1H16A—C16—H16C109.5
C8—C7—C6112.9 (2)H16B—C16—H16C109.5
C8—C7—H7A109.0C23i—C21—C22120.0 (3)
C6—C7—H7A109.0C23i—C21—H21120.0
C8—C7—H7B109.0C22—C21—H21120.0
C6—C7—H7B109.0C21—C22—C23120.5 (3)
H7A—C7—H7B107.8C21—C22—H22119.8
C7—C8—H8A109.5C23—C22—H22119.8
C7—C8—H8B109.5C21i—C23—C22119.6 (3)
H8A—C8—H8B109.5C21i—C23—H23120.2
C7—C8—H8C109.5C22—C23—H23120.2
H8A—C8—H8C109.5
C9—N1—C1—C269.5 (2)C5—N1—C9—C1063.2 (2)
C13—N1—C1—C2169.55 (18)C1—N1—C9—C10175.89 (18)
C5—N1—C1—C250.5 (2)N1—C9—C10—C11173.7 (2)
N1—C1—C2—C3172.87 (19)C9—C10—C11—C12176.8 (2)
C1—C2—C3—C4173.9 (2)C9—N1—C13—C1453.3 (2)
C9—N1—C5—C6173.39 (19)C5—N1—C13—C14173.80 (18)
C13—N1—C5—C664.8 (2)C1—N1—C13—C1465.5 (2)
C1—N1—C5—C654.3 (2)N1—C13—C14—C15171.30 (19)
N1—C5—C6—C7175.83 (18)C13—C14—C15—C16179.4 (2)
C5—C6—C7—C8174.4 (2)C23i—C21—C22—C230.1 (5)
C13—N1—C9—C1056.7 (2)C21—C22—C23—C21i0.1 (5)
Symmetry code: (i) x, y+2, z.
(II) Tetraethylammonium tetrachloridoaluminate top
Crystal data top
(C8H20N)[AlCl4]Dx = 1.349 Mg m3
Mr = 299.03Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 13398 reflections
a = 14.0348 (10) Åθ = 3.2–26.4°
b = 8.1362 (7) ŵ = 0.83 mm1
c = 12.8892 (12) ÅT = 173 K
V = 1471.8 (2) Å3Block, colourless
Z = 40.10 × 0.10 × 0.10 mm
F(000) = 624
Data collection top
Stoe IPDS II two-circle-
diffractometer
2423 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray sourceRint = 0.028
ω scansθmax = 25.8°, θmin = 4.0°
Absorption correction: multi-scan
X-AREA (Stoe & Cie, 2001)
h = 015
Tmin = 0.897, Tmax = 0.904k = 49
6472 measured reflectionsl = 1515
2522 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0263P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.052(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.20 e Å3
2522 reflectionsΔρmin = 0.15 e Å3
129 parametersAbsolute structure: Flack x determined using 1046 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.04 (5)
Crystal data top
(C8H20N)[AlCl4]V = 1471.8 (2) Å3
Mr = 299.03Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 14.0348 (10) ŵ = 0.83 mm1
b = 8.1362 (7) ÅT = 173 K
c = 12.8892 (12) Å0.10 × 0.10 × 0.10 mm
Data collection top
Stoe IPDS II two-circle-
diffractometer
2522 independent reflections
Absorption correction: multi-scan
X-AREA (Stoe & Cie, 2001)
2423 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 0.904Rint = 0.028
6472 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.052Δρmax = 0.20 e Å3
S = 1.10Δρmin = 0.15 e Å3
2522 reflectionsAbsolute structure: Flack x determined using 1046 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
129 parametersAbsolute structure parameter: 0.04 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 3-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.24065 (8)0.72153 (13)0.52107 (7)0.0232 (2)
Cl10.10146 (7)0.69274 (11)0.45644 (7)0.0306 (2)
Cl20.23073 (8)0.72358 (13)0.68639 (6)0.0335 (2)
Cl30.32847 (7)0.52335 (10)0.47060 (7)0.0309 (2)
Cl40.30042 (7)0.95065 (10)0.47242 (7)0.0334 (2)
N10.0859 (2)0.2192 (4)0.2809 (2)0.0203 (6)
C10.0915 (3)0.0357 (4)0.2601 (3)0.0253 (8)
H1A0.12390.01860.19270.030*
H1B0.13150.01540.31450.030*
C20.0035 (3)0.0524 (5)0.2574 (3)0.0315 (9)
H2A0.00690.16950.24350.047*
H2B0.03560.03940.32440.047*
H2C0.04330.00530.20240.047*
C30.1843 (3)0.2859 (5)0.2990 (3)0.0262 (8)
H3A0.20990.23590.36320.031*
H3B0.17930.40570.31100.031*
C40.2555 (4)0.2571 (5)0.2122 (4)0.0392 (10)
H4A0.31710.30490.23140.059*
H4B0.26300.13870.20070.059*
H4C0.23230.30910.14840.059*
C50.0245 (3)0.2566 (4)0.3755 (3)0.0253 (8)
H5A0.02550.37670.38780.030*
H5B0.04210.22540.35960.030*
C60.0545 (3)0.1703 (5)0.4745 (3)0.0353 (9)
H6A0.01130.20140.53090.053*
H6B0.05190.05110.46410.053*
H6C0.11970.20280.49240.053*
C70.0390 (3)0.2995 (4)0.1872 (3)0.0247 (8)
H7A0.07940.27920.12550.030*
H7B0.02320.24530.17480.030*
C80.0225 (3)0.4827 (5)0.1968 (3)0.0318 (9)
H8A0.00780.52370.13330.048*
H8B0.01910.50450.25630.048*
H8C0.08370.53850.20690.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0224 (7)0.0241 (5)0.0232 (4)0.0009 (5)0.0001 (4)0.0001 (4)
Cl10.0257 (5)0.0346 (4)0.0316 (4)0.0019 (4)0.0057 (4)0.0010 (4)
Cl20.0347 (6)0.0432 (6)0.0227 (4)0.0013 (4)0.0002 (4)0.0022 (4)
Cl30.0305 (5)0.0293 (4)0.0329 (4)0.0041 (3)0.0020 (5)0.0020 (4)
Cl40.0309 (5)0.0267 (4)0.0426 (5)0.0040 (3)0.0023 (5)0.0043 (4)
N10.0194 (18)0.0185 (14)0.0230 (13)0.0018 (13)0.0014 (11)0.0014 (11)
C10.030 (2)0.0179 (16)0.0279 (16)0.0030 (15)0.0003 (15)0.0033 (13)
C20.036 (3)0.0228 (18)0.035 (2)0.0044 (16)0.0038 (17)0.0036 (15)
C30.022 (2)0.0243 (17)0.0325 (19)0.0016 (16)0.0056 (15)0.0012 (13)
C40.026 (3)0.042 (2)0.050 (3)0.003 (2)0.0057 (16)0.0025 (18)
C50.025 (3)0.026 (2)0.0249 (18)0.0024 (14)0.0027 (15)0.0054 (12)
C60.040 (3)0.041 (2)0.0251 (18)0.0050 (17)0.0029 (18)0.0042 (18)
C70.022 (2)0.0283 (18)0.0235 (15)0.0045 (15)0.0027 (14)0.0022 (15)
C80.033 (3)0.023 (2)0.0388 (19)0.0018 (17)0.0032 (17)0.0071 (16)
Geometric parameters (Å, º) top
Al1—Cl32.1313 (14)C3—H3B0.9900
Al1—Cl22.1354 (11)C4—H4A0.9800
Al1—Cl12.1365 (14)C4—H4B0.9800
Al1—Cl42.1383 (14)C4—H4C0.9800
N1—C31.503 (5)C5—C61.516 (5)
N1—C11.519 (4)C5—H5A0.9900
N1—C51.523 (4)C5—H5B0.9900
N1—C71.524 (4)C6—H6A0.9800
C1—C21.514 (5)C6—H6B0.9800
C1—H1A0.9900C6—H6C0.9800
C1—H1B0.9900C7—C81.513 (5)
C2—H2A0.9800C7—H7A0.9900
C2—H2B0.9800C7—H7B0.9900
C2—H2C0.9800C8—H8A0.9800
C3—C41.518 (6)C8—H8B0.9800
C3—H3A0.9900C8—H8C0.9800
Cl3—Al1—Cl2110.38 (6)C3—C4—H4A109.5
Cl3—Al1—Cl1109.08 (6)C3—C4—H4B109.5
Cl2—Al1—Cl1109.29 (7)H4A—C4—H4B109.5
Cl3—Al1—Cl4110.07 (6)C3—C4—H4C109.5
Cl2—Al1—Cl4108.14 (6)H4A—C4—H4C109.5
Cl1—Al1—Cl4109.87 (6)H4B—C4—H4C109.5
C3—N1—C1109.5 (3)C6—C5—N1115.0 (3)
C3—N1—C5108.9 (3)C6—C5—H5A108.5
C1—N1—C5111.6 (3)N1—C5—H5A108.5
C3—N1—C7111.4 (3)C6—C5—H5B108.5
C1—N1—C7107.7 (3)N1—C5—H5B108.5
C5—N1—C7107.7 (3)H5A—C5—H5B107.5
C2—C1—N1115.1 (3)C5—C6—H6A109.5
C2—C1—H1A108.5C5—C6—H6B109.5
N1—C1—H1A108.5H6A—C6—H6B109.5
C2—C1—H1B108.5C5—C6—H6C109.5
N1—C1—H1B108.5H6A—C6—H6C109.5
H1A—C1—H1B107.5H6B—C6—H6C109.5
C1—C2—H2A109.5C8—C7—N1115.1 (3)
C1—C2—H2B109.5C8—C7—H7A108.5
H2A—C2—H2B109.5N1—C7—H7A108.5
C1—C2—H2C109.5C8—C7—H7B108.5
H2A—C2—H2C109.5N1—C7—H7B108.5
H2B—C2—H2C109.5H7A—C7—H7B107.5
N1—C3—C4115.8 (3)C7—C8—H8A109.5
N1—C3—H3A108.3C7—C8—H8B109.5
C4—C3—H3A108.3H8A—C8—H8B109.5
N1—C3—H3B108.3C7—C8—H8C109.5
C4—C3—H3B108.3H8A—C8—H8C109.5
H3A—C3—H3B107.4H8B—C8—H8C109.5
C3—N1—C1—C2170.8 (3)C3—N1—C5—C665.5 (4)
C5—N1—C1—C250.1 (4)C1—N1—C5—C655.6 (4)
C7—N1—C1—C267.9 (4)C7—N1—C5—C6173.6 (3)
C1—N1—C3—C457.0 (4)C3—N1—C7—C863.0 (4)
C5—N1—C3—C4179.3 (3)C1—N1—C7—C8176.8 (3)
C7—N1—C3—C462.0 (4)C5—N1—C7—C856.4 (4)

Experimental details

(I)(II)
Crystal data
Chemical formula(C16H36N)[AlCl4]·0.5C6H6(C8H20N)[AlCl4]
Mr450.29299.03
Crystal system, space groupMonoclinic, P21/nOrthorhombic, Pca21
Temperature (K)173173
a, b, c (Å)10.6887 (5), 13.8505 (5), 17.5554 (10)14.0348 (10), 8.1362 (7), 12.8892 (12)
α, β, γ (°)90, 93.926 (4), 9090, 90, 90
V3)2592.9 (2)1471.8 (2)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.490.83
Crystal size (mm)0.40 × 0.30 × 0.300.10 × 0.10 × 0.10
Data collection
DiffractometerStoe IPDS II two-circle
diffractometer
Stoe IPDS II two-circle-
diffractometer
Absorption correctionMulti-scan
(X-AREA; Stoe & Cie, 2001)
Multi-scan
X-AREA (Stoe & Cie, 2001)
Tmin, Tmax0.781, 0.8440.897, 0.904
No. of measured, independent and
observed [I > 2σ(I)] reflections
20778, 5137, 4643 6472, 2522, 2423
Rint0.0720.028
(sin θ/λ)max1)0.6210.613
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.162, 1.04 0.023, 0.052, 1.10
No. of reflections51372522
No. of parameters226129
No. of restraints01
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.15, 0.660.20, 0.15
Absolute structure?Flack x determined using 1046 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter?0.04 (5)

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXS97(Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), publCIF (Westrip, 2010), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) for (I) top
Al1—Cl22.1195 (10)Al1—Cl12.1321 (10)
Al1—Cl32.1257 (11)Al1—Cl42.1389 (11)
Cl2—Al1—Cl3108.84 (5)Cl2—Al1—Cl4108.12 (5)
Cl2—Al1—Cl1108.52 (4)Cl3—Al1—Cl4110.33 (5)
Cl3—Al1—Cl1109.64 (5)Cl1—Al1—Cl4111.33 (5)
Shortest N···Al, N···Cl, Al···Al, and N···N distances (Å) in (I), (Ia) and (II) top
StructureN···AlN···ClAl···AlN···N
(I)5.5296 (18)4.4060 (18)i8.2286 (8)ii8.981 (3)iii
(Ia)5.7664.471iv8.213v8.431vi
(II)5.537 (8)vii4.460 (9)6.4492 (6)viii7.748 (9)ix
Atom name and symmetry operators for generating the equivalent of the second atom: (i) N1···Cl3 (x+1, y , z); (ii) Al1···Al1 (-x+1/2, y+1/2, -z+1/2); (iii) N1···N1 (-x+1, y+2, -z+1); (iv) N1···Cl2 (-x+1, y+1, -z); (v) Al1···Al1 (-x+1, y+1, -z); (vi) N1···N1 (-x+1, y+1, -z); (vii) N1···Al1 (x, y-1, z); (viii) Al1···Al1 (-x+1/2, y, z+1/2); (ix) N1···N1 (-x, -y, z+1/2).
Selected geometric parameters (Å, º) for (II) top
Al1—Cl32.1313 (14)N1—C11.519 (4)
Al1—Cl22.1354 (11)N1—C51.523 (4)
Al1—Cl12.1365 (14)N1—C71.524 (4)
Al1—Cl42.1383 (14)C1—C21.514 (5)
N1—C31.503 (5)
Cl3—Al1—Cl2110.38 (6)C3—N1—C1109.5 (3)
Cl3—Al1—Cl1109.08 (6)C3—N1—C5108.9 (3)
Cl2—Al1—Cl1109.29 (7)C1—N1—C5111.6 (3)
Cl3—Al1—Cl4110.07 (6)C3—N1—C7111.4 (3)
Cl2—Al1—Cl4108.14 (6)C1—N1—C7107.7 (3)
Cl1—Al1—Cl4109.87 (6)C5—N1—C7107.7 (3)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds