Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The coordination polymers catena-poly[[[(4,4'-bi-1,2,4-triazole-[kappa]N1)bis­(thio­cyanato-[kappa]N)copper(II)]-[mu]-4,4'-bi-1,2,4-triazole-[kappa]2N1:N1'] dihydrate], {[Cu(NCS)2(C4H4N6)2]·2H2O}n, (I), and poly[tetra­kis([mu]-4,4'-bi-1,2,4-triazole-[kappa]2N1:N1')bis­([mu]-thio­cyanato-[kappa]2N:S)tetra­kis(thio­cyanato-[kappa]N)tricadmium(II)], [Cd3(NCS)6(C4H4N6)4]n, (II), exhibit chain and two-dimensional layer structures, respectively. The differentiation of the Lewis acidic nature of CuII and CdII has an influence on the coordination modes of the triazole and thio­cyanate ligands, leading to topologically different polymeric motifs. In (I), copper ions are linked by bitriazole N:N'-bridges into zigzag chains and the tetra­gonal-pyramidal CuN5 environment is composed of two thio­cyanate N atoms and three triazole N atoms [basal Cu-N = 1.9530 (18)-2.0390 (14) Å and apical Cu-N = 2.2637 (15) Å]. The structure of (II) contains two types of crystallographically unique CdII atoms. One type lies on an inversion center in a distorted CdN6 octa­hedral environment, with bitriazole ligands in the equatorial plane and terminal isothio­cyanate N atoms in the axial positions. The other type lies on a general position and forms centrosymmetric binuclear [Cd2([mu]-NCS-[kappa]2N:S)2(NCS)2] units (tetra­gonal-pyramidal CdN4S coordination). N:N'-Bridging bitriazole ligands link the Cd centers into a flat (4,4)-network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108001479/sq3120sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108001479/sq3120Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108001479/sq3120IIsup3.hkl
Contains datablock II

CCDC references: 682792; 682793

Comment top

The growing interest in the structural design of MII–bi(1,2,4-triazole) coordination polymers (where M = FeII, CuII and CdII) has been dictated by their importance in the fields of magnetism and fluorescence (Janiak, 2000). The bitopic bitriazoles propagate local coordination environments around either discrete metal ions or polynuclear secondary building units (SBU) as nodes, forming metal-organic frameworks (MOFs). The adjacent N atoms (N1 and N2) in 1,2,4-triazole derivatives are well suited for binding together transition metal cations, leading to characteristic polynuclear clusters, viz. dimers (Drabent et al., 2004), linear (Liu et al., 1999) and triangular trimers (Virovets et al., 1997), etc. Recently, for the CuII–btr–X- (X = Cl and Br; btr is 4,4'-bi-1,2,4-triazole) systems, we have demonstrated how such cluster motifs may be rationally integrated in the MOFs (Lysenko et al., 2006, 2007). Obviously, the nature of the anion is a crucial factor that determines the resultant structure and net topology of the MII–btr polymers. In this context, a very interesting situation could be realised in the case of pseudohalide anions, e.g. NCS-, which are complementary to a short triazole linker, and such a combination of neutral and anionic bridges can support formation of triangular CuII {[Cu33-OH)(µ2-L)4(H2O)(NCS)3](ClO4)2·H2O; Liu et al., 2003} as well as linear trinuclear CdII cores {[{Cd32-L)42-NCS)2}(µ2-NCS)2(NCS)2]; L is 4-amino-3,5-dimethyltriazole; Yi et al., 2004}. We report here the crystal structures of two new coordination polymers, [Cu(btr)2(NCS)2](H2O)2, (I), and [Cd3(btr)4(NCS)6], (II), that build on these ideas.

In (I), the Cu1 centers are located in general positions and possess a distorted tetragonal–pyramidal environment of five N atoms. The basal sites of the pyramid are occupied by two terminal trans-coordinated isothiocyanate groups and one N atom each from one terminal and one N1,N1'-bidentate btr molecule, while the apical position is occupied by the other N atom of the bidentate btr ligand (Fig. 1 and Table 1). These Cu—NNCS bond lengths are slightly shorter than those observed in the similar five-coordinate complexes Cu(3-methylpyridine)3(NCS)2 [1.973 (9) and 2.194 (13) Å] and Cu(3,4-dimethylpyridine)3(NCS)2 [1.981 (13) and 2.215 (17) Å; Kabesova & Koziskova, 1989].

The N,N'-bidentate btr molecules link the adjacent Cu atoms [related by the symmetry operation (-x, y + 1/2, -z + 3/2)] at a distance of 9.1198 (5) Å. Their cis-location around the metal center leads to the formation of zigzag [Cu(µ2-btr)]n2n+ chains running along the b axis (Fig. 2), with corresponding Cu···Cu···Cu angles of 86.81 (1)° and separations between the translating units (x, y + 1, z) of 12.5332 (9) Å. The neighboring chains, which are related by translation along the a axis, afford tight packing with a closest Cu1···Cu1(x + 1, y, z) distance of 6.9047 (4) Å. The N1,N1'-coordination mode of btr is widely found (Vreugdenhil et al., 1985); however, the polymeric motif with two kinds of mono- and bidentate-coordinated btr molecules similar to (I) is uncommon. The only structural precedent is [Mn(µ2-btr)(btr)2(H2O)(NCS)]NCS (Zilverentant et al., 1998).

The noncoordinated water molecules in (I) are involved in hydrogen-bonding interactions with each other [O1···O2ii = 2.899 (0) Å; symmetry code: (ii) x, y + 1, z] (Fig. 2). This `dimer' can be considered as a donor of two hydrogen bonds towards two btr molecules [O1···N11 = 2.997 (3) Å and O2···N2 = 2.933 (3) Å) with one weak hydrogen bond towards the S atom of an NCS- anion [O1···S2iii = 3.331 (2) Å; symmetry code: (iii) x + 1, y, z] (Table 2) (Desiraju & Steiner, 1999). These interactions lead to interconnection of the coordination chains into two-dimensional hydrogen-bonded layers aligned parallel to the bc plane.

The Lewis softness of the Cd2+ centers in (II) and their higher affinity towards NCS- anions either as N– or as S-atom donors effects the formation of an even more complicated polymeric motif, as compared with the copper(II) complex. The structure of (II) involves two types of coordination environments (Fig. 3). Two equivalent Cd1 ions [related by the symmetry operation (i) (-x + 2, -y + 1, -z + 1)] are linked by a pair of thiocyanate-N,S bridges into centrosymmetric dimers and the distorted tetragonal–pyramidal N4S environment of the Cd1 center is completed with two triazole-N donors and a terminal thiocyanate-N group in the apical position (Fig. 4). Within these double bridged Cd22-NCS)2 dimers the Cd···Cd distance [5.7044 (9) Å] is similar to those observed in the related complex [N(C3H7)4][Cd(µ2-NCS)2(NCS)] (5.715 and 5.856 Å; Taniguchi & Ouch, 1989). The eight-membered Cd22-NCS)2 cycle possesses a "chair" conformation (displacement of the Cd1 atom out of the (NCS)2 plane is 0.544 Å), and two terminal NCS- anions are attached to the Cd1 ions at the opposite sides of the metallocycle. This Cd22-NCS)2(NCS)2 arrangement is scarcely found and has only two precedents in [{Cd32-tr)42-Cl)2}(µ2-NCS)2(NCS)2]·2H2O (tr is 4-amino-3,5-diethyltriazole) (Yi et al., 2004) and (N(C3H7)4)[Cd(µ2-NCS)2(NCS)] (Taniguchi & Ouch, 1989), with octahedral and tetragonal–pyramidal metal atoms, respectively.

The coordination environment of the second unique Cd ion is much simpler. Atom Cd2 is located on a center of inversion and has a slightly distorted octahedral environment involving four triazole N-donors in the equatorial plane and two isothiocyanates in the axial positions (Table 3).

Each (Cd1)2(µ-NCS)2 moiety and discrete Cd2 ion coordinates four triazole groups and this predetermines parity of their structural functions: both of them (in a 1:1 proportion) provide four-connected nodes for a planar (4,4)-network and the corresponding diagonal Cd2···Cd2iv [symmetry code: (iv) x, y, 1 + z] separations are 13.836 Å (c parameter of the unit cell) (Figs. 3 and 4). Adjacent layers are shifted and stacked at a distance of 5.20 Å. The terminal coordinating isothiocyanates containing atoms S1 and S2 are directed inside the pores of the adjacent layer (x + 1, y, z) to afford interdigitation of the successive nets.

In both structures, the btr molecules display almost orthogonal orientation of two triazole groups, which does not depend upon coordination modes of the ligand. The dihedral angles between the planes of the triazole heterocycles lie in the range 77.58 (4)–89.99 (4)°, in good agreement with those reported for the free 4,4'-bi-1,2,4-triazole [88.12 (1)°; Domiano, 1977].

These results demonstrate that the btr molecule in combination with the nucleophilic isothiocyanate anion (N-terminal and N,S-bidentate roles) as coligand adopts monodentate and N1,N1'-bidentate coordination behavior toward CuII and CdII, leading to formation of low-dimensional coordination polymers.

Related literature top

For related literature, see: Bartlett & Humphrey (1967); Desiraju & Steiner (1999); Domiano (1977); Drabent et al. (2004); Kabesova & Koziskova (1989); Liu et al. (1999, 2003); Lysenko et al. (2006, 2007); Taniguchi & Ouch (1989); Virovets et al. (1997); Vreugdenhil et al. (1985); Yi et al. (2004); Zilverentant et al. (1998).

Experimental top

All materials were of reagent grade and were used as received. The btr ligand was prepared according to the reported procedure (Bartlett et al., 1967). The precipitate obtained by mixing aqueous CuSO4·5H2O (0.0250 g, 0.100 mmol), CsSCN (0.0382 g, 0.200 mmol) and btr (0.0136 g, 0.100 mmol) solutions was recrystallized from water to afford green prisms of (I) (yield 83%). Evaporation of an aqueous solution (3 ml) of Cd(SCN)2 (0.0457 g, 0.200 mmol) and btr (0.0136 g, 0.100 mmol) in a desiccator over CaCl2 for a few days afforded colorless prisms of (II) (yield 98%).######

Refinement top

All H atoms were located in difference maps and included as riding atoms, with O—H distances constrained to 0.85 Å and C—H distances constrained to 0.94 Å, and with Uiso(H) values of 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: IPDS Software (Stoe & Cie, 2000) for (I); CAD-4 EXPRESS (Enraf–Nonius, 1994) for (II). Cell refinement: IPDS Software (Stoe & Cie, 2000) for (I); CAD-4 EXPRESS (Enraf–Nonius, 1994) for (II). Data reduction: IPDS Software (Stoe & Cie, 2000) for (I); XCAD4 (Harms & Wocadlo, 1995) for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999). Software used to prepare material for publication: WinGX (Version 1.700.00; Farrugia, 1999) for (I); SHELXL97 (Sheldrick, 2008) for (II).

Figures top
[Figure 1] Fig. 1. A portion of the structure of (I), showing the atom-labelling scheme and copper coordination environment. Displacement ellipsoids are drawn at the 40% probability level. The dashed line represents an intermolecular hydrogen bond. [Symmetry code: (i) -x, y + 1/2, -z + 3/2.]
[Figure 2] Fig. 2. Intermolecular hydrogen bonds (dashed lines) in the structure of (I), providing the connection of the zigzag-like chains into two-dimensional hydrogen-bonded layers. [Symmetry codes: (iii) x + 1, y, z; (iv) x, y - 1, z.]
[Figure 3] Fig. 3. A portion of the structure of (II), showing the atom-labelling scheme and cadmium coordination environments. Displacement ellipsoids are drawn at the 40% probability level. [Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) x, y, z - 1; (iii) -x, -y, -z; (iv) x, y, z + 1.]
[Figure 4] Fig. 4. The two-dimensional network in the structure of (II) contains two kinds of nodal units, [(Cd1)2(µ-NCS)2(NCS)2] and Cd2, linked by N1,N1'-bidentate bitriazole bridges.
(I) catena-poly[[(4,4'-bi-1,2,4-triazole-κN1)bis(thiocyanato-κN)copper(II)]- µ-4,4'-bi-1,2,4-triazole-κ2N1:N1' dihydrate] top
Crystal data top
[Cu(NCS)2(C4H4N6)2]·2H2ODx = 1.713 Mg m3
Mr = 488.00Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 8000 reflections
a = 6.9047 (4) Åθ = 1.9–28.0°
b = 12.5332 (9) ŵ = 1.42 mm1
c = 21.8652 (18) ÅT = 213 K
V = 1892.2 (2) Å3Prism, green
Z = 40.20 × 0.18 × 0.18 mm
F(000) = 988
Data collection top
Stoe IPDS
diffractometer
4019 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
Graphite monochromatorθmax = 28.0°, θmin = 1.9°
ϕ oscillation scansh = 88
18528 measured reflectionsk = 1616
4417 independent reflectionsl = 2828
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0307P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.001
4417 reflectionsΔρmax = 0.26 e Å3
262 parametersΔρmin = 0.24 e Å3
0 restraintsAbsolute structure: Flack (1983), 1806 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.001 (8)
Crystal data top
[Cu(NCS)2(C4H4N6)2]·2H2OV = 1892.2 (2) Å3
Mr = 488.00Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.9047 (4) ŵ = 1.42 mm1
b = 12.5332 (9) ÅT = 213 K
c = 21.8652 (18) Å0.20 × 0.18 × 0.18 mm
Data collection top
Stoe IPDS
diffractometer
4019 reflections with I > 2σ(I)
18528 measured reflectionsRint = 0.043
4417 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.052Δρmax = 0.26 e Å3
S = 0.95Δρmin = 0.24 e Å3
4417 reflectionsAbsolute structure: Flack (1983), 1806 Friedel pairs
262 parametersAbsolute structure parameter: 0.001 (8)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.40468 (3)0.220250 (15)0.831398 (9)0.01950 (5)
S10.79981 (9)0.09578 (5)0.68072 (3)0.03784 (13)
S20.13170 (9)0.26397 (5)0.96452 (3)0.04031 (14)
O10.6274 (4)0.94852 (15)1.03402 (10)0.0701 (7)
H1W0.58090.88581.03530.105*
H2W0.64820.96430.99680.105*
O20.7618 (4)0.01984 (15)0.91451 (11)0.0643 (6)
H3W0.75610.08410.92680.097*
H4W0.68100.01210.88550.097*
N10.3141 (2)0.06553 (11)0.82787 (8)0.0241 (3)
N20.4377 (2)0.02263 (11)0.83130 (8)0.0255 (3)
N30.1425 (2)0.07576 (11)0.81393 (7)0.0218 (3)
N40.2701 (3)0.24093 (12)0.81414 (7)0.0264 (4)
N50.2307 (2)0.22949 (12)0.75148 (7)0.0246 (3)
N60.0146 (3)0.14111 (12)0.80226 (7)0.0227 (3)
N70.5203 (3)0.36161 (12)0.85532 (7)0.0217 (3)
N80.6754 (3)0.41012 (13)0.82639 (8)0.0326 (4)
N90.6022 (3)0.49857 (11)0.90889 (7)0.0239 (3)
N100.6811 (3)0.64115 (16)1.04494 (8)0.0407 (5)
N110.5754 (3)0.71456 (14)1.01082 (8)0.0378 (4)
N120.6122 (3)0.57128 (12)0.95664 (7)0.0255 (3)
N130.6402 (3)0.17816 (13)0.78821 (8)0.0288 (4)
N140.1825 (3)0.24998 (13)0.88514 (8)0.0298 (4)
C10.1385 (3)0.03238 (14)0.81808 (9)0.0266 (4)
H10.02790.07570.81450.032*
C20.3286 (3)0.10618 (14)0.82260 (9)0.0255 (4)
H20.37270.17710.82240.031*
C30.1371 (3)0.18731 (15)0.84297 (8)0.0268 (4)
H30.12720.18140.88570.032*
C40.0788 (3)0.17001 (14)0.74566 (8)0.0273 (4)
H40.02170.14990.70840.033*
C50.4781 (3)0.41586 (14)0.90471 (8)0.0234 (4)
H50.37840.39990.93250.028*
C60.7224 (4)0.49264 (17)0.85969 (10)0.0359 (5)
H60.82360.54050.85100.043*
C70.7026 (4)0.55633 (18)1.01149 (10)0.0361 (5)
H70.76990.49441.02320.043*
C80.5355 (4)0.67114 (16)0.95857 (10)0.0340 (5)
H80.46470.70360.92690.041*
C90.7048 (3)0.14259 (14)0.74378 (9)0.0248 (4)
C100.0517 (3)0.25614 (14)0.91798 (8)0.0256 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01990 (11)0.01771 (9)0.02089 (9)0.00181 (8)0.00063 (9)0.00212 (8)
S10.0364 (3)0.0397 (3)0.0374 (3)0.0022 (2)0.0087 (2)0.0123 (2)
S20.0360 (4)0.0467 (3)0.0382 (3)0.0068 (2)0.0163 (2)0.0070 (2)
O10.0974 (19)0.0427 (10)0.0704 (13)0.0047 (11)0.0371 (14)0.0124 (9)
O20.0622 (15)0.0491 (11)0.0817 (15)0.0008 (10)0.0313 (12)0.0055 (10)
N10.0220 (9)0.0172 (6)0.0331 (8)0.0026 (5)0.0033 (7)0.0001 (6)
N20.0207 (9)0.0222 (6)0.0336 (8)0.0018 (6)0.0036 (7)0.0005 (7)
N30.0227 (10)0.0181 (7)0.0247 (7)0.0051 (6)0.0048 (6)0.0005 (5)
N40.0269 (10)0.0273 (8)0.0250 (7)0.0052 (6)0.0008 (6)0.0005 (6)
N50.0266 (9)0.0242 (7)0.0229 (7)0.0049 (7)0.0021 (6)0.0002 (7)
N60.0219 (9)0.0222 (7)0.0240 (8)0.0076 (6)0.0042 (6)0.0023 (6)
N70.0245 (9)0.0189 (7)0.0218 (7)0.0023 (6)0.0007 (6)0.0030 (6)
N80.0390 (11)0.0279 (8)0.0309 (9)0.0113 (7)0.0149 (8)0.0082 (8)
N90.0260 (9)0.0220 (7)0.0238 (7)0.0035 (7)0.0031 (7)0.0073 (5)
N100.0497 (14)0.0435 (10)0.0290 (9)0.0039 (9)0.0021 (9)0.0108 (8)
N110.0473 (13)0.0311 (8)0.0350 (8)0.0018 (9)0.0000 (8)0.0152 (7)
N120.0290 (10)0.0227 (7)0.0246 (7)0.0013 (7)0.0001 (7)0.0090 (6)
N130.0263 (11)0.0226 (7)0.0374 (9)0.0014 (7)0.0072 (7)0.0040 (7)
N140.0274 (10)0.0336 (9)0.0284 (8)0.0064 (7)0.0061 (7)0.0053 (6)
C10.0269 (12)0.0204 (8)0.0326 (10)0.0012 (7)0.0035 (8)0.0003 (7)
C20.0246 (11)0.0204 (8)0.0315 (10)0.0005 (7)0.0013 (8)0.0002 (7)
C30.0302 (12)0.0272 (8)0.0230 (9)0.0063 (7)0.0005 (7)0.0002 (7)
C40.0315 (12)0.0291 (9)0.0213 (8)0.0071 (9)0.0027 (9)0.0002 (7)
C50.0258 (11)0.0212 (8)0.0232 (8)0.0018 (7)0.0029 (7)0.0028 (7)
C60.0398 (15)0.0300 (10)0.0378 (12)0.0121 (9)0.0161 (10)0.0097 (9)
C70.0454 (16)0.0337 (11)0.0293 (11)0.0014 (10)0.0060 (10)0.0044 (9)
C80.0464 (15)0.0246 (9)0.0309 (10)0.0019 (9)0.0032 (10)0.0051 (8)
C90.0229 (11)0.0175 (8)0.0339 (10)0.0002 (7)0.0005 (9)0.0005 (7)
C100.0284 (12)0.0261 (9)0.0222 (8)0.0018 (7)0.0032 (7)0.0005 (7)
Geometric parameters (Å, º) top
Cu1—N131.9530 (18)N6—C41.364 (2)
Cu1—N141.9678 (18)N7—C51.309 (2)
Cu1—N72.0124 (15)N7—N81.385 (2)
Cu1—N12.0390 (14)N8—C61.306 (3)
Cu1—N5i2.2637 (15)N9—C51.348 (2)
S1—C91.636 (2)N9—C61.361 (3)
S2—C101.627 (2)N9—N121.387 (2)
O1—H1W0.8500N10—C71.299 (3)
O1—H2W0.8500N10—N111.391 (3)
O2—H3W0.8500N11—C81.295 (3)
O2—H4W0.8500N12—C81.359 (3)
N1—C11.299 (3)N12—C71.365 (3)
N1—N21.398 (2)N13—C91.158 (3)
N2—C21.304 (2)N14—C101.157 (3)
N3—C21.354 (3)C1—H10.9400
N3—C11.359 (2)C2—H20.9400
N3—N61.383 (2)C3—H30.9400
N4—C31.301 (3)C4—H40.9400
N4—N51.404 (2)C5—H50.9400
N5—C41.293 (3)C6—H60.9400
N5—Cu1ii2.2637 (15)C7—H70.9400
N6—C31.358 (3)C8—H80.9400
N13—Cu1—N14171.45 (8)C7—N10—N11107.43 (18)
N13—Cu1—N791.90 (7)C8—N11—N10107.86 (17)
N14—Cu1—N789.27 (7)C8—N12—C7106.08 (16)
N13—Cu1—N188.87 (7)C8—N12—N9127.49 (17)
N14—Cu1—N187.91 (7)C7—N12—N9126.42 (17)
N7—Cu1—N1165.65 (7)C9—N13—Cu1146.11 (18)
N13—Cu1—N5i97.47 (7)C10—N14—Cu1172.84 (16)
N14—Cu1—N5i90.67 (7)N1—C1—N3108.12 (17)
N7—Cu1—N5i100.00 (6)N1—C1—H1125.9
N1—Cu1—N5i94.09 (6)N3—C1—H1125.9
H1W—O1—H2W108.1N2—C2—N3110.04 (16)
H3W—O2—H4W108.3N2—C2—H2125.0
C1—N1—N2109.01 (15)N3—C2—H2125.0
C1—N1—Cu1126.63 (13)N4—C3—N6110.02 (16)
N2—N1—Cu1124.20 (12)N4—C3—H3125.0
C2—N2—N1105.91 (15)N6—C3—H3125.0
C2—N3—C1106.91 (16)N5—C4—N6109.11 (17)
C2—N3—N6127.12 (15)N5—C4—H4125.4
C1—N3—N6125.96 (17)N6—C4—H4125.4
C3—N4—N5106.45 (16)N7—C5—N9108.31 (17)
C4—N5—N4108.19 (15)N7—C5—H5125.8
C4—N5—Cu1ii120.80 (12)N9—C5—H5125.8
N4—N5—Cu1ii130.53 (12)N8—C6—N9109.40 (19)
C3—N6—C4106.22 (16)N8—C6—H6125.3
C3—N6—N3128.33 (16)N9—C6—H6125.3
C4—N6—N3125.44 (17)N10—C7—N12109.3 (2)
C5—N7—N8108.72 (15)N10—C7—H7125.4
C5—N7—Cu1125.70 (14)N12—C7—H7125.4
N8—N7—Cu1125.07 (12)N11—C8—N12109.36 (19)
C6—N8—N7106.58 (16)N11—C8—H8125.3
C5—N9—C6106.98 (15)N12—C8—H8125.3
C5—N9—N12126.01 (17)N13—C9—S1178.21 (18)
C6—N9—N12126.89 (17)N14—C10—S2179.5 (2)
N13—Cu1—N1—C1140.90 (18)N7—Cu1—N13—C9132.5 (3)
N14—Cu1—N1—C147.02 (18)N1—Cu1—N13—C961.8 (3)
N7—Cu1—N1—C1125.8 (3)N5i—Cu1—N13—C932.2 (3)
N5i—Cu1—N1—C143.49 (18)N2—N1—C1—N31.0 (2)
N13—Cu1—N1—N234.10 (15)Cu1—N1—C1—N3174.67 (13)
N14—Cu1—N1—N2137.97 (16)C2—N3—C1—N10.9 (2)
N7—Cu1—N1—N259.2 (4)N6—N3—C1—N1178.35 (17)
N5i—Cu1—N1—N2131.51 (15)N1—N2—C2—N30.1 (2)
C1—N1—N2—C20.7 (2)C1—N3—C2—N20.5 (2)
Cu1—N1—N2—C2175.09 (14)N6—N3—C2—N2178.76 (17)
C3—N4—N5—C40.3 (2)N5—N4—C3—N60.5 (2)
C3—N4—N5—Cu1ii172.24 (14)C4—N6—C3—N40.4 (2)
C2—N3—N6—C390.5 (3)N3—N6—C3—N4178.33 (17)
C1—N3—N6—C390.4 (3)N4—N5—C4—N60.0 (2)
C2—N3—N6—C491.0 (3)Cu1ii—N5—C4—N6172.90 (12)
C1—N3—N6—C488.1 (3)C3—N6—C4—N50.2 (2)
N13—Cu1—N7—C5150.32 (17)N3—N6—C4—N5178.59 (17)
N14—Cu1—N7—C521.21 (18)N8—N7—C5—N90.1 (2)
N1—Cu1—N7—C557.4 (4)Cu1—N7—C5—N9172.04 (13)
N5i—Cu1—N7—C5111.75 (17)C6—N9—C5—N70.1 (2)
N13—Cu1—N7—N820.63 (16)N12—N9—C5—N7176.06 (18)
N14—Cu1—N7—N8167.84 (16)N7—N8—C6—N90.1 (3)
N1—Cu1—N7—N8113.5 (3)C5—N9—C6—N80.0 (3)
N5i—Cu1—N7—N877.29 (16)N12—N9—C6—N8176.12 (19)
C5—N7—N8—C60.2 (2)N11—N10—C7—N120.7 (3)
Cu1—N7—N8—C6172.07 (16)C8—N12—C7—N100.5 (3)
C7—N10—N11—C80.7 (3)N9—N12—C7—N10179.6 (2)
C5—N9—N12—C899.4 (3)N10—N11—C8—N120.3 (3)
C6—N9—N12—C885.2 (3)C7—N12—C8—N110.1 (3)
C5—N9—N12—C780.8 (3)N9—N12—C8—N11179.9 (2)
C6—N9—N12—C794.6 (3)
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···N110.852.212.997 (3)154
O1—H2W···O2iii0.852.082.914 (3)166
O2—H3W···S2iv0.852.523.331 (2)159
O2—H4W···N20.852.102.933 (3)166
Symmetry codes: (iii) x, y+1, z; (iv) x+1, y, z.
(II) poly[bis(µ-thiocyanato-κ2N:S)tetrakis(thiocyanato-κN)tetrakis(µ-4,4'- bi-1,2,4-triazole-κ2N1:N1')tricadmium(II)] top
Crystal data top
[Cd3(NCS)6(C4H4N6)4]Z = 1
Mr = 1230.21F(000) = 598
Triclinic, P1Dx = 2.026 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.092 (1) ÅCell parameters from 22 reflections
b = 10.4867 (18) Åθ = 12.1–17.8°
c = 13.836 (2) ŵ = 1.94 mm1
α = 87.440 (18)°T = 298 K
β = 81.158 (16)°Prism, colorless
γ = 82.847 (11)°0.40 × 0.25 × 0.12 mm
V = 1008.5 (3) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
3813 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 28.0°, θmin = 2.0°
non–profiled ω–2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 1313
Tmin = 0.511, Tmax = 0.800l = 1818
5237 measured reflections3 standard reflections every 120 min
4853 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.037P)2 + 0.079P]
where P = (Fo2 + 2Fc2)/3
4853 reflections(Δ/σ)max = 0.001
277 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Cd3(NCS)6(C4H4N6)4]γ = 82.847 (11)°
Mr = 1230.21V = 1008.5 (3) Å3
Triclinic, P1Z = 1
a = 7.092 (1) ÅMo Kα radiation
b = 10.4867 (18) ŵ = 1.94 mm1
c = 13.836 (2) ÅT = 298 K
α = 87.440 (18)°0.40 × 0.25 × 0.12 mm
β = 81.158 (16)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
3813 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.024
Tmin = 0.511, Tmax = 0.8003 standard reflections every 120 min
5237 measured reflections intensity decay: none
4853 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.05Δρmax = 0.59 e Å3
4853 reflectionsΔρmin = 0.63 e Å3
277 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.74354 (3)0.37189 (2)0.409603 (15)0.02879 (7)
Cd20.00000.00000.00000.02410 (8)
S10.44852 (19)0.32200 (10)0.14859 (8)0.0595 (3)
S21.14967 (16)0.04039 (12)0.33967 (11)0.0635 (3)
S31.05782 (13)0.46097 (9)0.69250 (6)0.03770 (19)
N10.4891 (4)0.2901 (3)0.51075 (19)0.0366 (6)
N20.3557 (5)0.2315 (4)0.4704 (2)0.0563 (10)
N30.3515 (4)0.1684 (3)0.62208 (17)0.0291 (5)
N40.3156 (4)0.0950 (2)0.70704 (17)0.0283 (5)
N50.1980 (4)0.0290 (3)0.85035 (19)0.0333 (6)
N60.3276 (4)0.0699 (3)0.8073 (2)0.0387 (7)
N70.6982 (4)0.3887 (3)0.19224 (18)0.0317 (6)
N80.5744 (4)0.3779 (3)0.27976 (18)0.0302 (6)
N90.4234 (4)0.3403 (2)0.16256 (17)0.0258 (5)
N100.2841 (4)0.3071 (2)0.11294 (18)0.0264 (5)
N110.1116 (4)0.1904 (3)0.04664 (19)0.0314 (6)
N120.0499 (4)0.3191 (3)0.02676 (19)0.0322 (6)
N130.2451 (5)0.1146 (3)0.0635 (2)0.0452 (7)
N140.9291 (6)0.1925 (4)0.3776 (3)0.0641 (10)
N150.8231 (5)0.4194 (4)0.5548 (2)0.0513 (9)
C10.4844 (4)0.2503 (3)0.6014 (2)0.0311 (7)
H10.56140.27490.64520.037*
C20.2750 (6)0.1589 (4)0.5384 (2)0.0524 (11)
H20.17870.10760.53120.063*
C30.1929 (5)0.1262 (3)0.7895 (2)0.0350 (7)
H30.11630.20550.80080.042*
C40.3938 (5)0.0277 (3)0.7209 (3)0.0387 (8)
H40.48290.07530.67470.046*
C50.6043 (4)0.3643 (3)0.1238 (2)0.0299 (6)
H50.65370.36320.05680.036*
C60.4110 (4)0.3484 (3)0.2609 (2)0.0283 (6)
H60.30320.33520.30740.034*
C70.2519 (5)0.1862 (3)0.0968 (2)0.0347 (7)
H70.32080.11080.11860.042*
C80.1557 (4)0.3861 (3)0.0677 (2)0.0309 (6)
H80.14540.47640.06630.037*
C90.3274 (5)0.2004 (3)0.1001 (2)0.0316 (7)
C101.0222 (5)0.0961 (4)0.3610 (2)0.0382 (8)
C110.9227 (5)0.4352 (3)0.6101 (2)0.0355 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02856 (12)0.03616 (14)0.02446 (11)0.01177 (10)0.00723 (8)0.00183 (9)
Cd20.02865 (15)0.02530 (15)0.02016 (14)0.00849 (12)0.00617 (11)0.00327 (11)
S10.0860 (8)0.0392 (5)0.0544 (6)0.0126 (5)0.0307 (6)0.0032 (4)
S20.0403 (5)0.0506 (6)0.0990 (9)0.0011 (5)0.0085 (6)0.0191 (6)
S30.0413 (5)0.0449 (5)0.0318 (4)0.0181 (4)0.0121 (3)0.0057 (3)
N10.0338 (14)0.0518 (18)0.0283 (13)0.0206 (13)0.0074 (11)0.0084 (12)
N20.061 (2)0.092 (3)0.0277 (14)0.051 (2)0.0154 (14)0.0186 (16)
N30.0301 (13)0.0384 (15)0.0202 (11)0.0133 (11)0.0031 (9)0.0069 (10)
N40.0306 (13)0.0324 (14)0.0216 (11)0.0088 (11)0.0011 (10)0.0057 (10)
N50.0401 (15)0.0331 (14)0.0268 (13)0.0100 (12)0.0023 (11)0.0036 (11)
N60.0457 (17)0.0319 (15)0.0351 (14)0.0044 (13)0.0021 (12)0.0073 (12)
N70.0316 (14)0.0383 (15)0.0273 (12)0.0114 (12)0.0061 (10)0.0014 (11)
N80.0315 (13)0.0384 (15)0.0229 (12)0.0092 (11)0.0077 (10)0.0013 (10)
N90.0283 (12)0.0272 (13)0.0242 (12)0.0065 (10)0.0095 (10)0.0004 (9)
N100.0295 (13)0.0231 (12)0.0296 (12)0.0057 (10)0.0122 (10)0.0001 (9)
N110.0370 (14)0.0282 (13)0.0326 (13)0.0084 (11)0.0129 (11)0.0007 (10)
N120.0307 (13)0.0332 (14)0.0350 (14)0.0057 (11)0.0116 (11)0.0014 (11)
N130.0476 (18)0.0438 (18)0.0463 (17)0.0010 (15)0.0202 (14)0.0026 (14)
N140.069 (3)0.052 (2)0.073 (3)0.0107 (19)0.027 (2)0.0078 (19)
N150.058 (2)0.070 (2)0.0351 (16)0.0385 (18)0.0091 (14)0.0026 (15)
C10.0305 (15)0.0382 (18)0.0269 (14)0.0117 (13)0.0065 (12)0.0048 (12)
C20.056 (2)0.084 (3)0.0261 (16)0.044 (2)0.0120 (16)0.0114 (17)
C30.0389 (18)0.0356 (17)0.0266 (15)0.0011 (14)0.0029 (13)0.0039 (13)
C40.0439 (19)0.0346 (18)0.0345 (17)0.0020 (15)0.0015 (14)0.0007 (14)
C50.0322 (16)0.0331 (16)0.0254 (14)0.0091 (13)0.0038 (12)0.0004 (12)
C60.0291 (15)0.0339 (16)0.0236 (13)0.0065 (13)0.0068 (11)0.0007 (11)
C70.0425 (18)0.0260 (16)0.0402 (17)0.0064 (13)0.0190 (14)0.0002 (13)
C80.0315 (16)0.0255 (15)0.0374 (16)0.0042 (12)0.0104 (13)0.0015 (12)
C90.0367 (17)0.0331 (17)0.0265 (14)0.0051 (14)0.0079 (12)0.0033 (12)
C100.0339 (17)0.049 (2)0.0352 (17)0.0096 (16)0.0119 (14)0.0002 (15)
C110.0414 (18)0.0387 (18)0.0288 (15)0.0198 (15)0.0002 (13)0.0005 (13)
Geometric parameters (Å, º) top
Cd1—N142.178 (4)N5—Cd2v2.347 (3)
Cd1—N152.261 (3)N6—C41.294 (4)
Cd1—N82.303 (2)N7—C51.289 (4)
Cd1—N12.335 (3)N7—N81.391 (3)
Cd1—S3i2.6142 (10)N8—C61.302 (4)
Cd2—N132.256 (3)N9—C61.356 (4)
Cd2—N13ii2.256 (3)N9—C51.361 (4)
Cd2—N5iii2.347 (3)N9—N101.373 (3)
Cd2—N5iv2.347 (3)N10—C71.350 (4)
Cd2—N112.386 (3)N10—C81.359 (4)
Cd2—N11ii2.386 (3)N11—C71.293 (4)
S1—C91.625 (3)N11—N121.395 (4)
S2—C101.609 (4)N12—C81.294 (4)
S3—C111.649 (3)N13—C91.152 (4)
S3—Cd1i2.6142 (10)N14—C101.148 (5)
N1—C11.300 (4)N15—C111.148 (4)
N1—N21.386 (4)C1—H10.9400
N2—C21.292 (4)C2—H20.9400
N3—C11.344 (4)C3—H30.9400
N3—C21.365 (4)C4—H40.9400
N3—N41.384 (3)C5—H50.9400
N4—C31.351 (4)C6—H60.9400
N4—C41.354 (4)C7—H70.9400
N5—C31.293 (4)C8—H80.9400
N5—N61.387 (4)
N14—Cd1—N15101.05 (14)C6—N8—Cd1139.2 (2)
N14—Cd1—N898.51 (12)N7—N8—Cd1109.84 (18)
N15—Cd1—N8159.79 (13)C6—N9—C5106.4 (2)
N14—Cd1—N198.97 (14)C6—N9—N10126.4 (2)
N15—Cd1—N182.24 (10)C5—N9—N10127.1 (2)
N8—Cd1—N189.75 (9)C7—N10—C8105.9 (2)
N14—Cd1—S3i101.73 (12)C7—N10—N9125.9 (3)
N15—Cd1—S3i95.07 (8)C8—N10—N9128.2 (2)
N8—Cd1—S3i85.87 (7)C7—N11—N12108.2 (3)
N1—Cd1—S3i159.25 (8)C7—N11—Cd2122.0 (2)
N13—Cd2—N13ii180.0N12—N11—Cd2129.83 (18)
N13—Cd2—N5iii88.62 (11)C8—N12—N11106.3 (2)
N13ii—Cd2—N5iii91.38 (11)C9—N13—Cd2158.1 (3)
N13—Cd2—N5iv91.38 (11)C10—N14—Cd1178.0 (4)
N13ii—Cd2—N5iv88.62 (11)C11—N15—Cd1157.0 (3)
N5iii—Cd2—N5iv180.0N1—C1—N3108.9 (3)
N13—Cd2—N1188.09 (11)N1—C1—H1125.6
N13ii—Cd2—N1191.91 (11)N3—C1—H1125.6
N5iii—Cd2—N1194.85 (9)N2—C2—N3109.4 (3)
N5iv—Cd2—N1185.15 (9)N2—C2—H2125.3
N13—Cd2—N11ii91.91 (11)N3—C2—H2125.3
N13ii—Cd2—N11ii88.09 (11)N5—C3—N4108.8 (3)
N5iii—Cd2—N11ii85.15 (9)N5—C3—H3125.6
N5iv—Cd2—N11ii94.85 (9)N4—C3—H3125.6
N11—Cd2—N11ii180.0N6—C4—N4110.0 (3)
C11—S3—Cd1i97.73 (11)N6—C4—H4125.0
C1—N1—N2108.2 (3)N4—C4—H4125.0
C1—N1—Cd1127.3 (2)N7—C5—N9110.3 (3)
N2—N1—Cd1120.2 (2)N7—C5—H5124.8
C2—N2—N1107.0 (3)N9—C5—H5124.8
C1—N3—C2106.5 (3)N8—C6—N9108.0 (3)
C1—N3—N4127.0 (2)N8—C6—H6126.0
C2—N3—N4126.0 (3)N9—C6—H6126.0
C3—N4—C4106.3 (3)N11—C7—N10109.4 (3)
C3—N4—N3128.4 (3)N11—C7—H7125.3
C4—N4—N3125.2 (3)N10—C7—H7125.3
C3—N5—N6108.6 (3)N12—C8—N10110.2 (3)
C3—N5—Cd2v128.8 (2)N12—C8—H8124.9
N6—N5—Cd2v122.09 (19)N10—C8—H8124.9
C4—N6—N5106.4 (3)N13—C9—S1178.2 (3)
C5—N7—N8106.2 (2)N14—C10—S2178.8 (4)
C6—N8—N7109.0 (2)N15—C11—S3177.6 (4)
N14—Cd1—N1—C175.6 (3)C7—N11—N12—C80.9 (4)
N15—Cd1—N1—C124.4 (3)Cd2—N11—N12—C8179.8 (2)
N8—Cd1—N1—C1174.2 (3)N5iii—Cd2—N13—C956.1 (8)
S3i—Cd1—N1—C1108.2 (3)N5iv—Cd2—N13—C9123.9 (8)
N14—Cd1—N1—N278.2 (3)N11—Cd2—N13—C9151.0 (8)
N15—Cd1—N1—N2178.3 (3)N11ii—Cd2—N13—C929.0 (8)
N8—Cd1—N1—N220.3 (3)N14—Cd1—N15—C1149.6 (8)
S3i—Cd1—N1—N297.9 (3)N8—Cd1—N15—C11145.2 (7)
C1—N1—N2—C20.2 (5)N1—Cd1—N15—C11147.3 (8)
Cd1—N1—N2—C2158.6 (3)S3i—Cd1—N15—C1153.4 (8)
C1—N3—N4—C390.0 (4)N2—N1—C1—N30.4 (4)
C2—N3—N4—C399.0 (5)Cd1—N1—C1—N3156.8 (2)
C1—N3—N4—C493.5 (4)C2—N3—C1—N10.5 (4)
C2—N3—N4—C477.6 (5)N4—N3—C1—N1172.9 (3)
C3—N5—N6—C40.8 (4)N1—N2—C2—N30.1 (5)
Cd2v—N5—N6—C4171.6 (2)C1—N3—C2—N20.3 (5)
C5—N7—N8—C60.5 (4)N4—N3—C2—N2172.9 (3)
C5—N7—N8—Cd1166.8 (2)N6—N5—C3—N40.1 (4)
N14—Cd1—N8—C697.4 (4)Cd2v—N5—C3—N4171.8 (2)
N15—Cd1—N8—C667.8 (5)C4—N4—C3—N50.8 (4)
N1—Cd1—N8—C61.6 (4)N3—N4—C3—N5177.9 (3)
S3i—Cd1—N8—C6161.3 (3)N5—N6—C4—N41.3 (4)
N14—Cd1—N8—N764.0 (2)C3—N4—C4—N61.3 (4)
N15—Cd1—N8—N7130.7 (3)N3—N4—C4—N6178.5 (3)
N1—Cd1—N8—N7163.0 (2)N8—N7—C5—N91.1 (4)
S3i—Cd1—N8—N737.30 (19)C6—N9—C5—N71.4 (4)
C6—N9—N10—C783.6 (4)N10—N9—C5—N7178.0 (3)
C5—N9—N10—C792.4 (4)N7—N8—C6—N90.4 (4)
C6—N9—N10—C898.7 (4)Cd1—N8—C6—N9161.8 (2)
C5—N9—N10—C885.3 (4)C5—N9—C6—N81.0 (3)
N13—Cd2—N11—C75.5 (3)N10—N9—C6—N8177.7 (3)
N13ii—Cd2—N11—C7174.6 (3)N12—N11—C7—N101.2 (4)
N5iii—Cd2—N11—C783.0 (3)Cd2—N11—C7—N10179.8 (2)
N5iv—Cd2—N11—C797.0 (3)C8—N10—C7—N111.0 (4)
N13—Cd2—N11—N12173.3 (3)N9—N10—C7—N11179.1 (3)
N13ii—Cd2—N11—N126.7 (3)N11—N12—C8—N100.2 (3)
N5iii—Cd2—N11—N1298.2 (3)C7—N10—C8—N120.5 (4)
N5iv—Cd2—N11—N1281.8 (3)N9—N10—C8—N12178.5 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z; (iii) x, y, z+1; (iv) x, y, z1; (v) x, y, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu(NCS)2(C4H4N6)2]·2H2O[Cd3(NCS)6(C4H4N6)4]
Mr488.001230.21
Crystal system, space groupOrthorhombic, P212121Triclinic, P1
Temperature (K)213298
a, b, c (Å)6.9047 (4), 12.5332 (9), 21.8652 (18)7.092 (1), 10.4867 (18), 13.836 (2)
α, β, γ (°)90, 90, 9087.440 (18), 81.158 (16), 82.847 (11)
V3)1892.2 (2)1008.5 (3)
Z41
Radiation typeMo KαMo Kα
µ (mm1)1.421.94
Crystal size (mm)0.20 × 0.18 × 0.180.40 × 0.25 × 0.12
Data collection
DiffractometerStoe IPDS
diffractometer
Enraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.511, 0.800
No. of measured, independent and
observed [I > 2σ(I)] reflections
18528, 4417, 4019 5237, 4853, 3813
Rint0.0430.024
(sin θ/λ)max1)0.6600.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.052, 0.95 0.030, 0.074, 1.05
No. of reflections44174853
No. of parameters262277
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.240.59, 0.63
Absolute structureFlack (1983), 1806 Friedel pairs?
Absolute structure parameter0.001 (8)?

Computer programs: IPDS Software (Stoe & Cie, 2000), CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), WinGX (Version 1.700.00; Farrugia, 1999).

Selected geometric parameters (Å, º) for (I) top
Cu1—N131.9530 (18)Cu1—N12.0390 (14)
Cu1—N141.9678 (18)Cu1—N5i2.2637 (15)
Cu1—N72.0124 (15)
N13—Cu1—N14171.45 (8)N13—Cu1—N188.87 (7)
N13—Cu1—N791.90 (7)N14—Cu1—N187.91 (7)
N14—Cu1—N789.27 (7)N7—Cu1—N1165.65 (7)
C1—N3—N6—C488.1 (3)C6—N9—N12—C885.2 (3)
Symmetry code: (i) x, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···N110.8502.2122.997 (3)153.7
O1—H2W···O2ii0.8502.0822.914 (3)165.6
O2—H3W···S2iii0.8502.5223.331 (2)159.4
O2—H4W···N20.8502.1022.933 (3)165.7
Symmetry codes: (ii) x, y+1, z; (iii) x+1, y, z.
Selected geometric parameters (Å, º) for (II) top
Cd1—N142.178 (4)Cd1—S3i2.6142 (10)
Cd1—N152.261 (3)Cd2—N132.256 (3)
Cd1—N82.303 (2)Cd2—N5ii2.347 (3)
Cd1—N12.335 (3)Cd2—N112.386 (3)
N14—Cd1—N15101.05 (14)N8—Cd1—S3i85.87 (7)
N14—Cd1—N898.51 (12)N1—Cd1—S3i159.25 (8)
N15—Cd1—N8159.79 (13)N13—Cd2—N5ii91.38 (11)
N14—Cd1—N198.97 (14)N5ii—Cd2—N1185.15 (9)
N15—Cd1—N182.24 (10)N13—Cd2—N11iii91.91 (11)
N8—Cd1—N189.75 (9)
C6—N9—N10—C783.6 (4)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z1; (iii) x, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds