Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [Ir2(C16H13N2O3)4Cl2]·2CH2Cl2, the two Ir atoms, 3.7075 (6) Å apart, are bridged by two Cl atoms which straddle a twofold axis of rotation through the two Ir atoms. Each Ir centre resides in a distorted octa­hedral environment completed by two chelating 2,5-bis­(4-methoxy­phenyl)-1,3,4-oxadiazole ligands, with trans-N-N and cis-C-C dispositions. In the stacking structure, there are two types of hydrogen bonds, involving the meth­oxy substitutent, an N atom of the oxadiazole ring and the dichloro­methane solvent mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105031951/sq1229sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105031951/sq1229Isup2.hkl
Contains datablock I

CCDC reference: 294310

Comment top

In recent decades, luminescent metal complexes have attracted considerable attention, due to their intriguing photophysical, photochemical and excited-state redox properties, and their potential applications in photonic and photoelectronic devices (King et al., 1985; King & Watts, 1987). In particular, iridium(III) complexes with cyclometallated ligands show intense phosphorescence at room temperature and very promising behaviour as phosphor dyes in OLEDs (Baldo et al., 1998; Lamansky et al., 2001). On the other hand, oxadiazole derivatives have played a very important role in the field of electroactive and photoactive materials, due to their high electron affinities, which makes them good candidates for electron injection and transportation (Gregory & Martin, 2005). However, oxadiazole-based metal complexes are very scarce. To our knowledge, there have not been any reports of oxadiazole-based cyclometallated iridium complexes. In addition, although many structures of mononuclear cyclometallated iridium complexes have been determined (Lamansky et al., 2001), there are very limited reports on the structures of dinuclear iridium complexes. In this paper, a new dinuclear iridium complex, (I), with 2,5-bis(4-methoxyphenyl)-1,3,4-oxadiazole as the cyclometallated ligand, is presented.

In compound (I), which is a methylene chloride solvate, the Ir atoms, 3.7075 (6) Å apart on a twofold axis of rotation, are bridged by two Cl atoms. The Ir—C bond exerts a significant trans effect which favours the formation of bridged Ir—Cl bonds trans to the Ir—C bonds. Each Ir centre sits in a distorted octahedral environment formed by two chelating ligands with trans-N—N and cis-C—C dispositions. The molecules take the racemate form, rather than the meso form, owing to the interligand steric interactions (see scheme). This conformation is consistent with a similar dirhodium complex (Sprouse et al., 1984).

The Ir1—Cl, Ir1—C and Ir1—N bond distances are slightly different from the corresponding distances involving Ir2 (Table 1). These values are, in general, similar to those in the analogous complex [(ppy)2IrCl]2 (ppy = phenylpridine) [Ir—Cl 2.500 (10), Ir—C 2.020 (2) and Ir—N 2.090 (10) Å; Garces et al., 1993]. The oxadiazole plane and metallated 4-methoxyphenyl ring are coplanar, due to the formation of a five-membered chelate ring by the coordination of Ir with a C atom of the 4-methoxyphenyl and an N atom of the oxadiazole. Each free 4-methoxyphenyl ring is twisted out of the oxadiazole plane by rotation of the C—C single bond. The dihedral angles between them are 10.3 (12)° with respect to Ir1 and 13.7 (11)° with respect to Ir2.

In the stacking structure of compound (I), there are two types of weak hydrogen bonds (Table 2) between atom O3 of the methoxy substitute and an H atom on C26, and between atom N4 of oxadiazole ring and H atoms of the CH2Cl2 solvent molecule (Fig. 2).

The absorption and photoluminescence (PL) spectra of the dimer in CH2Cl2 solution were investigated (Fig. 3). In the absorption spectrum, intense absorptions are observed in the UV region of the spectrum, between 250 and 320 nm, which can be assigned to the spin-allowed ππ* transition from the cyclometallated ligands. The weaker absorption bands in the range 320–450 nm can probably be assigned to metal-to-ligand charge transfer (MLCT) and 3ππ* transition (Sprouse et al., 1984). The PL spectrum of the dimer shows two major peaks at 503 and 540 nm. The vibronic fine structures in the PL spectrum imply that the emissions predominantly result from ligand-based 3ππ* transition.

Experimental top

Iridium trichloride hydrate was purchased and used without further purification. 2,5-bis(4-methoxyphenyl)-1,3,4-oxadiazole was prepared following the published procedure of Sun & Wang (2001). Iridium trichloride hydrate (0.352 g, 1.0 mmol) was combined with 2.5 equivalents of the cyclometallating ligand, 2,5-bis(4-methoxyphenyl)-1,3,4-oxadiazole (0.705 g, 2.5 mmol), dissolved in a mixture of 2-ethoxyethanol (30 ml) and water (10 ml), and then refluxed for 24 h. The solution was cooled to room temperature and the resulting yellow precipitate was collected on a glass filter frit. The crude product was washed with water, ethanol and hexane. The residue was dried under vacuum and recrystallized from dichloromethane–hexane (1:1, v/v. (yield 0.515 g, 65.2%). Spectroscopic analysis: 1H NMR (CDCl3, δ, p.p.m.): 7.84 (d, J = 8.4 Hz, 8H), 7.43 (d, J = 8.4 Hz, 4H), 6.64 (d, J = 8.4 Hz, 8H), 6.42 (d, J = 8.1 Hz, 4H), 6.01 (s, 4H), 3.84 (s, 12H), 3.50 (s, 12H). Analysis, calculated for C64H52O12N8Cl2Ir·2CH2Cl2: C 45.29, H 3.22, N 6.40%; found: C 45.23, H 3.10, N 6.21%.

Refinement top

Atoms O1 and C1 of the ligand were found to be disordered over two positions (O1/O1' and C1/C1'), with refined occupancies of 0.62(s.u.?) and 0.38(s.u.?) and anisotropic displacement parameters. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms. The H atoms bonded to C10, C11 and C12 [No H atoms on C10. Should it be C11, C12 and C14?] were constrained with C—H distances of 0.90 Å [0.93 Å in CIF tables?] and with Uiso(H) = 1.2Ueq(C). The other H atoms bonded to C and O atoms [No H atoms on O atoms?] were placed in calculated positions, with C—H distances of 0.96 Å and O—H distances of 0.85 ° [Remove this phrase?], and with Uiso(H) = 1.5Ueq(C). [Please check added text]

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Please provide reference); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms and solvent molecules have been omitted for clarity.
[Figure 2] Fig. 2. The packing structure of compound (I). Hydrogen bonds are indicated by dashed lines.
[Figure 3] Fig. 3. The absorption and photoluminescence spectra of the dimer in CH2Cl2 solution.
Di-µ-chloro-bis{bis[2,5-bis(4-methoxyphenyl)-1,3,4-oxadiazole- κ2C2,N]iridium(III)] dichloromethane disolvate top
Crystal data top
[Ir2(C16H13N2O3)4Cl2]·2CH2Cl2F(000) = 3440
Mr = 1750.29Dx = 1.726 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C2ycCell parameters from 3335 reflections
a = 11.5352 (10) Åθ = 2.2–20.4°
b = 23.390 (2) ŵ = 4.25 mm1
c = 25.239 (2) ÅT = 292 K
β = 98.423 (2)°Plate, yellow
V = 6736.4 (10) Å30.28 × 0.20 × 0.08 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
6526 independent reflections
Radiation source: fine-focus sealed tube4696 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ϕ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1314
Tmin = 0.321, Tmax = 0.712k = 2828
17436 measured reflectionsl = 3123
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0562P)2]
where P = (Fo2 + 2Fc2)/3
6526 reflections(Δ/σ)max = 0.017
437 parametersΔρmax = 1.84 e Å3
26 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Ir2(C16H13N2O3)4Cl2]·2CH2Cl2V = 6736.4 (10) Å3
Mr = 1750.29Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.5352 (10) ŵ = 4.25 mm1
b = 23.390 (2) ÅT = 292 K
c = 25.239 (2) Å0.28 × 0.20 × 0.08 mm
β = 98.423 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
6526 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4696 reflections with I > 2σ(I)
Tmin = 0.321, Tmax = 0.712Rint = 0.056
17436 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04726 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.03Δρmax = 1.84 e Å3
6526 reflectionsΔρmin = 0.69 e Å3
437 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ir10.50000.440885 (16)0.75000.03954 (14)
Ir20.50000.282376 (15)0.75000.03824 (14)
N10.2310 (6)0.4305 (3)0.6952 (3)0.0528 (18)
N20.3471 (5)0.4505 (2)0.6986 (3)0.0450 (15)
N30.3321 (5)0.2738 (2)0.7119 (2)0.0424 (15)
N40.2632 (6)0.2967 (2)0.6674 (2)0.0477 (16)
C10.3612 (15)0.4824 (10)0.5404 (8)0.118 (8)0.623 (9)
H1A0.35390.52210.54970.177*0.623 (9)
H1B0.44240.47300.53040.177*0.623 (9)
H1C0.31960.47480.51090.177*0.623 (9)
O10.3120 (8)0.4479 (5)0.5861 (5)0.088 (3)0.623 (9)
C20.1849 (11)0.4574 (5)0.5937 (6)0.107 (4)
C30.1489 (10)0.4281 (5)0.6398 (6)0.102 (4)
H30.20220.40820.65710.122*
C40.0285 (8)0.4288 (4)0.6608 (5)0.082 (3)
H40.00210.40860.69190.099*
C50.0495 (8)0.4589 (3)0.6359 (4)0.068 (3)
C60.0079 (9)0.4891 (4)0.5891 (5)0.109 (4)
H60.06000.51030.57210.131*
C70.1126 (11)0.4878 (5)0.5673 (6)0.113 (4)
H70.14060.50730.53590.136*
C80.1732 (7)0.4605 (3)0.6575 (4)0.060 (2)
C90.3505 (7)0.4907 (3)0.6630 (3)0.051 (2)
C100.4566 (7)0.5216 (3)0.6621 (3)0.051 (2)
C110.4737 (8)0.5665 (4)0.6277 (4)0.069 (3)
H110.41290.57780.60140.083*
C120.5804 (8)0.5940 (4)0.6325 (4)0.075 (3)
H120.59190.62490.61060.090*
C130.6702 (8)0.5744 (4)0.6709 (4)0.064 (2)
C140.6545 (7)0.5300 (3)0.7052 (3)0.055 (2)
H140.71650.51820.73060.066*
C150.5458 (6)0.5027 (3)0.7018 (3)0.0411 (17)
C160.8720 (8)0.5816 (4)0.7069 (4)0.080 (3)
H16A0.85560.58280.74310.121*
H16B0.93940.60470.70390.121*
H16C0.88710.54280.69750.121*
C170.2700 (10)0.3374 (5)0.4850 (4)0.106 (4)
H17A0.23330.37440.48810.158*
H17B0.35020.34140.46870.158*
H17C0.22940.31310.46320.158*
C180.1552 (8)0.3047 (4)0.5659 (4)0.062 (2)
C190.0522 (8)0.3220 (4)0.5501 (3)0.063 (2)
H190.05210.34030.51740.075*
C200.0509 (8)0.3120 (4)0.5835 (4)0.063 (2)
H200.12110.32430.57340.076*
C210.0526 (7)0.2841 (3)0.6316 (3)0.053 (2)
C220.0545 (7)0.2663 (4)0.6452 (4)0.067 (3)
H220.05520.24610.67680.081*
C230.1585 (8)0.2776 (4)0.6135 (4)0.074 (3)
H230.22940.26710.62410.089*
C240.1623 (7)0.2745 (3)0.6675 (3)0.050 (2)
C250.2693 (6)0.2382 (3)0.7347 (3)0.0437 (18)
C260.3900 (9)0.1461 (4)0.5615 (4)0.072 (3)
H26A0.34190.13410.58740.108*
H26B0.36730.12580.52850.108*
H26C0.38010.18640.55520.108*
C270.5620 (8)0.1602 (3)0.6275 (3)0.051 (2)
C280.5031 (7)0.1995 (3)0.6561 (3)0.0452 (18)
H280.42560.20930.64390.054*
C290.5622 (6)0.2242 (3)0.7033 (3)0.0395 (17)
C300.6809 (6)0.2081 (3)0.7187 (3)0.0441 (18)
C310.7352 (7)0.1677 (3)0.6902 (3)0.054 (2)
H310.81230.15710.70200.064*
C320.6758 (8)0.1437 (3)0.6449 (4)0.060 (2)
H320.71180.11640.62600.072*
C330.0881 (14)0.1582 (7)0.4344 (5)0.153 (6)
H33A0.12200.18020.40790.183*
H33B0.00690.15050.42020.183*
Cl10.0943 (4)0.19664 (17)0.49094 (17)0.1556 (15)
Cl20.1639 (3)0.09341 (16)0.44599 (16)0.1371 (14)
Cl30.43577 (17)0.36129 (7)0.80491 (8)0.0443 (4)
O20.2436 (5)0.4994 (2)0.6354 (2)0.0607 (15)
O30.7747 (6)0.6027 (3)0.6722 (3)0.0795 (19)
O40.2657 (6)0.3134 (3)0.5356 (3)0.088 (2)
O50.1579 (4)0.2363 (2)0.7094 (2)0.0509 (13)
O60.5094 (6)0.1343 (2)0.5811 (2)0.0656 (16)
C1'0.372 (2)0.4455 (17)0.5717 (14)0.118 (8)0.377 (9)
H1'10.34950.40970.58880.177*0.377 (9)
H1'20.44010.43980.54520.177*0.377 (9)
H1'30.39070.47240.59800.177*0.377 (9)
O1'0.2778 (13)0.4673 (9)0.5463 (7)0.088 (3)0.377 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.0377 (2)0.0362 (2)0.0444 (3)0.0000.00477 (19)0.000
Ir20.0423 (3)0.0351 (2)0.0379 (3)0.0000.00791 (19)0.000
N10.040 (4)0.050 (4)0.066 (5)0.004 (3)0.000 (4)0.014 (3)
N20.035 (3)0.047 (4)0.051 (4)0.001 (3)0.000 (3)0.004 (3)
N30.043 (4)0.038 (3)0.047 (4)0.003 (3)0.008 (3)0.003 (3)
N40.056 (4)0.045 (4)0.040 (4)0.002 (3)0.001 (3)0.004 (3)
C10.042 (8)0.19 (2)0.109 (19)0.025 (12)0.035 (11)0.007 (13)
O10.033 (5)0.105 (8)0.117 (11)0.005 (5)0.016 (6)0.003 (7)
C20.091 (7)0.091 (7)0.130 (8)0.020 (6)0.012 (7)0.035 (6)
C30.070 (6)0.106 (7)0.127 (8)0.001 (5)0.007 (6)0.039 (6)
C40.054 (5)0.079 (6)0.109 (7)0.006 (4)0.002 (5)0.023 (5)
C50.052 (5)0.046 (5)0.097 (8)0.012 (4)0.017 (5)0.022 (5)
C60.079 (7)0.059 (6)0.166 (12)0.011 (5)0.055 (8)0.006 (7)
C70.104 (7)0.088 (7)0.132 (8)0.015 (6)0.032 (7)0.002 (6)
C80.045 (5)0.042 (4)0.086 (7)0.007 (4)0.010 (5)0.008 (4)
C90.053 (5)0.046 (4)0.052 (5)0.018 (4)0.005 (4)0.002 (4)
C100.045 (5)0.045 (4)0.059 (5)0.004 (3)0.004 (4)0.003 (4)
C110.067 (6)0.071 (6)0.069 (6)0.023 (5)0.006 (5)0.029 (5)
C120.060 (6)0.070 (6)0.096 (8)0.005 (5)0.016 (5)0.038 (6)
C130.066 (6)0.055 (5)0.075 (7)0.003 (4)0.024 (5)0.023 (5)
C140.057 (5)0.042 (4)0.069 (6)0.007 (4)0.014 (4)0.015 (4)
C150.043 (4)0.038 (4)0.044 (4)0.007 (3)0.011 (3)0.004 (3)
C160.064 (6)0.074 (6)0.107 (9)0.008 (5)0.024 (6)0.016 (6)
C170.105 (9)0.119 (9)0.083 (8)0.009 (8)0.018 (7)0.020 (7)
C180.057 (6)0.073 (6)0.053 (6)0.000 (4)0.000 (5)0.008 (5)
C190.079 (7)0.067 (6)0.042 (5)0.005 (5)0.007 (5)0.008 (4)
C200.059 (6)0.072 (6)0.058 (6)0.002 (4)0.004 (5)0.008 (5)
C210.057 (5)0.049 (5)0.054 (6)0.003 (4)0.007 (4)0.000 (4)
C220.053 (6)0.077 (6)0.068 (6)0.013 (5)0.003 (5)0.018 (5)
C230.060 (6)0.089 (7)0.067 (7)0.012 (5)0.009 (5)0.024 (5)
C240.051 (5)0.052 (5)0.048 (5)0.009 (4)0.009 (4)0.003 (4)
C250.049 (5)0.034 (4)0.049 (5)0.003 (3)0.007 (4)0.006 (3)
C260.072 (7)0.081 (7)0.061 (6)0.017 (5)0.000 (5)0.010 (5)
C270.072 (6)0.043 (4)0.041 (5)0.011 (4)0.018 (4)0.007 (4)
C280.057 (5)0.038 (4)0.041 (5)0.001 (3)0.012 (4)0.002 (3)
C290.039 (4)0.036 (4)0.045 (5)0.002 (3)0.009 (3)0.008 (3)
C300.050 (5)0.032 (4)0.050 (5)0.000 (3)0.008 (4)0.000 (3)
C310.058 (5)0.041 (4)0.064 (6)0.002 (4)0.016 (5)0.003 (4)
C320.066 (6)0.049 (5)0.069 (6)0.005 (4)0.021 (5)0.007 (4)
C330.187 (16)0.201 (15)0.074 (9)0.076 (13)0.032 (10)0.035 (10)
Cl10.209 (4)0.110 (3)0.140 (3)0.013 (3)0.000 (3)0.015 (2)
Cl20.126 (3)0.137 (3)0.144 (3)0.006 (2)0.004 (2)0.054 (3)
Cl30.0489 (10)0.0407 (9)0.0455 (11)0.0001 (8)0.0148 (9)0.0021 (8)
O20.056 (3)0.055 (3)0.066 (4)0.012 (3)0.012 (3)0.003 (3)
O30.075 (4)0.071 (4)0.093 (5)0.013 (3)0.014 (4)0.038 (4)
O40.084 (5)0.106 (5)0.065 (5)0.012 (4)0.018 (4)0.017 (4)
O50.051 (3)0.054 (3)0.046 (3)0.009 (3)0.003 (3)0.009 (3)
O60.083 (5)0.065 (4)0.049 (4)0.001 (3)0.013 (3)0.016 (3)
C1'0.042 (8)0.19 (2)0.109 (19)0.025 (12)0.035 (11)0.007 (13)
O1'0.033 (5)0.105 (8)0.117 (11)0.005 (5)0.016 (6)0.003 (7)
Geometric parameters (Å, º) top
Ir1—C152.010 (7)C14—H140.9300
Ir1—C15i2.010 (7)C16—O31.410 (10)
Ir1—N2i2.043 (6)C16—H16A0.9600
Ir1—N22.043 (6)C16—H16B0.9600
Ir1—Cl32.4974 (18)C16—H16C0.9600
Ir1—Cl3i2.4975 (18)C17—O41.389 (11)
Ir2—C292.001 (7)C17—H17A0.9600
Ir2—C29i2.001 (7)C17—H17B0.9600
Ir2—N3i2.042 (6)C17—H17C0.9600
Ir2—N32.042 (6)C18—C231.364 (12)
Ir2—Cl3i2.4854 (17)C18—C191.369 (11)
Ir2—Cl32.4854 (17)C18—O41.403 (10)
N1—C81.286 (10)C19—C201.374 (11)
N1—N21.408 (8)C19—H190.9300
N2—C91.307 (9)C20—C211.377 (11)
N3—C251.292 (8)C20—H200.9300
N3—N41.385 (8)C21—C221.392 (11)
N4—C241.276 (9)C21—C241.461 (11)
C1—O11.453 (16)C22—C231.366 (12)
C1—H1A0.9600C22—H220.9300
C1—H1B0.9600C23—H230.9300
C1—H1C0.9600C24—O51.389 (9)
O1—C21.468 (14)C25—O51.350 (8)
C2—C71.344 (17)C25—C30i1.418 (10)
C2—C31.363 (16)C26—O61.421 (11)
C2—O1'1.501 (17)C26—H26A0.9600
C3—C41.411 (14)C26—H26B0.9600
C3—H30.9300C26—H26C0.9600
C4—C51.365 (13)C27—C321.377 (12)
C4—H40.9300C27—O61.379 (9)
C5—C61.399 (14)C27—C281.404 (10)
C5—C81.452 (11)C28—C291.406 (10)
C6—C71.419 (14)C28—H280.9300
C6—H60.9300C29—C301.419 (9)
C7—H70.9300C30—C311.391 (10)
C8—O21.389 (10)C30—C25i1.418 (10)
C9—O21.340 (8)C31—C321.364 (11)
C9—C101.425 (10)C31—H310.9300
C10—C111.395 (11)C32—H320.9300
C10—C151.397 (10)C33—Cl11.679 (14)
C11—C121.379 (12)C33—Cl21.753 (13)
C11—H110.9300C33—H33A0.9700
C12—C131.390 (12)C33—H33B0.9700
C12—H120.9300C1'—O1'1.44 (2)
C13—O31.371 (10)C1'—H1'10.9600
C13—C141.379 (11)C1'—H1'20.9600
C14—C151.399 (10)C1'—H1'30.9600
C15—Ir1—C15i88.0 (4)C10—C15—Ir1115.5 (5)
C15—Ir1—N2i91.5 (3)C14—C15—Ir1127.2 (5)
C15i—Ir1—N2i79.4 (3)O3—C16—H16A109.5
C15—Ir1—N279.4 (3)O3—C16—H16B109.5
C15i—Ir1—N291.5 (3)H16A—C16—H16B109.5
N2i—Ir1—N2167.4 (3)O3—C16—H16C109.5
C15—Ir1—Cl3176.4 (2)H16A—C16—H16C109.5
C15i—Ir1—Cl394.3 (2)H16B—C16—H16C109.5
N2i—Ir1—Cl391.60 (17)O4—C17—H17A109.5
N2—Ir1—Cl397.78 (18)O4—C17—H17B109.5
C15—Ir1—Cl3i94.29 (19)H17A—C17—H17B109.5
C15i—Ir1—Cl3i176.4 (2)O4—C17—H17C109.5
N2i—Ir1—Cl3i97.78 (18)H17A—C17—H17C109.5
N2—Ir1—Cl3i91.60 (17)H17B—C17—H17C109.5
Cl3—Ir1—Cl3i83.59 (8)C23—C18—C19122.2 (9)
C29—Ir2—C29i94.2 (4)C23—C18—O4114.1 (8)
C29—Ir2—N3i79.2 (3)C19—C18—O4123.7 (8)
C29i—Ir2—N3i93.0 (3)C18—C19—C20118.7 (8)
C29—Ir2—N393.0 (3)C18—C19—H19120.6
C29i—Ir2—N379.2 (3)C20—C19—H19120.6
N3i—Ir2—N3168.7 (3)C19—C20—C21121.4 (8)
C29—Ir2—Cl3i90.86 (19)C19—C20—H20119.3
C29i—Ir2—Cl3i174.55 (19)C21—C20—H20119.3
N3i—Ir2—Cl3i89.77 (16)C20—C21—C22117.4 (8)
N3—Ir2—Cl3i98.62 (17)C20—C21—C24121.2 (8)
C29—Ir2—Cl3174.55 (19)C22—C21—C24121.4 (8)
C29i—Ir2—Cl390.87 (19)C23—C22—C21122.2 (9)
N3i—Ir2—Cl398.63 (17)C23—C22—H22118.9
N3—Ir2—Cl389.77 (16)C21—C22—H22118.9
Cl3i—Ir2—Cl384.09 (8)C18—C23—C22118.0 (9)
C8—N1—N2104.5 (7)C18—C23—H23121.0
C9—N2—N1108.7 (6)C22—C23—H23121.0
C9—N2—Ir1113.9 (5)N4—C24—O5113.5 (7)
N1—N2—Ir1136.7 (5)N4—C24—C21130.0 (8)
C25—N3—N4108.5 (6)O5—C24—C21116.4 (7)
C25—N3—Ir2114.1 (5)N3—C25—O5111.6 (6)
N4—N3—Ir2137.4 (5)N3—C25—C30i120.2 (7)
C24—N4—N3104.8 (6)O5—C25—C30i128.2 (6)
C1—O1—C2106.6 (12)O6—C26—H26A109.5
C7—C2—C3123.8 (13)O6—C26—H26B109.5
C7—C2—O1134.1 (13)H26A—C26—H26B109.5
C3—C2—O1102.0 (12)O6—C26—H26C109.5
C7—C2—O1'86.9 (12)H26A—C26—H26C109.5
C3—C2—O1'148.2 (14)H26B—C26—H26C109.5
O1—C2—O1'48.5 (9)C32—C27—O6115.3 (7)
C2—C3—C4118.3 (13)C32—C27—C28122.1 (8)
C2—C3—H3120.8O6—C27—C28122.6 (8)
C4—C3—H3120.8C27—C28—C29119.5 (7)
C5—C4—C3120.8 (12)C27—C28—H28120.2
C5—C4—H4119.6C29—C28—H28120.2
C3—C4—H4119.6C28—C29—C30116.9 (6)
C4—C5—C6118.7 (9)C28—C29—Ir2127.3 (5)
C4—C5—C8121.3 (9)C30—C29—Ir2115.7 (5)
C6—C5—C8120.0 (10)C31—C30—C25i127.5 (7)
C5—C6—C7120.8 (12)C31—C30—C29121.8 (7)
C5—C6—H6119.6C25i—C30—C29110.7 (6)
C7—C6—H6119.6C32—C31—C30120.3 (8)
C2—C7—C6117.5 (13)C32—C31—H31119.8
C2—C7—H7121.2C30—C31—H31119.8
C6—C7—H7121.2C31—C32—C27119.3 (8)
N1—C8—O2112.6 (7)C31—C32—H32120.4
N1—C8—C5129.6 (9)C27—C32—H32120.4
O2—C8—C5117.8 (8)Cl1—C33—Cl2111.3 (7)
N2—C9—O2110.4 (7)Cl1—C33—H33A109.4
N2—C9—C10119.2 (7)Cl2—C33—H33A109.4
O2—C9—C10130.0 (7)Cl1—C33—H33B109.4
C11—C10—C15121.9 (7)Cl2—C33—H33B109.4
C11—C10—C9126.2 (7)H33A—C33—H33B108.0
C15—C10—C9111.9 (7)Ir2—Cl3—Ir196.16 (6)
C12—C11—C10120.1 (8)C9—O2—C8103.9 (6)
C12—C11—H11120.0C13—O3—C16117.4 (6)
C10—C11—H11120.0C17—O4—C18117.9 (8)
C11—C12—C13118.2 (8)C25—O5—C24101.6 (6)
C11—C12—H12120.9C27—O6—C26119.7 (7)
C13—C12—H12120.9O1'—C1'—H1'1109.5
O3—C13—C14123.1 (8)O1'—C1'—H1'2109.5
O3—C13—C12114.8 (7)H1'1—C1'—H1'2109.5
C14—C13—C12122.2 (8)O1'—C1'—H1'3109.5
C13—C14—C15120.3 (8)H1'1—C1'—H1'3109.5
C13—C14—H14119.9H1'2—C1'—H1'3109.5
C15—C14—H14119.9C1'—O1'—C295.2 (17)
C10—C15—C14117.3 (7)
C8—N1—N2—C90.0 (8)N2—Ir1—C15—C102.5 (5)
C8—N1—N2—Ir1169.3 (6)C15i—Ir1—C15—C1487.8 (7)
C15—Ir1—N2—C92.4 (5)N2i—Ir1—C15—C148.4 (7)
C15i—Ir1—N2—C985.2 (6)N2—Ir1—C15—C14179.7 (7)
Cl3—Ir1—N2—C9179.8 (5)C23—C18—C19—C200.3 (14)
Cl3i—Ir1—N2—C996.5 (5)O4—C18—C19—C20178.9 (8)
C15—Ir1—N2—N1171.3 (7)C18—C19—C20—C211.2 (13)
C15i—Ir1—N2—N183.7 (7)C19—C20—C21—C220.1 (13)
N2i—Ir1—N2—N1127.0 (6)C19—C20—C21—C24178.9 (8)
Cl3—Ir1—N2—N110.9 (7)C20—C21—C22—C232.5 (14)
Cl3i—Ir1—N2—N194.6 (6)C24—C21—C22—C23176.5 (8)
C29—Ir2—N3—C2594.7 (5)C19—C18—C23—C221.9 (15)
C29i—Ir2—N3—C251.0 (5)O4—C18—C23—C22178.7 (8)
Cl3i—Ir2—N3—C25173.9 (5)C21—C22—C23—C183.4 (15)
Cl3—Ir2—N3—C2590.0 (5)N3—N4—C24—O51.1 (8)
C29—Ir2—N3—N486.6 (7)N3—N4—C24—C21177.2 (8)
C29i—Ir2—N3—N4179.7 (7)C20—C21—C24—N414.4 (13)
N3i—Ir2—N3—N4132.9 (6)C22—C21—C24—N4164.6 (9)
Cl3i—Ir2—N3—N44.8 (7)C20—C21—C24—O5167.4 (7)
Cl3—Ir2—N3—N488.8 (6)C22—C21—C24—O513.6 (11)
C25—N3—N4—C241.9 (8)N4—N3—C25—O52.1 (8)
Ir2—N3—N4—C24176.9 (6)Ir2—N3—C25—O5177.0 (4)
C1—O1—C2—C73 (2)N4—N3—C25—C30i179.4 (6)
C1—O1—C2—C3174.4 (13)Ir2—N3—C25—C30i1.5 (9)
C1—O1—C2—O1'19.0 (15)C32—C27—C28—C291.6 (11)
C7—C2—C3—C41.1 (19)O6—C27—C28—C29179.8 (6)
O1—C2—C3—C4178.5 (9)C27—C28—C29—C301.3 (10)
O1'—C2—C3—C4162 (2)C27—C28—C29—Ir2178.3 (5)
C2—C3—C4—C51.1 (16)C29i—Ir2—C29—C2890.3 (6)
C3—C4—C5—C60.0 (14)N3i—Ir2—C29—C28177.4 (6)
C3—C4—C5—C8179.2 (9)N3—Ir2—C29—C2810.9 (6)
C4—C5—C6—C71.0 (15)C29i—Ir2—C29—C3092.6 (5)
C8—C5—C6—C7179.7 (9)N3i—Ir2—C29—C300.3 (5)
C3—C2—C7—C60 (2)N3—Ir2—C29—C30172.1 (5)
O1—C2—C7—C6176.4 (12)C28—C29—C30—C313.2 (10)
O1'—C2—C7—C6171.3 (13)Ir2—C29—C30—C31179.4 (6)
C5—C6—C7—C21.0 (17)C28—C29—C30—C25i177.1 (6)
N2—N1—C8—O20.1 (9)Ir2—C29—C30—C25i0.3 (8)
N2—N1—C8—C5179.7 (8)C25i—C30—C31—C32178.0 (8)
C4—C5—C8—N111.0 (14)C29—C30—C31—C322.3 (11)
C6—C5—C8—N1169.8 (9)C30—C31—C32—C270.6 (12)
C4—C5—C8—O2169.4 (8)O6—C27—C32—C31179.1 (7)
C6—C5—C8—O29.8 (12)C28—C27—C32—C312.5 (12)
N1—N2—C9—O20.1 (8)N3i—Ir2—Cl3—Ir188.86 (17)
Ir1—N2—C9—O2172.0 (5)N3—Ir2—Cl3—Ir198.70 (17)
N1—N2—C9—C10173.9 (6)Cl3i—Ir2—Cl3—Ir10.0
Ir1—N2—C9—C102.0 (9)N2i—Ir1—Cl3—Ir297.65 (18)
N2—C9—C10—C11178.4 (8)N2—Ir1—Cl3—Ir290.75 (17)
O2—C9—C10—C115.7 (14)Cl3i—Ir1—Cl3—Ir20.0
N2—C9—C10—C150.2 (11)N2—C9—O2—C80.1 (8)
O2—C9—C10—C15172.8 (7)C10—C9—O2—C8173.0 (8)
C15—C10—C11—C120.7 (14)N1—C8—O2—C90.1 (9)
C9—C10—C11—C12177.7 (9)C5—C8—O2—C9179.8 (7)
C10—C11—C12—C132.4 (15)C14—C13—O3—C165.8 (13)
C11—C12—C13—O3178.0 (9)C12—C13—O3—C16174.5 (9)
C11—C12—C13—C142.3 (15)C23—C18—O4—C17175.9 (9)
O3—C13—C14—C15179.8 (8)C19—C18—O4—C174.7 (14)
C12—C13—C14—C150.5 (14)N3—C25—O5—C241.3 (8)
C11—C10—C15—C141.1 (12)C30i—C25—O5—C24179.7 (7)
C9—C10—C15—C14179.7 (7)N4—C24—O5—C250.1 (8)
C11—C10—C15—Ir1176.4 (7)C21—C24—O5—C25178.6 (6)
C9—C10—C15—Ir12.3 (9)C32—C27—O6—C26176.6 (7)
C13—C14—C15—C101.2 (12)C28—C27—O6—C261.8 (11)
C13—C14—C15—Ir1175.9 (6)C7—C2—O1'—C1'170 (2)
C15i—Ir1—C15—C1089.4 (6)C3—C2—O1'—C1'24 (3)
N2i—Ir1—C15—C10168.7 (6)O1—C2—O1'—C1'2 (2)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C33—H33A···N4ii0.972.533.456 (16)160
C26—H26A···O3iii0.962.493.419 (12)163
Symmetry codes: (ii) x+1/2, y+1/2, z+1; (iii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Ir2(C16H13N2O3)4Cl2]·2CH2Cl2
Mr1750.29
Crystal system, space groupMonoclinic, C2/c
Temperature (K)292
a, b, c (Å)11.5352 (10), 23.390 (2), 25.239 (2)
β (°) 98.423 (2)
V3)6736.4 (10)
Z4
Radiation typeMo Kα
µ (mm1)4.25
Crystal size (mm)0.28 × 0.20 × 0.08
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.321, 0.712
No. of measured, independent and
observed [I > 2σ(I)] reflections
17436, 6526, 4696
Rint0.056
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.122, 1.03
No. of reflections6526
No. of parameters437
No. of restraints26
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.84, 0.69

Computer programs: SMART (Siemens, 1996), SMART, SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Please provide reference), SHELXTL.

Selected geometric parameters (Å, º) top
Ir1—C152.010 (7)Ir2—C292.001 (7)
Ir1—N22.043 (6)Ir2—N32.042 (6)
Ir1—Cl32.4974 (18)Ir2—Cl32.4854 (17)
C15—Ir1—N279.4 (3)C29—Ir2—Cl3174.55 (19)
C15—Ir1—Cl3176.4 (2)N3—Ir2—Cl389.77 (16)
N2—Ir1—Cl397.78 (18)Ir2—Cl3—Ir196.16 (6)
C29—Ir2—N393.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C33—H33A···N4i0.972.533.456 (16)160
C26—H26A···O3ii0.962.493.419 (12)163
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y1/2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds