Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complex, [Li2(C6H3N2O5)2(H2O)4], contains two kinds of Li atoms, viz. five-coordinated and four-coordinated. The five-coordinated Li ion has a tetra­gonal-pyramidal geometry, with a water mol­ecule in the apical position and four O atoms from two 2,4-dinitro­phenolate (2,4-DNP) ligands in the basal plane. The four-coordinated Li ion has a tetra­hedral geometry, with three water mol­ecules and one phenolate O atom of a 2,4-DNP ligand. The Li ions are bridged by a phenolate O atom, giving the complex a dinuclear structure. The crystal packing is stabilized by O-H...O hydrogen-bonding inter­actions involving the water mol­ecules and nitro O atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107037651/sq3089sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107037651/sq3089Isup2.hkl
Contains datablock I

CCDC reference: 661792

Comment top

Nitrophenols and their metal salts have been investigated extensively because they have useful properties as highly energetic materials. The thermal and combustion properties (Stammler, 1969; Brill et al., 2000) and molecular structures and coordination behaviour (Harrowfield et al., 1995a,b) of 2,4,6-trinitrophenol metal salts have been thoroughly studied. In our studies of the crystal structures and thermal properties of lithium 2,6-dinitrophenol (Yun et al., 2004), yttrium 2,6-dinitrophenol (Suh et al., 2002a), lanthanide 2,6-dinitrophenol (Suh et al., 2002b; Yun et al., 2006) and lanthanide 2,4,6-trinitrophenol (Yun et al., 2005) salts, we have found that the coordination behaviour of the 2,6-dinitrophenol ligand is quite different from that of the 2,4,6-trinitrophenol ligand, in keeping with the electronic effect of the nitro substituent at the para position. As an extension of this study, we have also employed the 2,4-dinitrophenol (2,4-DNP) ligand (Iwasaki & Kawano, 1977; Kagawa et al., 1976). Here, we report the preparation and crystal structure of the title lithium(I) 2,4-DNP complex, (I).

As shown in Fig. 1, compound (I) is a unique dinuclear complex with two kinds of Li atoms and two kinds of 2,4-DNP ligands. The geometries of the Li atoms are tetragonal pyramidal (Li1) and tetrahedral (Li2), while the coordination modes of the 2,4-DNP ligands are chelation and chelation/bridging. The Li1 ion has a five-coordinate geometry, with a water molecule in the apical position and four O atoms from two 2,4-DNP ligands in the basal plane. As expected, the Li—O distances are slightly longer in the pyramid than in the tetrahedron (Table 1). Each of the 2,4-DNP ligands forms a six-membered chelation ring with Li1 through the O atoms of the phenolate and nitro groups. Ion Li2 has a four-coordinate geometry, with three water molecules and one phenolate O atom of a 2,4-DNP ligand. The phenolate O atom serves as the bridge between the Li1 and Li2 atoms. There is no metal-to-metal interaction, since the Li1···Li2 distance is 3.172 (1) Å. The dinuclear complexes are linked in three-dimensions by numerous Owater—H···O2,4-DNP and Owater—H···Owater intermolecular hydrogen bonds (Fig. 2, Table 2).

Although lithium is now known in at least 20 coordination geometries with coordination numbers ranging from 1 to 12 (Greenwood & Earnshaw, 1998), this dinuclear lithium 2,4-DNP complex with both four- and five-coordinate Li is unique. To our knowledge, only lithium o-phenylenedioxydiacetate trihydrate, [Li2(C10H8O6)(H2O)3]2 (Smith et al., 1986), has a similar geometry combination. However this complex is dimeric, with four Li atoms bridged by the two o-phenylenedioxydiacetate ligands.

The structural features of (I) are very different from those of the dinuclear lithium 2,6-DNP complex, [Li(2,6-DNP)(H2O)]2·2H2O, which we have studied recently (Yun et al., 2004). Ions Li1 and Li2 of the lithium 2,6-DNP complex are both coordinated to five O atoms in a square-pyramidal geometry, and there are both coordinated and free water molecules.

Related literature top

For related literature, see: Brill et al. (2000); Greenwood & Earnshaw (1998); Harrowfield et al. (1995a, 1995b); Iwasaki & Kawano (1977); Kagawa et al. (1976); Nakamoto (1997); Smith et al. (1986); Stammler (1969); Suh et al. (2002a, 2002b); Yun et al. (2004, 2005, 2006).

Experimental top

The lithium(I) 2,4-DNP complex, (I), was prepared in a manner similar to that used for the lithium(I) 2,6-DNP complex (Yun et al., 2004). Pale-yellow crystals of (I) suitable for single-crystal X-ray diffraction were obtained and characterized by EDS [Please give technique name in full], FT–IR and elemental analysis. Analysis, calculated for C12H14N4O14Li2: C 31.87, H 3.12, N 12.39, Li 3.07%; found: C 31.94, H 3.14, N 12.38, Li 3.05%. The 2,4-DNP ligand was confirmed by assignment of the relevant FT–IR absorption bands (Nakamoto, 1997).

Refinement top

The H atoms on the 2,4-DNP ligand were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The water H atoms were located in a difference electron-density map and refined with Uiso(H) = 1.5Ueq(O) and with O—H constrained to 0.82 (2) Å.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of complex (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing diagram of complex (I), viewed along the b axis. Hydrogen-bonding interactions are shown as dashed lines.
Tetraaqua-1κO,2κ3O-(µ-2,4-dinitrophenolato-1κ2O1,O2:2κO1)(2,4-dinitrophenolato-1κ2O1,O2)dilithium(I) top
Crystal data top
[Li2(C6H3N2O5)2(H2O)4]Z = 2
Mr = 452.15F(000) = 464
Triclinic, P1Dx = 1.652 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3038 (2) ÅCell parameters from 6863 reflections
b = 10.1267 (3) Åθ = 2.5–28.2°
c = 11.2984 (3) ŵ = 0.15 mm1
α = 76.733 (2)°T = 296 K
β = 79.565 (2)°Block, pale yellow
γ = 86.276 (2)°0.39 × 0.23 × 0.14 mm
V = 909.16 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4473 independent reflections
Radiation source: fine-focus sealed tube3497 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.944, Tmax = 0.979k = 1313
18045 measured reflectionsl = 1415
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0613P)2 + 0.1182P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4473 reflectionsΔρmax = 0.22 e Å3
314 parametersΔρmin = 0.29 e Å3
5 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.033 (3)
Crystal data top
[Li2(C6H3N2O5)2(H2O)4]γ = 86.276 (2)°
Mr = 452.15V = 909.16 (4) Å3
Triclinic, P1Z = 2
a = 8.3038 (2) ÅMo Kα radiation
b = 10.1267 (3) ŵ = 0.15 mm1
c = 11.2984 (3) ÅT = 296 K
α = 76.733 (2)°0.39 × 0.23 × 0.14 mm
β = 79.565 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4473 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3497 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.979Rint = 0.024
18045 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0375 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.22 e Å3
4473 reflectionsΔρmin = 0.29 e Å3
314 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li10.5445 (3)0.2226 (2)1.00546 (18)0.0398 (4)
Li20.1638 (3)0.2790 (2)1.00809 (18)0.0407 (5)
C10.69795 (13)0.41651 (11)0.78588 (10)0.0316 (2)
C20.63323 (12)0.36442 (10)0.69642 (10)0.0286 (2)
C30.67057 (13)0.41919 (11)0.57024 (10)0.0298 (2)
H3A0.62630.38330.51480.036*
C40.77371 (13)0.52690 (11)0.52873 (9)0.0303 (2)
C50.84491 (13)0.58049 (11)0.61070 (10)0.0334 (2)
H5A0.91580.65270.58100.040*
C60.80926 (14)0.52582 (12)0.73376 (10)0.0352 (3)
H6A0.85930.56090.78680.042*
O70.66451 (12)0.37518 (9)0.90208 (7)0.0468 (2)
N80.52188 (11)0.25229 (9)0.73355 (9)0.0321 (2)
O90.47853 (12)0.20118 (10)0.84440 (8)0.0513 (3)
O100.47307 (11)0.20941 (9)0.65440 (8)0.0462 (2)
N110.80795 (12)0.58774 (10)0.39890 (9)0.0351 (2)
O120.89293 (12)0.68978 (9)0.36511 (8)0.0495 (2)
O130.75335 (12)0.53746 (10)0.32602 (8)0.0503 (3)
C210.29630 (12)0.10166 (10)1.20904 (9)0.0281 (2)
C220.36945 (12)0.13986 (10)1.30145 (9)0.0275 (2)
C230.33269 (12)0.07838 (10)1.42602 (10)0.0285 (2)
H23A0.37930.10821.48390.034*
C240.22604 (12)0.02741 (11)1.46216 (9)0.0295 (2)
C250.15124 (13)0.07154 (11)1.37696 (10)0.0332 (2)
H25A0.08010.14381.40290.040*
C260.18394 (14)0.00734 (12)1.25562 (10)0.0340 (2)
H26A0.13080.03561.20030.041*
O270.32281 (10)0.15692 (8)1.09383 (7)0.0373 (2)
N280.48406 (11)0.24949 (9)1.27040 (9)0.0316 (2)
O290.53924 (13)0.29831 (10)1.16129 (8)0.0513 (3)
O300.52299 (11)0.29239 (9)1.35338 (8)0.0455 (2)
N310.19131 (11)0.09370 (10)1.59087 (9)0.0344 (2)
O320.24377 (12)0.04677 (10)1.66680 (8)0.0476 (2)
O330.10765 (12)0.19619 (9)1.62011 (8)0.0498 (3)
OW10.71159 (15)0.07466 (12)1.04332 (12)0.0625 (3)
HW1A0.732 (3)0.063 (2)1.1105 (16)0.094*
HW1B0.708 (3)0.003 (2)1.033 (2)0.094*
OW20.25595 (13)0.46125 (10)0.94962 (9)0.0494 (3)
HW2A0.312 (2)0.4746 (19)0.8869 (14)0.074*
HW2B0.287 (2)0.5076 (19)0.9930 (17)0.074*
OW30.06174 (15)0.20399 (13)0.89693 (10)0.0609 (3)
HW3A0.074 (3)0.228 (2)0.820 (2)0.091*
HW3B0.034 (3)0.188 (2)0.9181 (19)0.091*
OW40.03338 (13)0.30573 (12)1.12200 (9)0.0549 (3)
HW4A0.094 (2)0.3676 (17)1.1022 (18)0.082*
HW4B0.062 (2)0.274 (2)1.1961 (14)0.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.0424 (10)0.0405 (10)0.0332 (10)0.0102 (8)0.0033 (8)0.0017 (8)
Li20.0467 (11)0.0397 (10)0.0366 (10)0.0082 (9)0.0149 (8)0.0024 (8)
C10.0353 (5)0.0313 (5)0.0286 (5)0.0063 (4)0.0056 (4)0.0061 (4)
C20.0295 (5)0.0273 (5)0.0293 (5)0.0046 (4)0.0041 (4)0.0066 (4)
C30.0315 (5)0.0311 (5)0.0283 (5)0.0020 (4)0.0058 (4)0.0091 (4)
C40.0315 (5)0.0327 (5)0.0253 (5)0.0016 (4)0.0028 (4)0.0049 (4)
C50.0340 (5)0.0325 (5)0.0329 (6)0.0097 (4)0.0036 (4)0.0051 (4)
C60.0407 (6)0.0372 (6)0.0302 (6)0.0124 (5)0.0074 (5)0.0080 (4)
O70.0681 (6)0.0479 (5)0.0254 (4)0.0275 (4)0.0075 (4)0.0032 (3)
N80.0347 (5)0.0311 (5)0.0317 (5)0.0067 (4)0.0049 (4)0.0085 (4)
O90.0651 (6)0.0551 (6)0.0324 (5)0.0332 (5)0.0018 (4)0.0035 (4)
O100.0565 (5)0.0465 (5)0.0413 (5)0.0194 (4)0.0123 (4)0.0134 (4)
N110.0381 (5)0.0381 (5)0.0275 (5)0.0049 (4)0.0042 (4)0.0037 (4)
O120.0603 (6)0.0481 (5)0.0358 (5)0.0218 (4)0.0065 (4)0.0039 (4)
O130.0659 (6)0.0579 (6)0.0290 (4)0.0161 (5)0.0110 (4)0.0074 (4)
C210.0267 (5)0.0304 (5)0.0258 (5)0.0008 (4)0.0040 (4)0.0038 (4)
C220.0272 (5)0.0255 (5)0.0286 (5)0.0051 (4)0.0025 (4)0.0042 (4)
C230.0298 (5)0.0293 (5)0.0267 (5)0.0027 (4)0.0052 (4)0.0062 (4)
C240.0304 (5)0.0301 (5)0.0250 (5)0.0033 (4)0.0020 (4)0.0013 (4)
C250.0323 (5)0.0323 (5)0.0339 (6)0.0100 (4)0.0025 (4)0.0048 (4)
C260.0344 (5)0.0395 (6)0.0302 (6)0.0104 (4)0.0068 (4)0.0084 (4)
O270.0362 (4)0.0467 (5)0.0258 (4)0.0075 (3)0.0063 (3)0.0009 (3)
N280.0343 (5)0.0285 (4)0.0317 (5)0.0072 (4)0.0026 (4)0.0068 (4)
O290.0675 (6)0.0483 (5)0.0344 (5)0.0320 (5)0.0074 (4)0.0057 (4)
O300.0525 (5)0.0463 (5)0.0427 (5)0.0192 (4)0.0094 (4)0.0138 (4)
N310.0338 (5)0.0360 (5)0.0290 (5)0.0042 (4)0.0023 (4)0.0002 (4)
O320.0583 (6)0.0554 (6)0.0282 (4)0.0129 (4)0.0094 (4)0.0027 (4)
O330.0586 (6)0.0450 (5)0.0388 (5)0.0221 (4)0.0033 (4)0.0066 (4)
OW10.0728 (7)0.0472 (6)0.0668 (7)0.0074 (5)0.0183 (6)0.0088 (5)
OW20.0613 (6)0.0465 (5)0.0370 (5)0.0203 (4)0.0006 (4)0.0044 (4)
OW30.0660 (7)0.0854 (8)0.0337 (5)0.0307 (6)0.0108 (5)0.0084 (5)
OW40.0515 (6)0.0674 (7)0.0373 (5)0.0004 (5)0.0040 (4)0.0025 (5)
Geometric parameters (Å, º) top
Li1—O71.923 (2)C21—O271.2782 (13)
Li1—OW12.001 (3)C21—C221.4333 (14)
Li1—O272.004 (2)C21—C261.4336 (15)
Li1—O92.053 (2)C22—C231.3887 (14)
Li1—O292.068 (2)C22—N281.4487 (13)
Li2—OW41.936 (2)C23—C241.3749 (14)
Li2—OW31.944 (2)C23—H23A0.9300
Li2—OW21.967 (2)C24—C251.4008 (15)
Li2—O271.978 (2)C24—N311.4400 (13)
C1—O71.2675 (13)C25—C261.3619 (15)
C1—C61.4364 (15)C25—H25A0.9300
C1—C21.4376 (14)C26—H26A0.9300
C2—C31.3912 (15)N28—O301.2196 (12)
C2—N81.4483 (13)N28—O291.2325 (12)
C3—C41.3727 (15)N31—O321.2251 (13)
C3—H3A0.9300N31—O331.2338 (12)
C4—C51.4045 (15)OW1—HW1A0.788 (15)
C4—N111.4384 (14)OW1—HW1B0.82 (2)
C5—C61.3587 (15)OW2—HW2A0.763 (14)
C5—H5A0.9300OW2—HW2B0.833 (15)
C6—H6A0.9300OW3—HW3A0.84 (2)
N8—O101.2186 (12)OW3—HW3B0.80 (2)
N8—O91.2367 (12)OW4—HW4A0.797 (14)
N11—O131.2249 (12)OW4—HW4B0.821 (15)
N11—O121.2359 (13)
O7—Li1—OW1105.87 (11)O12—N11—C4118.04 (9)
O7—Li1—O27144.96 (13)O27—C21—C22125.51 (9)
OW1—Li1—O27109.11 (10)O27—C21—C26120.12 (10)
O7—Li1—O984.53 (8)C22—C21—C26114.36 (9)
OW1—Li1—O9105.18 (11)C23—C22—C21122.99 (9)
O27—Li1—O988.33 (9)C23—C22—N28115.48 (9)
O7—Li1—O2991.78 (9)C21—C22—N28121.51 (9)
OW1—Li1—O2996.56 (10)C24—C23—C22118.68 (10)
O27—Li1—O2982.37 (8)C24—C23—H23A120.7
O9—Li1—O29158.14 (13)C22—C23—H23A120.7
OW4—Li2—OW397.58 (10)C23—C24—C25121.56 (10)
OW4—Li2—OW2103.81 (11)C23—C24—N31118.74 (9)
OW3—Li2—OW2118.93 (11)C25—C24—N31119.71 (9)
OW4—Li2—O27111.11 (10)C26—C25—C24119.19 (9)
OW3—Li2—O27115.48 (11)C26—C25—H25A120.4
OW2—Li2—O27108.59 (10)C24—C25—H25A120.4
O7—C1—C6119.58 (10)C25—C26—C21123.16 (10)
O7—C1—C2126.02 (10)C25—C26—H26A118.4
C6—C1—C2114.40 (10)C21—C26—H26A118.4
C3—C2—C1122.60 (9)C21—O27—Li2123.91 (9)
C3—C2—N8116.01 (9)C21—O27—Li1121.88 (9)
C1—C2—N8121.38 (9)Li2—O27—Li1105.60 (9)
C4—C3—C2119.08 (10)O30—N28—O29121.28 (9)
C4—C3—H3A120.5O30—N28—C22118.98 (9)
C2—C3—H3A120.5O29—N28—C22119.74 (9)
C3—C4—C5121.34 (10)N28—O29—Li1130.37 (9)
C3—C4—N11119.52 (9)O32—N31—O33122.56 (10)
C5—C4—N11119.13 (9)O32—N31—C24119.60 (9)
C6—C5—C4119.35 (10)O33—N31—C24117.84 (9)
C6—C5—H5A120.3Li1—OW1—HW1A113.9 (17)
C4—C5—H5A120.3Li1—OW1—HW1B125.4 (17)
C5—C6—C1123.16 (10)HW1A—OW1—HW1B103 (2)
C5—C6—H6A118.4Li2—OW2—HW2A116.2 (15)
C1—C6—H6A118.4Li2—OW2—HW2B126.2 (14)
C1—O7—Li1132.25 (9)HW2A—OW2—HW2B108 (2)
O10—N8—O9121.07 (9)Li2—OW3—HW3A127.9 (16)
O10—N8—C2119.12 (9)Li2—OW3—HW3B116.5 (15)
O9—N8—C2119.80 (9)HW3A—OW3—HW3B104 (2)
N8—O9—Li1135.09 (9)Li2—OW4—HW4A119.3 (14)
O13—N11—O12122.34 (10)Li2—OW4—HW4B132.0 (15)
O13—N11—C4119.62 (9)HW4A—OW4—HW4B107.5 (19)
O7—C1—C2—C3177.16 (11)C22—C23—C24—C251.68 (16)
C6—C1—C2—C32.42 (16)C22—C23—C24—N31178.31 (9)
O7—C1—C2—N81.67 (18)C23—C24—C25—C260.56 (17)
C6—C1—C2—N8178.74 (10)N31—C24—C25—C26179.45 (10)
C1—C2—C3—C40.27 (16)C24—C25—C26—C212.07 (18)
N8—C2—C3—C4179.16 (9)O27—C21—C26—C25179.35 (10)
C2—C3—C4—C51.51 (16)C22—C21—C26—C251.24 (16)
C2—C3—C4—N11177.54 (9)C22—C21—O27—Li2106.58 (13)
C3—C4—C5—C60.91 (17)C26—C21—O27—Li272.75 (14)
N11—C4—C5—C6178.14 (10)C22—C21—O27—Li136.52 (16)
C4—C5—C6—C11.53 (18)C26—C21—O27—Li1144.14 (11)
O7—C1—C6—C5176.55 (11)OW4—Li2—O27—C211.10 (15)
C2—C1—C6—C53.07 (17)OW3—Li2—O27—C21108.81 (13)
C6—C1—O7—Li1172.02 (13)OW2—Li2—O27—C21114.67 (11)
C2—C1—O7—Li18.4 (2)OW4—Li2—O27—Li1146.95 (10)
OW1—Li1—O7—C194.52 (15)OW3—Li2—O27—Li1103.15 (12)
O27—Li1—O7—C188.9 (2)OW2—Li2—O27—Li133.38 (13)
O9—Li1—O7—C19.75 (17)O7—Li1—O27—C21126.17 (19)
O29—Li1—O7—C1168.14 (12)OW1—Li1—O27—C2150.31 (14)
C3—C2—N8—O102.78 (15)O9—Li1—O27—C21155.81 (9)
C1—C2—N8—O10178.31 (10)O29—Li1—O27—C2144.03 (12)
C3—C2—N8—O9177.59 (10)O7—Li1—O27—Li222.7 (2)
C1—C2—N8—O91.32 (16)OW1—Li1—O27—Li2160.84 (10)
O10—N8—O9—Li1171.94 (13)O9—Li1—O27—Li255.34 (10)
C2—N8—O9—Li17.7 (2)O29—Li1—O27—Li2104.83 (9)
O7—Li1—O9—N810.01 (17)C23—C22—N28—O309.63 (15)
OW1—Li1—O9—N894.99 (15)C21—C22—N28—O30168.52 (10)
O27—Li1—O9—N8155.66 (13)C23—C22—N28—O29170.96 (10)
O29—Li1—O9—N891.1 (3)C21—C22—N28—O2910.89 (16)
C3—C4—N11—O134.70 (16)O30—N28—O29—Li1163.26 (12)
C5—C4—N11—O13176.24 (10)C22—N28—O29—Li117.34 (18)
C3—C4—N11—O12175.54 (10)O7—Li1—O29—N28176.91 (12)
C5—C4—N11—O123.52 (16)OW1—Li1—O29—N2870.71 (15)
O27—C21—C22—C23178.26 (10)O27—Li1—O29—N2837.77 (15)
C26—C21—C22—C231.11 (15)O9—Li1—O29—N28103.4 (3)
O27—C21—C22—N280.25 (16)C23—C24—N31—O327.19 (16)
C26—C21—C22—N28179.12 (9)C25—C24—N31—O32172.82 (10)
C21—C22—C23—C242.54 (16)C23—C24—N31—O33173.38 (10)
N28—C22—C23—C24179.34 (9)C25—C24—N31—O336.61 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—HW1A···O32i0.79 (2)2.53 (2)3.3083 (15)171 (2)
OW1—HW1B···O27ii0.82 (2)2.41 (2)3.1461 (15)151 (2)
OW1—HW1B···O9ii0.82 (2)2.59 (2)3.1821 (15)130.3 (19)
OW2—HW2A···O29iii0.76 (1)2.58 (2)2.9592 (12)113 (2)
OW2—HW2A···O13iv0.76 (1)2.59 (2)3.1262 (13)129 (2)
OW2—HW2B···O7iii0.83 (2)1.96 (2)2.7936 (13)174 (2)
OW3—HW3A···O12iv0.84 (2)2.04 (2)2.8725 (14)173 (2)
OW3—HW3B···OW1v0.80 (2)2.50 (2)3.2655 (17)159 (2)
OW4—HW4A···OW2vi0.80 (1)2.16 (1)2.9560 (16)178 (2)
OW4—HW4B···O33vii0.82 (2)2.02 (2)2.8381 (13)174 (2)
Symmetry codes: (i) x+1, y, z+3; (ii) x+1, y, z+2; (iii) x+1, y+1, z+2; (iv) x+1, y+1, z+1; (v) x1, y, z; (vi) x, y+1, z+2; (vii) x, y, z+3.

Experimental details

Crystal data
Chemical formula[Li2(C6H3N2O5)2(H2O)4]
Mr452.15
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.3038 (2), 10.1267 (3), 11.2984 (3)
α, β, γ (°)76.733 (2), 79.565 (2), 86.276 (2)
V3)909.16 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.39 × 0.23 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.944, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
18045, 4473, 3497
Rint0.024
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.115, 1.04
No. of reflections4473
No. of parameters314
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.29

Computer programs: SMART (Bruker, 2000), SMART, SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000), SHELXTL.

Selected geometric parameters (Å, º) top
Li1—O71.923 (2)Li2—OW41.936 (2)
Li1—OW12.001 (3)Li2—OW31.944 (2)
Li1—O272.004 (2)Li2—OW21.967 (2)
Li1—O92.053 (2)Li2—O271.978 (2)
Li1—O292.068 (2)
O7—Li1—OW1105.87 (11)O27—Li1—O2982.37 (8)
O7—Li1—O27144.96 (13)O9—Li1—O29158.14 (13)
OW1—Li1—O27109.11 (10)OW4—Li2—OW397.58 (10)
O7—Li1—O984.53 (8)OW4—Li2—OW2103.81 (11)
OW1—Li1—O9105.18 (11)OW3—Li2—OW2118.93 (11)
O27—Li1—O988.33 (9)OW4—Li2—O27111.11 (10)
O7—Li1—O2991.78 (9)OW3—Li2—O27115.48 (11)
OW1—Li1—O2996.56 (10)OW2—Li2—O27108.59 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—HW1A···O32i0.788 (15)2.528 (16)3.3083 (15)171 (2)
OW1—HW1B···O27ii0.82 (2)2.41 (2)3.1461 (15)151 (2)
OW1—HW1B···O9ii0.82 (2)2.59 (2)3.1821 (15)130.3 (19)
OW2—HW2A···O29iii0.763 (14)2.581 (18)2.9592 (12)112.6 (17)
OW2—HW2A···O13iv0.763 (14)2.591 (17)3.1262 (13)128.8 (17)
OW2—HW2B···O7iii0.833 (15)1.964 (15)2.7936 (13)173.6 (18)
OW3—HW3A···O12iv0.84 (2)2.04 (2)2.8725 (14)173 (2)
OW3—HW3B···OW1v0.80 (2)2.50 (2)3.2655 (17)159 (2)
OW4—HW4A···OW2vi0.797 (14)2.159 (14)2.9560 (16)178 (2)
OW4—HW4B···O33vii0.821 (15)2.020 (15)2.8381 (13)174 (2)
Symmetry codes: (i) x+1, y, z+3; (ii) x+1, y, z+2; (iii) x+1, y+1, z+2; (iv) x+1, y+1, z+1; (v) x1, y, z; (vi) x, y+1, z+2; (vii) x, y, z+3.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds