Buy article online - an online subscription or single-article purchase is required to access this article.
The title compounds, [Mo(C
2H
4NO
2)
2(NO)
2], (I), and [Mo(C
2H
6NS)
2(NO)
2]·CH
3CN, (II), contain distorted octahedral complexes in which the monoanionic
N,
S- and
N,
O-bidentate ligands coordinate the molybdenum centres in different modes. The anionic O atoms of the glycinate ligands in (I) are coordinated
trans to the nitrosyl ligands and the amine N atoms are located
trans to each other, whereas in (II) the anionic S atoms are coordinated
trans to each other and the amine N atoms are located
trans to the nitrosyl ligands. Each compound has a single complete complex in the asymmetric unit on a general position. Six N-H
O contacts with N
O distances of less than 3.2 Å are observed in (I) between the amine groups and the nitrosyl and carboxylate O atoms. In the 1:1 solvate (II), the acetonitrile molecule forms short N-H
N contacts (N
N < 3.2 Å) between the solvent N atoms and one of the amine H atoms. In addition, three weak intermolecular N-H
S interactions (N
S > 3.3 Å) contribute to the stabilization of the structure of (II).
Supporting information
CCDC references: 681526; 681527
For the preparation of (I), a solution of H2NCH2COOLi (154 mg, 1.90 mmol) in
methanol (5 ml) was added to a solution of the bromide polymer
[Mo(NO)2(Br)2]n (300 mg, 0.95 mmol) in the same solvent (5 ml),
and the reaction mixture was stirred for 2 h. During that time, a colour
change from green to dark green was observed. The reaction solution was
filtered over Celite to remove insoluble materials, and the solvent was
removed under vacuum leaving the product and LiBr. Adding some tetrahydrofuran
and stirring the mixture for 10 min resulted in dissolution of LiBr. The green
solid was filtered off over a frit, washed with cold tetrahydrofuran (243 K)
and dried under vacuum. The obtained powder was redissolved in methanol, and
green crystals of (I) were formed on slow evaporation at room temperature in a
low yield of about 20%. Analysis calculated for C4H8MoN4O6 (304.06): C
15.80, H 2.65, N 18.42%; found: C 16.02, H 2.48, N 18.14%.
For the preparation of (II), a solution of H2NCH2CH2SLi (130 mg, 0.156 mmol) in acetonitrile (4 ml) was added to a green solution of the bromide
polymer [Mo(NO)2(Br)2]n (247 mg, 0.78 mmol) in the same solvent
(4 ml). During the course of addition, the colour of the solution changed from
green to red-brown. After the addition was completed, the reaction mixture was
stirred for 2 h and then filtered over Celite. Slow evaporation of
acetonitrile at room temperature gave, after a few days, 90 mg of (II) as
red–brown microcrystals. Analysis calculated for C4H12MoN4O2S2
(308.24): C 15.59, H 3.92, N 18.18%; found: C 15.87, H 3.92, N 17.99% (the
elemental analysis was carried out after desolvation of the crystals).
DFT calculations were performed with the TURBOMOLE program package
(Version 5.5; Von Arnim & Ahlrichs, 1998; Treutler & Ahlrichs, 1995; Ahlrichs
et al., 1989). The Vosko–Wilk–Nusair (Vosko et al., 1980)
local density approximation (LDA) and the generalized gradient approximation
(GGA) with corrections for exchange and correlation according to Becke (1988)
and Perdew (1986a,b) (BP86) were used for all calculations. The
TURBOMOLE approach to DFT GGA calculations is based on the use of
Gaussian-type orbitals as basis functions. Geometries were optimized using
accurate triple-ζ valence basis sets augmented by one polarization function
TZV(P) (Schäfer et al., 1992, 1994) for all elements.
All H-atom positions were calculated after each cycle of refinement with
SHELXL97 using a riding model in both structures with C—H distances
in the range 0.97–0.99 Å and N—H distances in the range 0.90–0.92 Å.
Uiso(H) values were set equal to
1.3Ueq of the parent C or N atoms in (I), and
1.2Ueq(C,N) in (II)
[1.5Ueq(C) for the methyl H atoms]. Please check; text
changed in accordance with data in CIF.
For both compounds, data collection: IPDS Software (Stoe & Cie, 1999); cell refinement: IPDS Software (Stoe & Cie, 1999); data reduction: X-RED (Stoe & Cie, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and SHELXL97 (Sheldrick, 1997).
(I) Dinitrosylbis(glycinato-
κ2N,
O)molybdenum(IV)
top
Crystal data top
[Mo(C2H4NO2)2(NO)2] | F(000) = 600 |
Mr = 304.08 | Dx = 2.18 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 8000 reflections |
a = 12.9088 (15) Å | θ = 3.1–30.3° |
b = 7.5727 (6) Å | µ = 1.44 mm−1 |
c = 9.6922 (11) Å | T = 183 K |
β = 102.051 (13)° | Large block, dark green |
V = 926.58 (17) Å3 | 0.43 × 0.41 × 0.39 mm |
Z = 4 | |
Data collection top
Stoe IPDS diffractometer | 2265 reflections with I > 2σ(I) |
ϕ rotation scan | Rint = 0.045 |
Absorption correction: numerical (Coppens et al., 1965) | θmax = 30.3°, θmin = 3.1° |
Tmin = 0.56, Tmax = 0.669 | h = −18→17 |
17540 measured reflections | k = 0→10 |
2745 independent reflections | l = 0→13 |
Refinement top
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.021 | w = 1/[σ2(Fo2) + (0.0362P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.051 | (Δ/σ)max = 0.001 |
S = 0.93 | Δρmax = 0.38 e Å−3 |
2745 reflections | Δρmin = −0.68 e Å−3 |
136 parameters | |
Crystal data top
[Mo(C2H4NO2)2(NO)2] | V = 926.58 (17) Å3 |
Mr = 304.08 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.9088 (15) Å | µ = 1.44 mm−1 |
b = 7.5727 (6) Å | T = 183 K |
c = 9.6922 (11) Å | 0.43 × 0.41 × 0.39 mm |
β = 102.051 (13)° | |
Data collection top
Stoe IPDS diffractometer | 2745 independent reflections |
Absorption correction: numerical (Coppens et al., 1965) | 2265 reflections with I > 2σ(I) |
Tmin = 0.56, Tmax = 0.669 | Rint = 0.045 |
17540 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.021 | 0 restraints |
wR(F2) = 0.051 | H-atom parameters constrained |
S = 0.93 | Δρmax = 0.38 e Å−3 |
2745 reflections | Δρmin = −0.68 e Å−3 |
136 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Mo1 | 0.743377 (9) | 0.010475 (17) | 0.739870 (12) | 0.01311 (5) | |
N1 | 0.65454 (11) | 0.11528 (19) | 0.59101 (15) | 0.0171 (3) | |
O1 | 0.59989 (11) | 0.18088 (19) | 0.49203 (13) | 0.0267 (3) | |
N2 | 0.77398 (11) | 0.23186 (19) | 0.81326 (14) | 0.0164 (3) | |
O2 | 0.78870 (10) | 0.37614 (18) | 0.85722 (14) | 0.0250 (3) | |
N3 | 0.88320 (10) | −0.02513 (19) | 0.64756 (14) | 0.0150 (2) | |
H3A | 0.8714 | −0.1127 | 0.5834 | 0.02* | |
H3B | 0.8959 | 0.0747 | 0.6035 | 0.02* | |
N4 | 0.62795 (11) | −0.0701 (2) | 0.86340 (15) | 0.0174 (3) | |
H4A | 0.6588 | −0.0695 | 0.9557 | 0.023* | |
H4B | 0.5741 | 0.0077 | 0.8499 | 0.023* | |
O3 | 0.84757 (10) | −0.12713 (17) | 0.89868 (12) | 0.0183 (2) | |
O4 | 0.70123 (10) | −0.24220 (17) | 0.65952 (13) | 0.0194 (2) | |
O5 | 1.00834 (10) | −0.24170 (18) | 0.97058 (13) | 0.0221 (3) | |
O6 | 0.59528 (10) | −0.47367 (17) | 0.65815 (14) | 0.0234 (3) | |
C1 | 0.97608 (13) | −0.0690 (2) | 0.76000 (17) | 0.0172 (3) | |
H1A | 1.0155 | 0.038 | 0.7905 | 0.022* | |
H1B | 1.0223 | −0.1485 | 0.7224 | 0.022* | |
C2 | 0.94366 (13) | −0.1552 (2) | 0.88601 (16) | 0.0148 (3) | |
C3 | 0.58652 (17) | −0.2466 (3) | 0.8232 (2) | 0.0289 (4) | |
H3C | 0.51 | −0.2395 | 0.7941 | 0.038* | |
H3D | 0.6027 | −0.3227 | 0.9054 | 0.038* | |
C4 | 0.62994 (13) | −0.3302 (2) | 0.70586 (16) | 0.0160 (3) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Mo1 | 0.01210 (7) | 0.01532 (7) | 0.01280 (7) | 0.00059 (5) | 0.00464 (4) | 0.00046 (5) |
N1 | 0.0168 (6) | 0.0181 (6) | 0.0170 (6) | 0.0014 (5) | 0.0049 (5) | −0.0005 (5) |
O1 | 0.0263 (7) | 0.0324 (7) | 0.0198 (6) | 0.0092 (5) | 0.0012 (5) | 0.0039 (5) |
N2 | 0.0141 (6) | 0.0193 (7) | 0.0155 (6) | 0.0012 (5) | 0.0029 (5) | −0.0007 (5) |
O2 | 0.0244 (6) | 0.0205 (6) | 0.0278 (6) | 0.0007 (5) | 0.0005 (5) | −0.0056 (5) |
N3 | 0.0154 (6) | 0.0170 (6) | 0.0136 (5) | 0.0000 (5) | 0.0053 (5) | 0.0019 (5) |
N4 | 0.0164 (6) | 0.0223 (7) | 0.0153 (6) | 0.0003 (5) | 0.0075 (5) | −0.0009 (5) |
O3 | 0.0163 (5) | 0.0236 (6) | 0.0165 (5) | 0.0031 (5) | 0.0070 (4) | 0.0053 (5) |
O4 | 0.0211 (6) | 0.0197 (6) | 0.0205 (6) | −0.0039 (5) | 0.0112 (5) | −0.0041 (4) |
O5 | 0.0240 (6) | 0.0249 (6) | 0.0173 (6) | 0.0091 (5) | 0.0040 (5) | 0.0037 (5) |
O6 | 0.0237 (6) | 0.0226 (6) | 0.0246 (6) | −0.0068 (5) | 0.0064 (5) | −0.0046 (5) |
C1 | 0.0155 (7) | 0.0203 (8) | 0.0167 (7) | 0.0013 (6) | 0.0055 (6) | 0.0027 (6) |
C2 | 0.0179 (7) | 0.0132 (7) | 0.0139 (6) | 0.0008 (5) | 0.0044 (5) | −0.0022 (5) |
C3 | 0.0391 (11) | 0.0253 (9) | 0.0285 (9) | −0.0104 (8) | 0.0214 (8) | −0.0050 (7) |
C4 | 0.0147 (7) | 0.0189 (7) | 0.0140 (7) | 0.0008 (6) | 0.0018 (5) | 0.0025 (5) |
Geometric parameters (Å, º) top
Mo1—N1 | 1.8264 (15) | N4—H4A | 0.9 |
Mo1—N2 | 1.8318 (15) | N4—H4B | 0.9 |
Mo1—O4 | 2.0945 (12) | O3—C2 | 1.289 (2) |
Mo1—O3 | 2.0976 (12) | O4—C4 | 1.290 (2) |
Mo1—N4 | 2.1843 (14) | O5—C2 | 1.230 (2) |
Mo1—N3 | 2.1921 (14) | O6—C4 | 1.228 (2) |
N1—O1 | 1.1756 (19) | C1—C2 | 1.519 (2) |
N2—O2 | 1.1737 (19) | C1—H1A | 0.97 |
N3—C1 | 1.480 (2) | C1—H1B | 0.97 |
N3—H3A | 0.9 | C3—C4 | 1.508 (2) |
N3—H3B | 0.9 | C3—H3C | 0.97 |
N4—C3 | 1.462 (2) | C3—H3D | 0.97 |
| | | |
N1—Mo1—N2 | 87.59 (6) | Mo1—N4—H4A | 109.4 |
N1—Mo1—O4 | 91.82 (6) | C3—N4—H4B | 109.4 |
N2—Mo1—O4 | 177.12 (5) | Mo1—N4—H4B | 109.4 |
N1—Mo1—O3 | 175.03 (5) | H4A—N4—H4B | 108 |
N2—Mo1—O3 | 96.69 (6) | C2—O3—Mo1 | 119.62 (10) |
O4—Mo1—O3 | 84.03 (5) | C4—O4—Mo1 | 119.40 (10) |
N1—Mo1—N4 | 99.60 (6) | N3—C1—C2 | 111.83 (13) |
N2—Mo1—N4 | 99.17 (6) | N3—C1—H1A | 109.2 |
O4—Mo1—N4 | 78.14 (5) | C2—C1—H1A | 109.2 |
O3—Mo1—N4 | 82.25 (5) | N3—C1—H1B | 109.2 |
N1—Mo1—N3 | 99.54 (6) | C2—C1—H1B | 109.2 |
N2—Mo1—N3 | 98.16 (6) | H1A—C1—H1B | 107.9 |
O4—Mo1—N3 | 84.72 (5) | O5—C2—O3 | 123.86 (15) |
O3—Mo1—N3 | 77.40 (5) | O5—C2—C1 | 120.15 (15) |
N4—Mo1—N3 | 154.60 (6) | O3—C2—C1 | 115.96 (14) |
O1—N1—Mo1 | 177.50 (13) | N4—C3—C4 | 114.31 (15) |
O2—N2—Mo1 | 176.75 (13) | N4—C3—H3C | 108.7 |
C1—N3—Mo1 | 109.67 (9) | C4—C3—H3C | 108.7 |
C1—N3—H3A | 109.7 | N4—C3—H3D | 108.7 |
Mo1—N3—H3A | 109.7 | C4—C3—H3D | 108.7 |
C1—N3—H3B | 109.7 | H3C—C3—H3D | 107.6 |
Mo1—N3—H3B | 109.7 | O6—C4—O4 | 123.77 (16) |
H3A—N3—H3B | 108.2 | O6—C4—C3 | 119.45 (15) |
C3—N4—Mo1 | 111.27 (11) | O4—C4—C3 | 116.77 (15) |
C3—N4—H4A | 109.4 | | |
| | | |
N1—Mo1—N3—C1 | 166.27 (11) | N1—Mo1—O4—C4 | −97.12 (13) |
N2—Mo1—N3—C1 | 77.35 (11) | O3—Mo1—O4—C4 | 85.62 (12) |
O4—Mo1—N3—C1 | −102.77 (11) | N4—Mo1—O4—C4 | 2.31 (12) |
O3—Mo1—N3—C1 | −17.73 (10) | N3—Mo1—O4—C4 | 163.47 (13) |
N4—Mo1—N3—C1 | −55.28 (17) | Mo1—N3—C1—C2 | 25.47 (16) |
N1—Mo1—N4—C3 | 89.48 (13) | Mo1—O3—C2—O5 | −176.42 (13) |
N2—Mo1—N4—C3 | 178.57 (13) | Mo1—O3—C2—C1 | 5.52 (18) |
O4—Mo1—N4—C3 | −0.37 (12) | N3—C1—C2—O5 | 160.50 (15) |
O3—Mo1—N4—C3 | −85.86 (13) | N3—C1—C2—O3 | −21.4 (2) |
N3—Mo1—N4—C3 | −48.96 (18) | Mo1—N4—C3—C4 | −1.2 (2) |
N2—Mo1—O3—C2 | −89.78 (12) | Mo1—O4—C4—O6 | 174.89 (12) |
O4—Mo1—O3—C2 | 93.03 (12) | Mo1—O4—C4—C3 | −3.7 (2) |
N4—Mo1—O3—C2 | 171.82 (13) | N4—C3—C4—O6 | −175.46 (16) |
N3—Mo1—O3—C2 | 7.12 (12) | N4—C3—C4—O4 | 3.2 (2) |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···O3i | 0.90 | 2.64 | 3.5357 (18) | 177 |
N3—H3A···O5i | 0.90 | 2.52 | 3.1347 (19) | 126 |
N3—H3B···O5ii | 0.90 | 2.08 | 2.9237 (19) | 155 |
N3—H3B···O2iii | 0.90 | 2.52 | 3.0408 (19) | 117 |
N4—H4A···O4iv | 0.90 | 2.41 | 3.1651 (19) | 142 |
N4—H4A···O6iv | 0.90 | 2.30 | 2.9920 (19) | 133 |
N4—H4B···O6v | 0.90 | 2.18 | 2.9377 (19) | 142 |
Symmetry codes: (i) x, −y−1/2, z−1/2; (ii) −x+2, y+1/2, −z+3/2; (iii) x, −y+1/2, z−1/2; (iv) x, −y−1/2, z+1/2; (v) −x+1, y+1/2, −z+3/2. |
(II) bis(2-aminoethanethiolato-
κ2N,
S)dinitrosylmolybdenum(IV)
acetonitrile monosolvate
top
Crystal data top
[Mo(C2H6NS)2(NO)2]·C2H3N | F(000) = 704 |
Mr = 349.29 | Dx = 1.73 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 7998 reflections |
a = 8.8660 (7) Å | θ = 2.9–30.3° |
b = 8.5980 (7) Å | µ = 1.28 mm−1 |
c = 18.0218 (16) Å | T = 183 K |
β = 102.487 (10)° | Block, dark-red |
V = 1341.30 (19) Å3 | 0.41 × 0.4 × 0.19 mm |
Z = 4 | |
Data collection top
Stoe IPDS diffractometer | 3459 reflections with I > 2σ(I) |
ϕ rotation scan | Rint = 0.087 |
Absorption correction: numerical (Coppens et al., 1965) | θmax = 30.3°, θmin = 3.4° |
Tmin = 0.621, Tmax = 0.793 | h = −12→12 |
17511 measured reflections | k = −12→12 |
3976 independent reflections | l = 0→25 |
Refinement top
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.049 | w = 1/[σ^2^(Fo^2^) + (0.1076P)^2^] where P = (Fo^2^ + 2Fc^2^)/3 |
wR(F2) = 0.145 | (Δ/σ)max = 0.001 |
S = 1.06 | Δρmax = 1.45 e Å−3 |
3976 reflections | Δρmin = −1.35 e Å−3 |
146 parameters | |
Crystal data top
[Mo(C2H6NS)2(NO)2]·C2H3N | V = 1341.30 (19) Å3 |
Mr = 349.29 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.8660 (7) Å | µ = 1.28 mm−1 |
b = 8.5980 (7) Å | T = 183 K |
c = 18.0218 (16) Å | 0.41 × 0.4 × 0.19 mm |
β = 102.487 (10)° | |
Data collection top
Stoe IPDS diffractometer | 3976 independent reflections |
Absorption correction: numerical (Coppens et al., 1965) | 3459 reflections with I > 2σ(I) |
Tmin = 0.621, Tmax = 0.793 | Rint = 0.087 |
17511 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.145 | H-atom parameters constrained |
S = 1.06 | Δρmax = 1.45 e Å−3 |
3976 reflections | Δρmin = −1.35 e Å−3 |
146 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Mo1 | 0.10625 (2) | 0.76357 (3) | 0.399378 (12) | 0.01589 (11) | |
S1 | −0.05030 (8) | 0.67138 (8) | 0.27570 (4) | 0.02511 (17) | |
S2 | 0.24934 (8) | 0.94452 (8) | 0.49479 (4) | 0.02137 (16) | |
N1 | −0.0030 (3) | 0.6919 (3) | 0.46758 (15) | 0.0247 (5) | |
O1 | −0.0620 (4) | 0.6569 (3) | 0.51757 (18) | 0.0492 (8) | |
N2 | 0.2376 (3) | 0.5962 (3) | 0.41855 (13) | 0.0215 (4) | |
O2 | 0.3207 (3) | 0.4886 (3) | 0.43120 (15) | 0.0359 (5) | |
C1 | −0.1838 (3) | 0.8338 (4) | 0.24984 (16) | 0.0262 (6) | |
H1A | −0.1414 | 0.9077 | 0.2175 | 0.031* | |
H1B | −0.2838 | 0.7947 | 0.2202 | 0.031* | |
C2 | −0.2096 (3) | 0.9175 (3) | 0.32035 (16) | 0.0245 (5) | |
H2A | −0.2739 | 1.0113 | 0.3053 | 0.029* | |
H2B | −0.2650 | 0.8483 | 0.3494 | 0.029* | |
N3 | −0.0583 (3) | 0.9632 (3) | 0.36852 (12) | 0.0183 (4) | |
H3A | −0.0747 | 1.0081 | 0.4124 | 0.022* | |
H3B | −0.0136 | 1.0369 | 0.3431 | 0.022* | |
C3 | 0.3243 (3) | 1.0742 (3) | 0.43135 (16) | 0.0235 (5) | |
H3C | 0.2417 | 1.1458 | 0.4059 | 0.028* | |
H3D | 0.4097 | 1.1375 | 0.4610 | 0.028* | |
C4 | 0.3822 (3) | 0.9802 (4) | 0.37256 (16) | 0.0233 (5) | |
H4A | 0.4195 | 1.0510 | 0.3371 | 0.028* | |
H4B | 0.4699 | 0.9143 | 0.3979 | 0.028* | |
N4 | 0.2561 (3) | 0.8803 (3) | 0.32944 (12) | 0.0192 (4) | |
H4C | 0.2996 | 0.8045 | 0.3047 | 0.023* | |
H4D | 0.1939 | 0.9403 | 0.2929 | 0.023* | |
N5 | 0.4991 (4) | 0.6320 (4) | 0.30213 (18) | 0.0383 (6) | |
C5 | 0.5742 (4) | 0.5346 (4) | 0.33329 (19) | 0.0337 (7) | |
C6 | 0.6686 (6) | 0.4097 (6) | 0.3723 (3) | 0.0584 (12) | |
H6A | 0.7765 | 0.4436 | 0.3861 | 0.088* | |
H6B | 0.6603 | 0.3189 | 0.3387 | 0.088* | |
H6C | 0.6329 | 0.3819 | 0.4183 | 0.088* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Mo1 | 0.01591 (17) | 0.01506 (15) | 0.01653 (16) | 0.00061 (6) | 0.00312 (10) | 0.00077 (6) |
S1 | 0.0244 (3) | 0.0228 (3) | 0.0257 (3) | 0.0011 (2) | 0.0001 (2) | −0.0093 (2) |
S2 | 0.0199 (3) | 0.0274 (3) | 0.0163 (3) | −0.0025 (2) | 0.0029 (2) | −0.0030 (2) |
N1 | 0.0251 (11) | 0.0202 (11) | 0.0319 (12) | 0.0004 (9) | 0.0127 (9) | 0.0064 (9) |
O1 | 0.0651 (18) | 0.0372 (14) | 0.0600 (17) | 0.0085 (13) | 0.0463 (15) | 0.0170 (13) |
N2 | 0.0226 (10) | 0.0210 (10) | 0.0215 (10) | 0.0025 (8) | 0.0064 (8) | 0.0029 (8) |
O2 | 0.0355 (12) | 0.0309 (11) | 0.0435 (13) | 0.0150 (10) | 0.0138 (10) | 0.0122 (10) |
C1 | 0.0261 (13) | 0.0240 (13) | 0.0240 (12) | 0.0000 (10) | −0.0041 (10) | −0.0030 (10) |
C2 | 0.0187 (11) | 0.0234 (12) | 0.0287 (13) | 0.0015 (9) | −0.0007 (9) | −0.0038 (10) |
N3 | 0.0188 (10) | 0.0177 (9) | 0.0177 (9) | 0.0001 (8) | 0.0026 (7) | −0.0029 (7) |
C3 | 0.0227 (12) | 0.0222 (12) | 0.0251 (12) | −0.0029 (10) | 0.0036 (9) | −0.0022 (10) |
C4 | 0.0176 (11) | 0.0284 (13) | 0.0240 (11) | −0.0029 (10) | 0.0049 (9) | 0.0003 (10) |
N4 | 0.0191 (9) | 0.0218 (10) | 0.0173 (9) | 0.0005 (8) | 0.0053 (7) | 0.0004 (8) |
N5 | 0.0350 (14) | 0.0398 (16) | 0.0412 (15) | −0.0020 (13) | 0.0107 (12) | −0.0038 (13) |
C5 | 0.0366 (16) | 0.0362 (17) | 0.0298 (14) | −0.0074 (13) | 0.0102 (12) | −0.0060 (13) |
C6 | 0.063 (3) | 0.061 (3) | 0.048 (2) | 0.010 (2) | 0.005 (2) | 0.019 (2) |
Geometric parameters (Å, º) top
Mo1—N1 | 1.828 (2) | N3—H3A | 0.9200 |
Mo1—N2 | 1.837 (2) | N3—H3B | 0.9200 |
Mo1—N3 | 2.243 (2) | C3—C4 | 1.508 (4) |
Mo1—N4 | 2.255 (2) | C3—H3C | 0.9900 |
Mo1—S2 | 2.4584 (7) | C3—H3D | 0.9900 |
Mo1—S1 | 2.4870 (7) | C4—N4 | 1.489 (4) |
S1—C1 | 1.825 (3) | C4—H4A | 0.9900 |
S2—C3 | 1.823 (3) | C4—H4B | 0.9900 |
N1—O1 | 1.175 (3) | N4—H4C | 0.9200 |
N2—O2 | 1.173 (3) | N4—H4D | 0.9200 |
C1—C2 | 1.520 (4) | N5—C5 | 1.139 (5) |
C1—H1A | 0.9900 | C5—C6 | 1.447 (6) |
C1—H1B | 0.9900 | C6—H6A | 0.9800 |
C2—N3 | 1.485 (3) | C6—H6B | 0.9800 |
C2—H2A | 0.9900 | C6—H6C | 0.9800 |
C2—H2B | 0.9900 | | |
| | | |
N1—Mo1—N2 | 90.91 (11) | C2—N3—Mo1 | 113.56 (16) |
N1—Mo1—N3 | 90.80 (10) | C2—N3—H3A | 108.9 |
N2—Mo1—N3 | 176.49 (9) | Mo1—N3—H3A | 108.9 |
N1—Mo1—N4 | 170.91 (10) | C2—N3—H3B | 108.9 |
N2—Mo1—N4 | 91.59 (9) | Mo1—N3—H3B | 108.9 |
N3—Mo1—N4 | 87.20 (8) | H3A—N3—H3B | 107.7 |
N1—Mo1—S2 | 90.65 (9) | C4—C3—S2 | 109.8 (2) |
N2—Mo1—S2 | 98.86 (8) | C4—C3—H3C | 109.7 |
N3—Mo1—S2 | 84.19 (6) | S2—C3—H3C | 109.7 |
N4—Mo1—S2 | 80.33 (6) | C4—C3—H3D | 109.7 |
N1—Mo1—S1 | 102.77 (9) | S2—C3—H3D | 109.7 |
N2—Mo1—S1 | 97.30 (8) | H3C—C3—H3D | 108.2 |
N3—Mo1—S1 | 79.32 (6) | N4—C4—C3 | 110.2 (2) |
N4—Mo1—S1 | 85.58 (6) | N4—C4—H4A | 109.6 |
S2—Mo1—S1 | 158.78 (3) | C3—C4—H4A | 109.6 |
C1—S1—Mo1 | 100.97 (9) | N4—C4—H4B | 109.6 |
C3—S2—Mo1 | 98.72 (9) | C3—C4—H4B | 109.6 |
O1—N1—Mo1 | 172.1 (3) | H4A—C4—H4B | 108.1 |
O2—N2—Mo1 | 179.4 (2) | C4—N4—Mo1 | 115.58 (16) |
C2—C1—S1 | 110.83 (19) | C4—N4—H4C | 108.4 |
C2—C1—H1A | 109.5 | Mo1—N4—H4C | 108.4 |
S1—C1—H1A | 109.5 | C4—N4—H4D | 108.4 |
C2—C1—H1B | 109.5 | Mo1—N4—H4D | 108.4 |
S1—C1—H1B | 109.5 | H4C—N4—H4D | 107.4 |
H1A—C1—H1B | 108.1 | N5—C5—C6 | 179.4 (4) |
N3—C2—C1 | 109.5 (2) | C5—C6—H6A | 109.5 |
N3—C2—H2A | 109.8 | C5—C6—H6B | 109.5 |
C1—C2—H2A | 109.8 | H6A—C6—H6B | 109.5 |
N3—C2—H2B | 109.8 | C5—C6—H6C | 109.5 |
C1—C2—H2B | 109.8 | H6A—C6—H6C | 109.5 |
H2A—C2—H2B | 108.2 | H6B—C6—H6C | 109.5 |
| | | |
N1—Mo1—S1—C1 | 88.74 (14) | C1—C2—N3—Mo1 | −55.0 (3) |
N2—Mo1—S1—C1 | −178.66 (13) | N1—Mo1—N3—C2 | −74.5 (2) |
N3—Mo1—S1—C1 | 0.36 (12) | N4—Mo1—N3—C2 | 114.35 (19) |
N4—Mo1—S1—C1 | −87.62 (13) | S2—Mo1—N3—C2 | −165.09 (18) |
S2—Mo1—S1—C1 | −39.26 (14) | S1—Mo1—N3—C2 | 28.32 (17) |
N1—Mo1—S2—C3 | −162.82 (13) | Mo1—S2—C3—C4 | −43.09 (19) |
N2—Mo1—S2—C3 | 106.16 (12) | S2—C3—C4—N4 | 57.3 (3) |
N3—Mo1—S2—C3 | −72.09 (11) | C3—C4—N4—Mo1 | −41.5 (3) |
N4—Mo1—S2—C3 | 16.05 (11) | N2—Mo1—N4—C4 | −87.97 (19) |
S1—Mo1—S2—C3 | −33.05 (13) | N3—Mo1—N4—C4 | 95.33 (19) |
Mo1—S1—C1—C2 | −27.8 (2) | S2—Mo1—N4—C4 | 10.75 (17) |
S1—C1—C2—N3 | 53.8 (3) | S1—Mo1—N4—C4 | 174.83 (18) |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···S2i | 0.92 | 2.55 | 3.372 (2) | 150 |
N3—H3B···S1ii | 0.92 | 2.60 | 3.459 (2) | 155 |
N4—H4C···N5 | 0.92 | 2.32 | 3.146 (4) | 150 |
N4—H4D···S1ii | 0.92 | 2.53 | 3.419 (2) | 162 |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x, y+1/2, −z+1/2. |
Experimental details
| (I) | (II) |
Crystal data |
Chemical formula | [Mo(C2H4NO2)2(NO)2] | [Mo(C2H6NS)2(NO)2]·C2H3N |
Mr | 304.08 | 349.29 |
Crystal system, space group | Monoclinic, P21/c | Monoclinic, P21/c |
Temperature (K) | 183 | 183 |
a, b, c (Å) | 12.9088 (15), 7.5727 (6), 9.6922 (11) | 8.8660 (7), 8.5980 (7), 18.0218 (16) |
β (°) | 102.051 (13) | 102.487 (10) |
V (Å3) | 926.58 (17) | 1341.30 (19) |
Z | 4 | 4 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 1.44 | 1.28 |
Crystal size (mm) | 0.43 × 0.41 × 0.39 | 0.41 × 0.4 × 0.19 |
|
Data collection |
Diffractometer | Stoe IPDS diffractometer | Stoe IPDS diffractometer |
Absorption correction | Numerical (Coppens et al., 1965) | Numerical (Coppens et al., 1965) |
Tmin, Tmax | 0.56, 0.669 | 0.621, 0.793 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17540, 2745, 2265 | 17511, 3976, 3459 |
Rint | 0.045 | 0.087 |
(sin θ/λ)max (Å−1) | 0.710 | 0.710 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.021, 0.051, 0.93 | 0.049, 0.145, 1.06 |
No. of reflections | 2745 | 3976 |
No. of parameters | 136 | 146 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.38, −0.68 | 1.45, −1.35 |
Selected geometric parameters (Å, º) for (I) topMo1—N1 | 1.8264 (15) | N1—O1 | 1.1756 (19) |
Mo1—N2 | 1.8318 (15) | N2—O2 | 1.1737 (19) |
Mo1—O4 | 2.0945 (12) | O3—C2 | 1.289 (2) |
Mo1—O3 | 2.0976 (12) | O4—C4 | 1.290 (2) |
Mo1—N4 | 2.1843 (14) | O5—C2 | 1.230 (2) |
Mo1—N3 | 2.1921 (14) | O6—C4 | 1.228 (2) |
| | | |
N1—Mo1—N2 | 87.59 (6) | O4—Mo1—N4 | 78.14 (5) |
N2—Mo1—O4 | 177.12 (5) | O3—Mo1—N3 | 77.40 (5) |
N1—Mo1—O3 | 175.03 (5) | N4—Mo1—N3 | 154.60 (6) |
O4—Mo1—O3 | 84.03 (5) | | |
Hydrogen-bond geometry (Å, º) for (I) top
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···O3i | 0.90 | 2.64 | 3.5357 (18) | 177.0 |
N3—H3A···O5i | 0.90 | 2.52 | 3.1347 (19) | 126.1 |
N3—H3B···O5ii | 0.90 | 2.08 | 2.9237 (19) | 154.6 |
N3—H3B···O2iii | 0.90 | 2.52 | 3.0408 (19) | 117.0 |
N4—H4A···O4iv | 0.90 | 2.41 | 3.1651 (19) | 142.2 |
N4—H4A···O6iv | 0.90 | 2.30 | 2.9920 (19) | 133.2 |
N4—H4B···O6v | 0.90 | 2.18 | 2.9377 (19) | 141.9 |
Symmetry codes: (i) x, −y−1/2, z−1/2; (ii) −x+2, y+1/2, −z+3/2; (iii) x, −y+1/2, z−1/2; (iv) x, −y−1/2, z+1/2; (v) −x+1, y+1/2, −z+3/2. |
Selected geometric parameters (Å, º) for (II) topMo1—N1 | 1.828 (2) | Mo1—S1 | 2.4870 (7) |
Mo1—N2 | 1.837 (2) | S1—C1 | 1.825 (3) |
Mo1—N3 | 2.243 (2) | S2—C3 | 1.823 (3) |
Mo1—N4 | 2.255 (2) | N1—O1 | 1.175 (3) |
Mo1—S2 | 2.4584 (7) | N2—O2 | 1.173 (3) |
| | | |
N1—Mo1—N2 | 90.91 (11) | N4—Mo1—S2 | 80.33 (6) |
N2—Mo1—N3 | 176.49 (9) | N3—Mo1—S1 | 79.32 (6) |
N1—Mo1—N4 | 170.91 (10) | S2—Mo1—S1 | 158.78 (3) |
N3—Mo1—N4 | 87.20 (8) | | |
Hydrogen-bond geometry (Å, º) for (II) top
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···S2i | 0.92 | 2.55 | 3.372 (2) | 149.8 |
N3—H3B···S1ii | 0.92 | 2.60 | 3.459 (2) | 155.4 |
N4—H4C···N5 | 0.92 | 2.32 | 3.146 (4) | 149.9 |
N4—H4D···S1ii | 0.92 | 2.53 | 3.419 (2) | 161.7 |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x, y+1/2, −z+1/2. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.
With the aim of preparing water-soluble dinitrosyl–molybdenum complexes to study their ability to release NO in aqueous solution, the title compounds, Mo(NO)2(H2NCH2COO)2, (I), and Mo(NO)2(H2NCH2CH2S)2·CH3CN, (II), resulting from the reactions of the [Mo(NO)2]2+ cation with bidentate monoanionic (N,X)-donor ligands (X = O and S), were prepared.
In compounds (I) and (II), the Mo atoms present distorted octahedral coordinations with nearly linear Mo—N—O bond angles and normal Mo—NO bond distances (Fig. 1 and 2). The amine N atoms of the glycinate ligand in (I) are bound to molybdenum in trans positions, showing a significantly closed N3—Mo1—N4 bond angle, whereas the anionic O atoms are located cis to each other and trans to the nitrosyl ligands, with nearly linear O—Mn—N angles (Table 1). The crystal structure of (II) reveals a different coordination mode in comparison with (I), since the monoanionic bidentate ligands coordinate to the metal center with the anionic S atoms in trans positions to each other with a significantly closed S1—Mo1—S2 bond angle and the amine N atoms located trans to the nitrosyl ligands with relatively undistorted N—Mn—N angles (Table 2). The known molybdenum dinitrosyl complexes of 2-picolinate and 2-pyrimidinethiolate, Mo(NO)2(2-picolinate)2 (Perpiñán et al., 1987) and Mo(NO)2(2-pyrimidinethiolate)2 (Yonemura et al., 2001) show the same systematic trend at least in the coordination manner of the N,S- and N,O-bidentate ligands.
In order to trace the electronic causes for this phenomenon on the molecular orbital level, simple density functional theory (DFT) calculations were carried out using the TURBOMOLE program package (Von Arnim & Ahlrichs, 1998; Treutler & Ahlrichs, 1995; Ahlrichs et al., 1989). Two different coordination geometries have been optimized for each complex, one with the amine N atoms trans to the nitrosyl ligands (a) and the other with the anionic chalcogen atoms [oxygen in (I), sulfur in (II)] trans to the nitrosyl ligands (b). The computed total energies confirm the solid-state structures of (I) and (II) as the global energetic minima. Indeed, the thermodynamically most favourable geometries show the amine N atoms [(Ib), 8.7 kcal mol-1 below I(a)] and the anionic D atoms [(IIa), 5.1 kcal mol-1 below (IIb)] trans to each other, respectively. From basic considerations, the van der Waals radius of the S atom is significantly larger than those of the O and N atoms (1.815 Å versus 1.060 and 1.050 Å, respectively), and consequently the trans-S,S geometry should be preferred over the cis-S,S one. The computed highest occupied molecular orbitals (HOMOs) of (I) and (II) indicate that the electron population of the sulfur lone pairs is expectedly larger than in the oxygen lone pairs, leading to a strong antibonding interaction between the in-plane sulfur lone pairs in the energetically high-lying HOMO of the trans-N,N geometry of (II). In the case of the trans-N,N geometry of (I), the HOMO exhibits a π-type antibonding character between the oxygen lone pairs and a d orbital of the metal, but with a less destabilizing effect than in (II).
Six N—H···O contacts (D < 3.2 Å) between the amine groups and the nitrosyl and carboxylate O atoms are observed in (I) (Fig. 3 and Table 1). Not surprisingly, the shortest and most linear of these interactions are with the non-coordinating carboxylate O atoms. Solvent molecules of acetonitrile cocrystallized with compound (II), forming short N—H···N contacts (D < 3.2 Å) between the solvent N atoms and one of the amine H atoms (Fig. 4 and Table 2). Three other weak N—H···S intermolecular interactions (D > 3.3 Å) contribute to the stabilization of the structure of (II).