Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound {systematic name: [2-(1-hydroxy­cyclo­hex­yl)-2-(4-hydroxy­phen­yl)eth­yl]dimethyl­ammonium 3-carboxy­propanoate monohydrate}, C16H26NO2+·C4H5O4-·H2O, is a succinate salt of O-desmethyl­venlafaxine (desvenlafaxine). The present structure is one of four reported polymorphs of this salt, which is a new anti­depressant drug. The carboxyl group of the succinate anion adopts a rare anti conformation and is engaged in a very short O-H...O- hydrogen-bond contact. Both cations and anions are involved separately in the formation of distinct O-H...O hydrogen-bonded networks. Desvenlafaxine cations and water mol­ecules self-assemble to generate a honeycomb layer, while the succinate anions form a linear tape structure. These hydrogen-bonded networks are inter­linked via N-H...O and O-H...O hydrogen bonds. The hydrogen-bonding network is so strong that desolvation and melting occur together at approximately 402 K. Thus, the crystal structure may be used to understand the thermal stability and solubility of the compound at the mol­ecular level.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108010019/sq3139sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108010019/sq3139Isup2.hkl
Contains datablock I

CCDC reference: 690202

Comment top

The title compound, (I), is a monohydrate of the 1:1 salt of 1-[2-dimethylamino)-1-(4-hydroxyphenyl)ethyl]cyclohexanol with succinic acid. Desvenlafaxine succinate is an antidepressant drug belonging to the class of serotonin–norepinephrine reuptake inhibitors and is expected to be marketed as Pristiq (Deecher et al., 2006). It is a racemic mixture and is reported to exist in four crystalline polymorphs (Hadfield et al., 2004). The crystalline form reported here is Form I.

The asymmetric unit consists of one desvenalfaxine cation, a succinate anion and a water molecule (Fig. 1). The dimethylaminomethyl group of the desvenlafaxine molecule is protonated by succinic acid. The hydroxy group lies perpendicular to the cyclohexane ring, while the bulkier dimethylaminohydroxyphenylethyl group is coplanar with this ring, adopting a rigid T-shaped geometry with the dimethylaminomethyl and cyclohexanol groups representing the arms. The cyclohexyl ring assumes a chair conformation, with the endocyclic bond angles close to the tetrahedral value [109.5 (2)–112.7 (2)°] and with average endocyclic torsion angle values of about ±55°. Interestingly, the carboxyl group adopts the uncommon anti conformation (i.e. the acid H atom points away from the carbonyl O atom). The occurrence and energetics of this conformation have been discussed by DeVita Dufort et al. (2007).

Desvenlafaxine cations and water molecules self-assemble to form a honeycomb-like hydrogen-bonded network parallel to the ab crystallographic plane, in such a way that all the dimethylammonium groups point in one direction perpendicular to the hydrogen-bonded layer, while all the cyclohexane groups point in the opposite direction, generating a series of hydrophilic and hydrophobic grooves on opposite sides of the hydrogen-bonded layer (Fig. 2). The cations and water molecules in this layer are connected by infinite (OH)phenyl···(OH)cyclohexyl···(OH)water···(OH)phenyl hydrogen-bonded chains running parallel to [100] (entries 1–3, respectively, Table 1). The hydrophilic grooves are lined with the OH and NH+ groups of water molecules and desvenlafaxine cations, respectively. Infinite hydrogen-bonded tapes of succinate anions connected by a short O—H···O- hydrogen bond (entry 4, Table 1) fill these hydrophilic grooves. The succinate anion also forms hydrogen-bonding contacts with both NH+ and OH groups, coating the grooves (entries 5–7, Table 1). In addition, there is a C—H···O hydrogen bond with the N-methyl group (entry 8 [or entry 10?], Table 1, Desiraju & Steiner, 1999). Thus, in order to maximize the attractive interactions, the carboxylic acid group must adopt the anti conformation. The inversion-related layers stack to form alternating hydrophobic and hydrophilic layers along [001], with layer thicknesses of about 7 and 11 Å, respectively. The hydrophobic grooves interdigitate with one another, while the hydrophilic grooves filled with the succinate anion tapes do not. As a result, the hydrophobic layer is thinner than the hydrophilic layer.

The water molecules are so tightly held in the crystal structure that desolvation and melting occur almost simultaneously. The differential scanning calorimetry trace shows a single endotherm with a mid-point temperature of 401.8 K (heating rate 10 K min-1). The water molecule is involved in the formation of as many as three strong hydrogen bonds, bridging the desvenlafaxine ions and linking the desvenlafaxine cations and succinate anions (Fig. 2 and Table 1). In addition, it also accepts a C—H···O hydrogen bond from atom C14 (entry 9, Table 1). The donor and acceptor groups around the water molecules are in nearly ideal tetrahedral positions. Another interesting feature is the occurrence of a short O—H···O- hydrogen bond between the indistinguishable carboxylic acid and carboxylate groups. Thus, one C—O bond [C17—O3 = 1.286 (3) Å and C20—O5 = 1.291 (3) Å] is longer than the other [C17—O4 = 1.224 (4) Å and C20—O6 = 1.234 (4) Å] on each acid group. On the other hand, if the acidic H atom were owned completely by one acid group, one would expect two sets of C—O bond distances, one corresponding to the carboxylic acid group (one C—O bond distance much longer than the other) and the other corresponding to a delocalized carboxylate group (nearly equivalent C—O distances). The acidic H atom is actually shared between atoms O3 and O5 in the short hydrogen bond. Such interactions are known as low-barrier hydrogen bonds and are considered to be very strong (Vishweshwar et al., 2004; Hibbert & Emsley, 1990).

Related literature top

For related literature, see: Deecher et al. (2006); Desiraju & Steiner (1999); DeVita Dufort et al. (2007); Hadfield et al. (2004); Hibbert & Emsley (1990); Vishweshwar et al. (2004).

Experimental top

The title compound was synthesized and purified in our laboratory by following Dr Reddy's Laboratories' (proprietary) process. Diffraction quality single crystals of (I) were obtained by slow evaporation from an isopropyl alcohol solution under ambient conditions.

Refinement top

H atoms bound to C atoms were positioned geometrically [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)] and refined using a riding model. The positions of H atoms bound to N and O atoms were refined [Uiso(H) = 1.5Ueq(N,O) {please check; values in CIF do not agree with this}].

Computing details top

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear (Rigaku, 1999); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), X-SEED (Barbour, 2001) and Mercury (Macrae et al., 2006; software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004).

Figures top
[Figure 1] Fig. 1. An ORTEPIII drawing (Burnett & Johnson, 1996) of the title compound, showing the atomic numbering. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing of (I), showing a honeycomb layer parallel to the ab crystallographic plane consisting of desvenlafaxine cations and water molecules connected by O—H···O hydrogen bonds (dashed lines). Infinite O—H···O hydrogen-bonded tapes of succinate anions fill the hydrophilic grooves. Also note the bifurcated N—H···O hydrogen bonds between the cations and anions.
[2-(1-hydroxycyclohexyl)-2-(4-hydroxyphenyl)ethyl]dimethylammonium 3-carboxypropanoate monohydrate top
Crystal data top
C16H26NO2+·C4H5O4·H2OZ = 2
Mr = 399.48F(000) = 432.00
Triclinic, P1Dx = 1.270 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 6.542 (5) ÅCell parameters from 3898 reflections
b = 9.324 (8) Åθ = 1.2–28.7°
c = 17.631 (14) ŵ = 0.10 mm1
α = 77.594 (17)°T = 298 K
β = 84.00 (2)°Block, colorless
γ = 89.39 (2)°0.50 × 0.30 × 0.12 mm
V = 1044.5 (15) Å3
Data collection top
Rigaku Mercury
diffractometer
2265 reflections with F2 > 2σ(F2)
Detector resolution: 7.31 pixels mm-1Rint = 0.045
ω scansθmax = 29.3°
Absorption correction: multi-scan
(Jacobson, 1998)
h = 86
Tmin = 0.964, Tmax = 0.989k = 1212
11016 measured reflectionsl = 2222
3995 independent reflections
Refinement top
Refinement on F2 Chebychev polynomial with 3 parameters: 4182.1300 5759.2800 1682.9900 [Carruthers, J. R. & Watkin, D. J. (1979). Acta Cryst. A35, 698–699]
R[F2 > 2σ(F2)] = 0.065(Δ/σ)max < 0.001
wR(F2) = 0.101Δρmax = 0.36 e Å3
S = 1.25Δρmin = 0.34 e Å3
3875 reflectionsExtinction correction: Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, p. 291-294. Munksgaard: Copenhagen.
299 parametersExtinction coefficient: 410 (24)
H atoms treated by a mixture of independent and constrained refinement
Crystal data top
C16H26NO2+·C4H5O4·H2Oγ = 89.39 (2)°
Mr = 399.48V = 1044.5 (15) Å3
Triclinic, P1Z = 2
a = 6.542 (5) ÅMo Kα radiation
b = 9.324 (8) ŵ = 0.10 mm1
c = 17.631 (14) ÅT = 298 K
α = 77.594 (17)°0.50 × 0.30 × 0.12 mm
β = 84.00 (2)°
Data collection top
Rigaku Mercury
diffractometer
3995 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
2265 reflections with F2 > 2σ(F2)
Tmin = 0.964, Tmax = 0.989Rint = 0.045
11016 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.065299 parameters
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.25Δρmax = 0.36 e Å3
3875 reflectionsΔρmin = 0.34 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement was performed using reflections with F2 > 0.5 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3698 (3)0.8465 (2)0.18421 (13)0.0558 (7)
O20.0718 (3)0.04218 (18)0.16404 (11)0.0443 (6)
N10.2141 (3)0.1799 (2)0.36417 (13)0.0483 (8)
C10.1866 (4)0.4083 (2)0.21436 (14)0.0374 (8)
C20.0427 (4)0.5173 (2)0.21364 (15)0.0416 (8)
C30.0986 (4)0.6638 (2)0.20413 (15)0.0424 (8)
C40.3048 (4)0.7023 (2)0.19388 (15)0.0422 (8)
C50.4512 (4)0.5960 (2)0.19441 (16)0.0467 (9)
C60.3923 (4)0.4499 (2)0.20530 (15)0.0446 (9)
C70.1178 (4)0.2495 (2)0.22566 (15)0.0412 (8)
C80.1227 (3)0.1966 (2)0.14596 (15)0.0374 (8)
C90.3308 (4)0.2116 (3)0.09773 (15)0.0447 (9)
C100.3262 (4)0.1621 (3)0.02144 (17)0.0584 (11)
C110.1667 (5)0.2455 (4)0.02677 (18)0.0714 (11)
C120.0456 (5)0.2316 (3)0.01962 (18)0.0653 (12)
C130.0377 (4)0.2802 (2)0.09704 (16)0.0495 (9)
C140.2282 (4)0.1421 (2)0.28475 (15)0.0458 (9)
C150.3259 (5)0.0671 (3)0.41607 (18)0.0654 (11)
C160.0015 (5)0.1928 (3)0.39983 (18)0.0619 (11)
O30.2483 (3)0.4888 (2)0.39876 (12)0.0591 (8)
O40.5369 (3)0.3750 (2)0.37900 (14)0.0642 (8)
O51.1001 (3)0.7299 (2)0.40258 (14)0.0662 (8)
O60.8204 (3)0.8619 (2)0.38551 (14)0.0655 (8)
C170.4458 (4)0.4846 (3)0.39106 (16)0.0458 (9)
C180.5596 (4)0.6220 (2)0.39617 (18)0.0493 (9)
C190.7874 (3)0.6023 (2)0.39817 (16)0.0445 (8)
C200.9061 (4)0.7418 (3)0.39506 (17)0.0478 (10)
O70.6943 (3)0.9781 (2)0.24101 (16)0.0718 (10)
H10.265 (4)0.916 (3)0.1776 (16)0.0658*
H20.099000.491000.220200.0510*
H30.003200.737200.204300.0520*
H50.592600.623100.187700.0560*
H60.494600.376500.206600.0540*
H70.022400.245200.246600.0500*
H110.282 (4)0.270 (3)0.3644 (16)0.0604*
H210.056 (4)0.028 (2)0.1848 (15)0.0479*
H910.372600.311900.085500.0540*
H920.427600.154800.127600.0540*
H1010.458000.175000.007600.0700*
H1020.289000.060900.033600.0700*
H1110.206200.346200.040700.0870*
H1120.161000.208600.072700.0870*
H1210.088200.131600.031000.0810*
H1220.141300.289700.010300.0810*
H1310.168700.264400.126500.0600*
H1320.004200.382000.085300.0600*
H1410.368900.142600.264900.0560*
H1420.171400.046500.290600.0550*
H1510.233400.010300.441500.0790*
H1520.381400.109400.454100.0790*
H1530.434200.029500.386000.0790*
H1610.041500.291500.384500.0760*
H1620.002200.166900.455100.0760*
H1630.088000.129500.382800.0760*
H310.172 (5)0.603 (4)0.400 (2)0.0979*
H1810.505900.653100.442100.0600*
H1820.539300.696500.351600.0600*
H1910.808600.535100.445400.0540*
H1920.838200.561700.355000.0540*
H710.735 (6)0.958 (4)0.292 (2)0.1089*
H720.638 (5)0.918 (4)0.225 (2)0.0796*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0507 (12)0.0283 (9)0.0887 (15)0.0013 (8)0.0156 (10)0.0091 (9)
O20.0476 (10)0.0280 (8)0.0590 (12)0.0020 (8)0.0055 (9)0.0129 (8)
N10.0640 (15)0.0383 (12)0.0442 (13)0.0139 (11)0.0043 (11)0.0124 (10)
C10.0466 (15)0.0294 (12)0.0381 (13)0.0007 (10)0.0075 (11)0.0099 (10)
C20.0416 (14)0.0313 (12)0.0541 (16)0.0015 (11)0.0113 (12)0.0108 (11)
C30.0434 (15)0.0304 (12)0.0556 (16)0.0072 (11)0.0110 (12)0.0116 (11)
C40.0526 (16)0.0249 (12)0.0494 (15)0.0002 (11)0.0094 (12)0.0064 (10)
C50.0391 (15)0.0368 (14)0.0643 (18)0.0027 (11)0.0069 (12)0.0108 (12)
C60.0500 (16)0.0289 (12)0.0564 (17)0.0083 (11)0.0081 (13)0.0114 (11)
C70.0504 (16)0.0273 (12)0.0465 (15)0.0000 (11)0.0032 (12)0.0103 (10)
C80.0422 (14)0.0241 (11)0.0469 (14)0.0018 (10)0.0083 (11)0.0080 (10)
C90.0429 (15)0.0438 (15)0.0481 (15)0.0025 (11)0.0018 (12)0.0129 (12)
C100.062 (2)0.0628 (19)0.0514 (18)0.0045 (15)0.0032 (14)0.0192 (14)
C110.093 (2)0.077 (2)0.0484 (18)0.011 (2)0.0175 (18)0.0182 (16)
C120.071 (2)0.065 (2)0.066 (2)0.0111 (17)0.0308 (17)0.0170 (16)
C130.0532 (17)0.0400 (15)0.0570 (17)0.0069 (12)0.0135 (13)0.0107 (12)
C140.0564 (17)0.0340 (13)0.0487 (15)0.0016 (12)0.0077 (13)0.0118 (11)
C150.086 (2)0.0531 (18)0.0587 (19)0.0045 (17)0.0212 (17)0.0085 (15)
C160.070 (2)0.0548 (18)0.065 (2)0.0037 (15)0.0028 (16)0.0238 (15)
O30.0453 (12)0.0586 (13)0.0761 (15)0.0156 (9)0.0085 (10)0.0184 (11)
O40.0614 (13)0.0407 (11)0.0961 (17)0.0066 (10)0.0211 (11)0.0204 (11)
O50.0439 (12)0.0608 (13)0.1017 (18)0.0105 (10)0.0107 (11)0.0330 (12)
O60.0616 (13)0.0435 (12)0.0986 (17)0.0073 (10)0.0204 (12)0.0250 (11)
C170.0504 (17)0.0394 (14)0.0483 (16)0.0081 (12)0.0122 (12)0.0069 (12)
C180.0446 (15)0.0401 (14)0.0663 (19)0.0092 (12)0.0084 (13)0.0165 (13)
C190.0413 (14)0.0423 (14)0.0515 (16)0.0067 (11)0.0007 (12)0.0150 (12)
C200.0495 (17)0.0439 (16)0.0543 (17)0.0096 (13)0.0056 (13)0.0194 (12)
O70.0540 (14)0.0689 (16)0.0901 (19)0.0141 (11)0.0125 (12)0.0088 (13)
Geometric parameters (Å, º) top
O1—C41.384 (3)C2—H20.9500
O2—C81.441 (3)C3—H30.9500
O1—H10.94 (3)C5—H50.9500
O2—H210.88 (3)C6—H60.9500
O3—C171.286 (3)C7—H70.9500
O4—C171.224 (4)C9—H920.9500
O5—C201.291 (3)C9—H910.9500
O6—C201.234 (4)C10—H1010.9500
O3—H311.18 (4)C10—H1020.9500
O5—H31i1.28 (4)C11—H1120.9500
O7—H710.94 (4)C11—H1110.9500
O7—H720.79 (4)C12—H1220.9500
N1—C161.480 (4)C12—H1210.9500
N1—C141.509 (4)C13—H1320.9500
N1—C151.479 (4)C13—H1310.9500
N1—H110.96 (3)C14—H1420.9500
C1—C61.388 (4)C14—H1410.9500
C1—C21.377 (3)C15—H1530.9500
C1—C71.518 (3)C15—H1520.9500
C2—C31.388 (3)C15—H1510.9500
C3—C41.383 (4)C16—H1610.9500
C4—C51.370 (3)C16—H1620.9500
C5—C61.387 (3)C16—H1630.9500
C7—C141.518 (4)C17—C181.513 (4)
C7—C81.583 (4)C18—C191.503 (4)
C8—C131.528 (4)C19—C201.510 (4)
C8—C91.519 (4)C18—H1810.9500
C9—C101.516 (4)C18—H1820.9500
C10—C111.517 (5)C19—H1920.9500
C11—C121.528 (5)C19—H1910.9500
C12—C131.534 (4)
C4—O1—H1114.7 (17)C9—C10—H101110.00
C8—O2—H21110.2 (13)C9—C10—H102108.00
C17—O3—H31117.4 (17)H101—C10—H102109.00
C20—O5—H31i114.1 (15)C10—C11—H112110.00
H71—O7—H72121 (3)H111—C11—H112110.00
C15—N1—C16110.2 (2)C10—C11—H111108.00
C14—N1—C16114.3 (2)C12—C11—H112109.00
C14—N1—C15108.22 (19)C12—C11—H111109.00
C15—N1—H11104.2 (16)C11—C12—H121109.00
C14—N1—H11113.7 (17)C13—C12—H122110.00
C16—N1—H11105.8 (16)C13—C12—H121108.00
C2—C1—C7120.0 (2)H121—C12—H122109.00
C6—C1—C7122.5 (2)C11—C12—H122110.00
C2—C1—C6117.48 (19)C12—C13—H131109.00
C1—C2—C3122.0 (2)C12—C13—H132108.00
C2—C3—C4119.3 (2)C8—C13—H132109.00
O1—C4—C3121.9 (2)C8—C13—H131109.00
C3—C4—C5120.0 (2)H131—C13—H132109.00
O1—C4—C5118.2 (2)C7—C14—H141108.00
C4—C5—C6119.9 (2)N1—C14—H142108.00
C1—C6—C5121.4 (2)H141—C14—H142109.00
C8—C7—C14111.01 (17)N1—C14—H141109.00
C1—C7—C14114.4 (2)C7—C14—H142109.00
C1—C7—C8112.78 (19)N1—C15—H151109.00
O2—C8—C7107.97 (19)H151—C15—H153110.00
O2—C8—C9105.90 (18)N1—C15—H153110.00
C7—C8—C13109.48 (18)H151—C15—H152109.00
O2—C8—C13109.06 (17)N1—C15—H152110.00
C9—C8—C13109.5 (2)H152—C15—H153109.00
C7—C8—C9114.77 (19)N1—C16—H163110.00
C8—C9—C10112.7 (2)H161—C16—H162109.00
C9—C10—C11111.2 (2)H162—C16—H163109.00
C10—C11—C12111.2 (3)N1—C16—H162110.00
C11—C12—C13110.7 (3)N1—C16—H161109.00
C8—C13—C12112.4 (2)H161—C16—H163109.00
N1—C14—C7113.58 (18)O3—C17—O4121.4 (3)
C1—C2—H2119.00O4—C17—C18121.7 (2)
C3—C2—H2119.00O3—C17—C18116.9 (2)
C4—C3—H3120.00C17—C18—C19113.85 (19)
C2—C3—H3121.00C18—C19—C20114.53 (18)
C4—C5—H5120.00O6—C20—C19121.1 (2)
C6—C5—H5121.00O5—C20—C19117.3 (2)
C1—C6—H6119.00O5—C20—O6121.7 (3)
C5—C6—H6120.00C17—C18—H182109.00
C14—C7—H7106.00C19—C18—H181108.00
C1—C7—H7106.00C17—C18—H181109.00
C8—C7—H7106.00H181—C18—H182110.00
C10—C9—H92109.00C19—C18—H182107.00
C8—C9—H92109.00C18—C19—H191108.00
C10—C9—H91108.00C18—C19—H192108.00
C8—C9—H91109.00C20—C19—H192109.00
H91—C9—H92109.00H191—C19—H192109.00
C11—C10—H101110.00C20—C19—H191108.00
C11—C10—H102108.00
C15—N1—C14—C7179.6 (2)C14—C7—C8—C972.5 (3)
C16—N1—C14—C756.5 (3)C14—C7—C8—C13164.0 (2)
C6—C1—C2—C30.1 (4)C1—C7—C14—N155.7 (3)
C7—C1—C2—C3179.5 (2)C8—C7—C14—N1175.30 (18)
C2—C1—C6—C51.2 (4)O2—C8—C9—C1062.1 (3)
C7—C1—C6—C5179.5 (2)C7—C8—C9—C10179.0 (2)
C2—C1—C7—C898.4 (3)C13—C8—C9—C1055.4 (3)
C2—C1—C7—C14133.5 (2)O2—C8—C13—C1260.6 (3)
C6—C1—C7—C882.3 (3)C7—C8—C13—C12178.5 (2)
C6—C1—C7—C1445.8 (3)C9—C8—C13—C1254.9 (3)
C1—C2—C3—C41.0 (4)C8—C9—C10—C1156.5 (3)
C2—C3—C4—O1179.9 (2)C9—C10—C11—C1255.4 (3)
C2—C3—C4—C51.0 (4)C10—C11—C12—C1354.8 (3)
O1—C4—C5—C6178.9 (2)C11—C12—C13—C855.3 (3)
C3—C4—C5—C60.1 (4)O3—C17—C18—C19171.7 (2)
C4—C5—C6—C11.2 (4)O4—C17—C18—C199.3 (4)
C1—C7—C8—O2175.20 (19)C17—C18—C19—C20174.1 (2)
C1—C7—C8—C957.4 (3)C18—C19—C20—O5174.9 (3)
C1—C7—C8—C1366.2 (3)C18—C19—C20—O65.3 (4)
C14—C7—C8—O245.4 (2)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2ii0.94 (3)1.72 (3)2.655 (4)179 (3)
O2—H21···O7iii0.88 (3)1.83 (3)2.698 (4)171 (2)
O7—H72···O10.79 (4)2.13 (3)2.836 (4)149 (3)
O3—H31···O5iv1.18 (4)1.28 (4)2.450 (3)176 (3)
N1—H11···O30.96 (3)2.25 (3)3.085 (4)145 (2)
N1—H11···O40.96 (3)2.01 (3)2.870 (4)149 (2)
O7—H71···O60.94 (4)1.84 (4)2.753 (4)162 (3)
C10—H102···O20.952.552.881 (4)101
C14—H142···O20.952.402.788 (4)104
C16—H163···O6iii0.952.563.386 (5)145
C14—H141···O7v0.952.663.485 (4)145
Symmetry codes: (ii) x, y+1, z; (iii) x1, y1, z; (iv) x1, y, z; (v) x, y1, z.

Experimental details

Crystal data
Chemical formulaC16H26NO2+·C4H5O4·H2O
Mr399.48
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.542 (5), 9.324 (8), 17.631 (14)
α, β, γ (°)77.594 (17), 84.00 (2), 89.39 (2)
V3)1044.5 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.30 × 0.12
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.964, 0.989
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
11016, 3995, 2265
Rint0.045
(sin θ/λ)max1)0.689
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.101, 1.25
No. of reflections3875
No. of parameters299
No. of restraints?
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.34

Computer programs: CrystalClear (Rigaku, 1999), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), CRYSTALS (Betteridge et al., 2003), ORTEPIII (Burnett & Johnson, 1996), X-SEED (Barbour, 2001) and Mercury (Macrae et al., 2006.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.94 (3)1.72 (3)2.655 (4)179 (3)
O2—H21···O7ii0.88 (3)1.83 (3)2.698 (4)171 (2)
O7—H72···O10.79 (4)2.13 (3)2.836 (4)149 (3)
O3—H31···O5iii1.18 (4)1.28 (4)2.450 (3)176 (3)
N1—H11···O30.96 (3)2.25 (3)3.085 (4)145 (2)
N1—H11···O40.96 (3)2.01 (3)2.870 (4)149 (2)
O7—H71···O60.94 (4)1.84 (4)2.753 (4)162 (3)
C16—H163···O6ii0.95002.56003.386 (5)145.00
C14—H141···O7iv0.95002.66003.485 (4)145.00
Symmetry codes: (i) x, y+1, z; (ii) x1, y1, z; (iii) x1, y, z; (iv) x, y1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds