Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, catena-poly[[tris­([mu]-4-methyl­benzoato)-[kappa]2O:O;[kappa]4O:O'-(4-methyl­benzoato-[kappa]2O,O')dizinc(II)]-[mu]-4,4'-bipyridine-[kappa]2N:N'], [Zn2(C8H7O2)4(C10H8N2)]n, is a novel coordination polymer. The asymmetric unit contains two unique ZnII ions, four 4-methyl­benzoate ligands and one 4,4'-bipyridine (4,4'-bpy) ligand, all in general positions. The four 4-methyl­benzoate ligands link the two ZnII centres to form a dinuclear unit, with a Zn...Zn separation of 3.188 (2) Å, which can be regarded as a supra­molecular secondary building unit (SBU). These SBUs are further bridged by 4,4'-bpy ligands, forming a novel one-dimensional infinite chain. There are [pi]-[pi] stacking inter­actions between the benzene rings of the 4-methyl­benzoate ligands and the pyridyl rings of the 4,4'-bpy ligands, leading to the formation of a corrugated layer. These layers are further assembled via C-H...O hydrogen bonds into a three-dimensional supra­molecular network structure. Coordination polymers such as the title compound are of inter­est for their potential applications as functional materials.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108018441/sq3142sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108018441/sq3142Isup2.hkl
Contains datablock I

CCDC reference: 700006

Comment top

Much research in recent years has focused on the design and synthesis of new, potentially multifunctional, coordination polymers with useful structure-derived properties, such as porosity, gas storage and ion exchange, or other physical properties such as magnetism and photoluminescence (Shi et al., 2004; Seo et al., 2000; Kitaura et al., 2002; Rowsell et al., 2004; Gheorghe et al., 2003). Many of the reported works are based on the use of mixed functional organic ligands containing N and/or O donor atoms to bind to d-block transition metal ions (Janiak, 1997; Kleij et al., 2005; Eddaoudi et al., 2000; Murugavel et al., 2002). The selection of organic ligands is of great importance in the construction of specfic supramolecular networks with useful physicochemical properties and intriguing structural topologies (Zhang et al., 2005; Zhao et al., 2003; Ren et al., 2003; Gu et al., 2006; Shibasaki et al., 2002; Sabatini et al., 1993). As is well known, 4,4'-bpy (bipyridine) ligands may act in bidentate bridging or monodentate terminal modes, leading to the formation of a variety of one-dimensional chain, two-dimensional layer and three-dimensional network motifs (Biradha et al., 2006). The 4-methylbenzoate ligand with versatile binding and coordination modes can also be used to construct multinuclear structures (Aliaga et al., 2001; Brown et al., 1993). Polynuclear d-block metal complexes have been found to exhibit interesting structural motifs and photoluminescence (Fu et al., 2002; Harvey & Gray, 1988; Ma et al., 1998; Kyle et al., 1991; Henary et al., 1989; Ford et al., 1999). On the basis of these considerations, we chose 4-methylbenzoic acid, 4,4'-bpy and ZnII as our building blocks. A novel one-dimensional coordination framework, (I), resulted from the hydrothermal treatment of ZnCl2 with 4-methylbenzoic acid and 4,4'-bpy in alkaline aqueous solution.

The asymmetric unit contains two unique ZnII ions, four 4-methylbenzoate ligands and one 4,4'-bpy ligand (Fig. 1). Of the two metal centres, Zn2 can be described as having a distorted octahedral coordination geometry formed by five carboxylate O donors of four 4-methylbenzoate ligands, and one N donor of a 4,4'-bpy ligand, while Zn1 is penta-coordinated by four O donors of three 4-methylbenzoate ligands and one N donor of the 4,4'-bpy ligand in a distorted square-pyramidal coordination geometry (Table 1). One Zn—O distance on each metal centre is distinctly longer than the others, but still within the range of a significant interaction (Addison et al., 1971; Guilera et al., 1999). The four 4-methylbenzoate ligands link the two zinc ions to construct a dinuclear zinc building block with a separation of 3.188 (2) Å, which can be regarded as a supramolecular SBU or knot. The construction of the knot is similar to that of the Zn2(acetate)4 unit in the infinite chains of that structure (Lee et al., 2004). Unlike the symmetrical paddlewheel arrangement typically observed in M2(carboxylate)4 dimers, in (I) two of the 4-methylbenzoate ligands bridge the Zn atoms through separate O atoms, one bridges through a single O atom, and one chelates a single Zn atom only. Each 4,4'-bpy ligand bridges two neighbouring SBUs to form a one-dimensional infinite chain along the c axis of the unit cell (Fig. 2). The distance between two knots is 14.2238 (4) Å, which is equal to the unit length of the c axis. The ππ stacking interactions and intra/intermolecular hydrogen bonds (Table 2) between carboxyl O atoms of 4-methylbenzoate ligands and 4,4'-bpy ligands assemble neighbouring chains into a corrugated layer in the bc plane (Fig. 3). The centroid-to-centroid distances between the phenyl rings of 4-methylbenzoate and the pyridyl rings of 4,4'-bpy belonging to adjacent chains are 3.686 (2) and 3.697 (2) Å, respectively, thus indicating weak ππ stacking contacts (Wu et al., 2003; Pan & Xu, 2004; Li et al., 2005; Deisenhofer & Michel, 1998). Moveover, hydrogen-bonding interactions (Table 2) between methyl groups and carboxyl O atoms of 4-methylbenzoate ligands lead to the formation of a three-dimensional supramolecular network structure.

The overall structural motif in (I) is unprecedented, differing from those described in the review by Biradha et al. (2006). Besides (I), there are only two coordination polymer structures containing 4,4'-bpy and 4-methylbenzoate, in which the neighbouring lanthanide ions are linked together by two bridging–chelating carboxylic groups of 4-methylbenzoate, and the 4,4'-bpy is uncoordinated (Li et al., 2004, 2006). Hydrogen bonds formed between the N atoms from uncoordinated 4,4'-bpy molecules and the O atoms from coordinated 4-methylbenzoate and included water molecules help to stabilize these structures.

Related literature top

For related literature, see: Addison et al. (1971); Aliaga et al. (2001); Biradha et al. (2006); Brown et al. (1993); Deisenhofer et al. (1998); Eddaoudi et al. (2000); Ford et al. (1999); Fu et al. (2002); Gheorghe et al. (2003); Gu & Xue (2006); Guilera & Steed (1999); Harvey & Gray (1988); Henary & Zink (1989); Janiak (1997); Kitaura et al. (2002); Kleij et al. (2005); Kyle et al. (1991); Lee et al. (2004); Li et al. (2006); Li et al. (2005); Li et al. (2004); Ma et al. (1998); Murugavel et al. (2002); Pan & Xu (2004); Ren et al. (2003); Rowsell et al. (2004); Sabatini et al. (1993); Seo et al. (2000); Shi et al. (2004); Shibasaki & Yoshikawa (2002); Wu et al. (2003); Zhang et al. (2005); Zhao et al. (2003)

Experimental top

A mixture of zinc chloride (0.136 g, 1 mmol), 4-methylbenzoic acid (0.136 g, 1 mmol), 4,4'-bipyridine (0.156 g, 1 mmol), NaOH (0.06 g, 1.5 mmol) and H2O (12 ml) was placed in a 23 ml Teflon reactor, which was heated to 433 K for 3 d and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dried in air (yield 0.37 g, 90.2%).

Refinement top

Carbon-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93–0.96 Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of (I) (H atoms are omitted for clarity). Symmetry code: (i) x, y, z - 1.
[Figure 2] Fig. 2. View of one infinite chain running parallel to the c axis.
[Figure 3] Fig. 3. View of a corrugated layer in the bc plane (left) and ab plane (right).
catena-Poly[[tris(µ-4-methylbenzoato)-κ2O:O;κ4O:O'-(4-methylbenzoato- κ2O,O')dizinc(II)]-µ-4,4'-bipyridine-κ-N:N'] top
Crystal data top
[Zn2(C8H7O2)4(C10H8N2)]F(000) = 1704
Mr = 827.47Dx = 1.423 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3600 reflections
a = 12.3661 (3) Åθ = 1.4–28°
b = 22.0755 (6) ŵ = 1.30 mm1
c = 14.2238 (4) ÅT = 296 K
β = 95.997 (2)°Block, colorless
V = 3861.67 (18) Å30.30 × 0.26 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
6946 independent reflections
Radiation source: fine-focus sealed tube4275 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ϕ and ω scansθmax = 25.2°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.697, Tmax = 0.781k = 2626
30933 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0357P)2]
where P = (Fo2 + 2Fc2)/3
6946 reflections(Δ/σ)max = 0.001
491 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Zn2(C8H7O2)4(C10H8N2)]V = 3861.67 (18) Å3
Mr = 827.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.3661 (3) ŵ = 1.30 mm1
b = 22.0755 (6) ÅT = 296 K
c = 14.2238 (4) Å0.30 × 0.26 × 0.20 mm
β = 95.997 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
6946 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4275 reflections with I > 2σ(I)
Tmin = 0.697, Tmax = 0.781Rint = 0.074
30933 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.08Δρmax = 0.25 e Å3
6946 reflectionsΔρmin = 0.40 e Å3
491 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5188 (3)0.16030 (17)1.1211 (3)0.0456 (9)
H10.55470.19041.09070.055*
C20.5201 (3)0.16303 (16)1.2173 (3)0.0456 (9)
H20.55670.19441.25060.055*
C30.4670 (3)0.11904 (15)1.2656 (2)0.0362 (9)
C40.4149 (3)0.07329 (16)1.2101 (3)0.0431 (9)
H40.37880.04251.23880.052*
C50.4164 (3)0.07323 (16)1.1141 (3)0.0444 (9)
H50.38040.04231.07910.053*
C60.4694 (3)0.11998 (15)1.3693 (3)0.0371 (9)
C70.5125 (3)0.16835 (17)1.4227 (3)0.0533 (10)
H70.53820.20221.39310.064*
C80.5171 (3)0.16610 (17)1.5200 (3)0.0587 (11)
H80.54570.19941.55400.070*
C90.4400 (3)0.07367 (18)1.5167 (3)0.0515 (10)
H90.41390.04061.54810.062*
C100.4312 (3)0.07215 (16)1.4188 (3)0.0492 (10)
H100.39950.03891.38650.059*
C110.6750 (3)0.14395 (19)0.9131 (3)0.0480 (10)
C120.7931 (3)0.13249 (17)0.9095 (3)0.0433 (9)
C130.8675 (3)0.17885 (17)0.9283 (3)0.0556 (11)
H130.84390.21670.94620.067*
C140.9761 (3)0.1693 (2)0.9206 (3)0.0690 (13)
H141.02440.20150.93090.083*
C151.0152 (3)0.1135 (2)0.8982 (3)0.0656 (13)
C160.9414 (3)0.06684 (19)0.8841 (3)0.0691 (13)
H160.96590.02820.87150.083*
C170.8316 (3)0.07638 (18)0.8882 (3)0.0586 (11)
H170.78320.04440.87630.070*
C181.1340 (3)0.1035 (2)0.8850 (4)0.1043 (19)
H18A1.17430.13980.90130.156*
H18B1.14050.09340.82020.156*
H18C1.16230.07090.92500.156*
C190.3767 (3)0.20266 (16)0.7983 (3)0.0437 (9)
C200.2977 (3)0.25141 (16)0.7656 (3)0.0447 (9)
C210.2443 (3)0.28415 (17)0.8291 (3)0.0603 (11)
H210.25290.27390.89290.072*
C220.1780 (3)0.3322 (2)0.7983 (4)0.0765 (14)
H220.14300.35410.84200.092*
C230.1627 (3)0.3482 (2)0.7044 (4)0.0739 (14)
C240.2135 (3)0.31359 (19)0.6403 (3)0.0685 (13)
H240.20190.32240.57620.082*
C250.2813 (3)0.26608 (17)0.6708 (3)0.0545 (10)
H250.31600.24390.62720.065*
C260.0961 (4)0.4035 (2)0.6708 (4)0.114 (2)
H26A0.06430.42110.72320.171*
H26B0.03960.39160.62300.171*
H26C0.14250.43270.64510.171*
C270.3784 (3)0.02390 (16)0.8020 (3)0.0422 (9)
C280.3076 (3)0.02960 (15)0.7796 (3)0.0427 (9)
C290.2654 (3)0.06246 (17)0.8503 (3)0.0540 (10)
H290.27870.04960.91270.065*
C300.2047 (3)0.11336 (18)0.8299 (3)0.0642 (12)
H300.17800.13460.87890.077*
C310.1822 (3)0.13391 (18)0.7390 (4)0.0637 (12)
C320.2227 (3)0.10052 (19)0.6673 (3)0.0655 (12)
H320.20800.11310.60480.079*
C330.2837 (3)0.04951 (17)0.6873 (3)0.0532 (10)
H330.30950.02780.63830.064*
C340.1202 (4)0.19240 (19)0.7165 (4)0.1032 (18)
H34A0.17070.22500.71180.155*
H34B0.07530.18810.65760.155*
H34C0.07520.20100.76600.155*
C350.7217 (3)0.1042 (2)0.6754 (3)0.0507 (10)
C360.8346 (3)0.10411 (18)0.6456 (3)0.0548 (11)
C370.8885 (3)0.1575 (2)0.6357 (3)0.0813 (15)
H370.85420.19410.64580.098*
C380.9939 (4)0.1574 (2)0.6108 (4)0.1052 (19)
H381.02860.19420.60300.126*
C391.0480 (4)0.1049 (3)0.5972 (4)0.0849 (16)
C400.9932 (4)0.0517 (2)0.6073 (4)0.0932 (16)
H401.02780.01510.59800.112*
C410.8871 (3)0.0511 (2)0.6309 (3)0.0752 (13)
H410.85160.01440.63680.090*
C421.1664 (4)0.1054 (2)0.5742 (4)0.125 (2)
H42A1.18280.14420.54850.187*
H42B1.17650.07430.52880.187*
H42C1.21390.09810.63090.187*
N10.4679 (2)0.11609 (13)1.0683 (2)0.0410 (7)
N20.4833 (2)0.11935 (13)1.5685 (2)0.0462 (8)
O10.60770 (19)0.10158 (11)0.87928 (18)0.0526 (7)
O20.6418 (2)0.19093 (12)0.94713 (19)0.0632 (8)
O30.4408 (2)0.18473 (11)0.74200 (18)0.0548 (7)
O40.37398 (18)0.18349 (11)0.88151 (18)0.0505 (7)
O50.38816 (17)0.04283 (10)0.88602 (17)0.0476 (6)
O60.42509 (18)0.04670 (10)0.73573 (17)0.0509 (7)
O70.67889 (19)0.15390 (12)0.69576 (17)0.0533 (7)
O80.67044 (19)0.05532 (12)0.67936 (17)0.0576 (7)
Zn10.46827 (3)0.116784 (17)0.92731 (3)0.04154 (15)
Zn20.53210 (3)0.112299 (18)0.71601 (3)0.04317 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.053 (2)0.047 (2)0.037 (3)0.0022 (19)0.0111 (19)0.004 (2)
C20.052 (2)0.039 (2)0.046 (3)0.0023 (18)0.0092 (19)0.002 (2)
C30.039 (2)0.037 (2)0.032 (2)0.0053 (16)0.0026 (17)0.0010 (18)
C40.047 (2)0.049 (2)0.034 (2)0.0024 (18)0.0067 (18)0.009 (2)
C50.048 (2)0.051 (2)0.035 (2)0.0015 (19)0.0085 (18)0.000 (2)
C60.043 (2)0.040 (2)0.028 (2)0.0051 (17)0.0040 (17)0.0005 (18)
C70.083 (3)0.044 (2)0.033 (3)0.004 (2)0.001 (2)0.004 (2)
C80.089 (3)0.045 (2)0.040 (3)0.002 (2)0.004 (2)0.002 (2)
C90.057 (3)0.062 (3)0.037 (3)0.011 (2)0.014 (2)0.004 (2)
C100.060 (2)0.051 (2)0.037 (3)0.011 (2)0.0050 (19)0.004 (2)
C110.051 (3)0.064 (3)0.031 (2)0.003 (2)0.0078 (19)0.005 (2)
C120.041 (2)0.052 (2)0.036 (2)0.0014 (18)0.0014 (18)0.0038 (19)
C130.049 (3)0.058 (3)0.061 (3)0.000 (2)0.009 (2)0.005 (2)
C140.044 (3)0.070 (3)0.093 (4)0.014 (2)0.004 (2)0.008 (3)
C150.042 (3)0.082 (3)0.073 (3)0.002 (2)0.004 (2)0.012 (3)
C160.051 (3)0.066 (3)0.090 (4)0.006 (2)0.006 (2)0.018 (3)
C170.047 (3)0.056 (3)0.072 (3)0.011 (2)0.007 (2)0.012 (2)
C180.047 (3)0.126 (4)0.140 (5)0.000 (3)0.011 (3)0.037 (4)
C190.040 (2)0.043 (2)0.049 (3)0.0039 (18)0.004 (2)0.003 (2)
C200.039 (2)0.045 (2)0.050 (3)0.0041 (18)0.0018 (19)0.003 (2)
C210.051 (3)0.066 (3)0.065 (3)0.015 (2)0.012 (2)0.005 (2)
C220.066 (3)0.078 (3)0.086 (4)0.022 (3)0.011 (3)0.003 (3)
C230.053 (3)0.056 (3)0.109 (5)0.005 (2)0.004 (3)0.011 (3)
C240.064 (3)0.065 (3)0.073 (3)0.002 (2)0.011 (3)0.020 (3)
C250.051 (3)0.052 (3)0.059 (3)0.000 (2)0.002 (2)0.005 (2)
C260.090 (4)0.078 (3)0.170 (6)0.033 (3)0.003 (4)0.035 (4)
C270.035 (2)0.043 (2)0.049 (3)0.0046 (17)0.003 (2)0.005 (2)
C280.039 (2)0.046 (2)0.043 (3)0.0021 (17)0.0050 (18)0.001 (2)
C290.056 (3)0.058 (3)0.049 (3)0.012 (2)0.008 (2)0.002 (2)
C300.068 (3)0.066 (3)0.060 (3)0.018 (2)0.016 (2)0.008 (3)
C310.062 (3)0.054 (3)0.074 (4)0.013 (2)0.004 (3)0.008 (3)
C320.066 (3)0.076 (3)0.052 (3)0.009 (2)0.001 (2)0.017 (3)
C330.053 (3)0.058 (3)0.048 (3)0.006 (2)0.006 (2)0.000 (2)
C340.109 (4)0.072 (3)0.128 (5)0.037 (3)0.010 (3)0.022 (3)
C350.048 (3)0.068 (3)0.036 (3)0.007 (2)0.0054 (19)0.002 (2)
C360.050 (3)0.064 (3)0.052 (3)0.007 (2)0.014 (2)0.006 (2)
C370.062 (3)0.068 (3)0.120 (4)0.007 (2)0.036 (3)0.008 (3)
C380.073 (4)0.091 (4)0.159 (6)0.025 (3)0.047 (4)0.004 (4)
C390.054 (3)0.117 (4)0.087 (4)0.006 (3)0.023 (3)0.007 (4)
C400.069 (3)0.094 (4)0.122 (5)0.018 (3)0.039 (3)0.008 (4)
C410.071 (3)0.066 (3)0.092 (4)0.000 (2)0.027 (3)0.006 (3)
C420.061 (3)0.171 (6)0.150 (6)0.001 (3)0.049 (3)0.005 (4)
N10.0422 (18)0.0465 (18)0.0346 (19)0.0050 (15)0.0057 (14)0.0014 (16)
N20.057 (2)0.049 (2)0.034 (2)0.0011 (16)0.0100 (15)0.0011 (17)
O10.0412 (15)0.0707 (18)0.0472 (17)0.0065 (13)0.0105 (12)0.0058 (14)
O20.0589 (18)0.0706 (19)0.062 (2)0.0067 (15)0.0151 (14)0.0105 (16)
O30.0608 (17)0.0567 (16)0.0492 (18)0.0142 (13)0.0165 (14)0.0023 (14)
O40.0496 (16)0.0565 (16)0.0462 (18)0.0099 (12)0.0092 (13)0.0103 (14)
O50.0499 (16)0.0545 (16)0.0400 (17)0.0037 (12)0.0119 (12)0.0025 (14)
O60.0547 (16)0.0554 (16)0.0430 (17)0.0135 (13)0.0065 (13)0.0052 (13)
O70.0542 (16)0.0624 (17)0.0448 (17)0.0011 (14)0.0123 (13)0.0046 (15)
O80.0560 (17)0.0604 (17)0.0577 (19)0.0109 (14)0.0120 (14)0.0016 (15)
Zn10.0441 (3)0.0487 (3)0.0327 (3)0.0023 (2)0.0084 (2)0.0017 (2)
Zn20.0467 (3)0.0480 (3)0.0364 (3)0.0015 (2)0.0119 (2)0.0001 (2)
Geometric parameters (Å, º) top
C1—N11.346 (4)C24—H240.9300
C1—C21.368 (5)C25—H250.9300
C1—H10.9300C26—H26A0.9600
C2—C31.393 (5)C26—H26B0.9600
C2—H20.9300C26—H26C0.9600
C3—C41.397 (4)C27—O51.260 (4)
C3—C61.473 (5)C27—O61.261 (4)
C4—C51.367 (4)C27—C281.485 (5)
C4—H40.9300C28—C291.385 (4)
C5—N11.346 (4)C28—C331.386 (5)
C5—H50.9300C29—C301.366 (5)
C6—C101.380 (4)C29—H290.9300
C6—C71.384 (4)C30—C311.371 (6)
C7—C81.381 (5)C30—H300.9300
C7—H70.9300C31—C321.394 (6)
C8—N21.332 (4)C31—C341.519 (5)
C8—H80.9300C32—C331.369 (5)
C9—N21.328 (4)C32—H320.9300
C9—C101.385 (5)C33—H330.9300
C9—H90.9300C34—H34A0.9600
C10—H100.9300C34—H34B0.9600
C11—O21.233 (4)C34—H34C0.9600
C11—O11.310 (4)C35—O81.255 (4)
C11—C121.488 (5)C35—O71.266 (4)
C12—C171.372 (5)C35—C361.500 (5)
C12—C131.384 (5)C36—C411.364 (5)
C13—C141.375 (5)C36—C371.369 (5)
C13—H130.9300C37—C381.387 (6)
C14—C151.373 (5)C37—H370.9300
C14—H140.9300C38—C391.364 (6)
C15—C161.378 (5)C38—H380.9300
C15—C181.516 (5)C39—C401.371 (6)
C16—C171.381 (5)C39—C421.532 (6)
C16—H160.9300C40—C411.387 (6)
C17—H170.9300C40—H400.9300
C18—H18A0.9600C41—H410.9300
C18—H18B0.9600C42—H42A0.9600
C18—H18C0.9600C42—H42B0.9600
C19—O31.248 (4)C42—H42C0.9600
C19—O41.261 (4)Zn1—N12.007 (3)
C19—C201.495 (5)Zn1—O11.949 (2)
C20—C211.378 (5)Zn1—O22.690 (2)
C20—C251.381 (5)Zn1—O41.948 (2)
C21—C221.384 (5)Zn1—O51.967 (2)
C21—H210.9300Zn2—N2i2.128 (3)
C22—C231.375 (6)Zn2—O12.423 (3)
C22—H220.9300Zn2—O32.014 (2)
C23—C241.390 (6)Zn2—O62.001 (2)
C23—C261.521 (6)Zn2—O72.081 (2)
C24—C251.383 (5)Zn2—O82.229 (2)
N1—C1—C2123.1 (3)C29—C28—C33117.5 (4)
N1—C1—H1118.5C29—C28—C27121.3 (4)
C2—C1—H1118.5C33—C28—C27121.2 (4)
C1—C2—C3120.4 (4)C30—C29—C28121.1 (4)
C1—C2—H2119.8C30—C29—H29119.4
C3—C2—H2119.8C28—C29—H29119.4
C2—C3—C4116.0 (3)C29—C30—C31121.7 (4)
C2—C3—C6121.5 (3)C29—C30—H30119.1
C4—C3—C6122.4 (3)C31—C30—H30119.1
C5—C4—C3120.7 (3)C30—C31—C32117.5 (4)
C5—C4—H4119.6C30—C31—C34121.9 (4)
C3—C4—H4119.6C32—C31—C34120.5 (4)
N1—C5—C4122.6 (3)C33—C32—C31121.0 (4)
N1—C5—H5118.7C33—C32—H32119.5
C4—C5—H5118.7C31—C32—H32119.5
C10—C6—C7116.3 (3)C32—C33—C28121.1 (4)
C10—C6—C3121.9 (3)C32—C33—H33119.4
C7—C6—C3121.8 (3)C28—C33—H33119.4
C8—C7—C6119.7 (4)C31—C34—H34A109.5
C8—C7—H7120.2C31—C34—H34B109.5
C6—C7—H7120.2H34A—C34—H34B109.5
N2—C8—C7124.3 (4)C31—C34—H34C109.5
N2—C8—H8117.8H34A—C34—H34C109.5
C7—C8—H8117.8H34B—C34—H34C109.5
N2—C9—C10124.1 (3)O8—C35—O7120.6 (3)
N2—C9—H9118.0O8—C35—C36120.1 (4)
C10—C9—H9118.0O7—C35—C36119.3 (4)
C6—C10—C9119.9 (3)C41—C36—C37118.5 (4)
C6—C10—H10120.0C41—C36—C35121.1 (4)
C9—C10—H10120.0C37—C36—C35120.4 (4)
O2—C11—O1121.3 (3)C36—C37—C38120.4 (4)
O2—C11—C12121.7 (4)C36—C37—H37119.8
O1—C11—C12117.0 (4)C38—C37—H37119.8
C17—C12—C13118.1 (3)C39—C38—C37121.7 (4)
C17—C12—C11121.7 (3)C39—C38—H38119.1
C13—C12—C11120.2 (3)C37—C38—H38119.1
C14—C13—C12120.5 (4)C38—C39—C40117.3 (4)
C14—C13—H13119.8C38—C39—C42121.1 (5)
C12—C13—H13119.8C40—C39—C42121.5 (5)
C15—C14—C13121.8 (4)C39—C40—C41121.5 (4)
C15—C14—H14119.1C39—C40—H40119.2
C13—C14—H14119.1C41—C40—H40119.2
C14—C15—C16117.4 (4)C36—C41—C40120.5 (4)
C14—C15—C18121.9 (4)C36—C41—H41119.7
C16—C15—C18120.6 (4)C40—C41—H41119.7
C15—C16—C17121.3 (4)C39—C42—H42A109.5
C15—C16—H16119.4C39—C42—H42B109.5
C17—C16—H16119.4H42A—C42—H42B109.5
C12—C17—C16120.8 (4)C39—C42—H42C109.5
C12—C17—H17119.6H42A—C42—H42C109.5
C16—C17—H17119.6H42B—C42—H42C109.5
C15—C18—H18A109.5C5—N1—C1117.2 (3)
C15—C18—H18B109.5C5—N1—Zn1122.7 (3)
H18A—C18—H18B109.5C1—N1—Zn1120.1 (2)
C15—C18—H18C109.5C9—N2—C8115.6 (3)
H18A—C18—H18C109.5C9—N2—Zn2ii123.2 (2)
H18B—C18—H18C109.5C8—N2—Zn2ii119.6 (3)
O3—C19—O4125.2 (4)C11—O1—Zn1107.5 (2)
O3—C19—C20117.9 (4)C11—O1—Zn2116.7 (2)
O4—C19—C20116.9 (3)Zn1—O1—Zn292.99 (10)
C21—C20—C25119.0 (4)C19—O3—Zn2140.8 (3)
C21—C20—C19121.1 (4)C19—O4—Zn1119.6 (2)
C25—C20—C19119.8 (4)C27—O5—Zn1123.6 (2)
C20—C21—C22120.2 (4)C27—O6—Zn2139.0 (2)
C20—C21—H21119.9C35—O7—Zn292.3 (2)
C22—C21—H21119.9C35—O8—Zn285.9 (2)
C23—C22—C21121.5 (4)O4—Zn1—O1122.25 (11)
C23—C22—H22119.3O4—Zn1—O5105.21 (10)
C21—C22—H22119.3O1—Zn1—O5100.88 (10)
C22—C23—C24117.9 (4)O4—Zn1—N1106.03 (11)
C22—C23—C26121.8 (5)O1—Zn1—N1116.34 (11)
C24—C23—C26120.2 (5)O5—Zn1—N1103.79 (11)
C25—C24—C23120.8 (4)O6—Zn2—O399.05 (10)
C25—C24—H24119.6O6—Zn2—O7159.70 (10)
C23—C24—H24119.6O3—Zn2—O7100.89 (10)
C20—C25—C24120.4 (4)O6—Zn2—N2i93.87 (11)
C20—C25—H25119.8O3—Zn2—N2i90.93 (10)
C24—C25—H25119.8O7—Zn2—N2i89.59 (11)
C23—C26—H26A109.5O6—Zn2—O899.17 (9)
C23—C26—H26B109.5O3—Zn2—O8161.78 (10)
H26A—C26—H26B109.5O7—Zn2—O860.97 (10)
C23—C26—H26C109.5N2i—Zn2—O887.49 (10)
H26A—C26—H26C109.5O6—Zn2—O189.40 (9)
H26B—C26—H26C109.5O3—Zn2—O193.97 (9)
O5—C27—O6124.8 (3)O7—Zn2—O185.47 (9)
O5—C27—C28117.6 (3)N2i—Zn2—O1173.62 (9)
O6—C27—C28117.6 (4)O8—Zn2—O186.58 (9)
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O8iii0.932.403.328 (5)172
C4—H4···O8iii0.932.563.462 (4)165
C1—H1···O20.932.413.111 (5)133
C18—H18A···O4iv0.962.693.458 (5)137
Symmetry codes: (iii) x+1, y, z+2; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Zn2(C8H7O2)4(C10H8N2)]
Mr827.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.3661 (3), 22.0755 (6), 14.2238 (4)
β (°) 95.997 (2)
V3)3861.67 (18)
Z4
Radiation typeMo Kα
µ (mm1)1.30
Crystal size (mm)0.30 × 0.26 × 0.20
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.697, 0.781
No. of measured, independent and
observed [I > 2σ(I)] reflections
30933, 6946, 4275
Rint0.074
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.114, 1.08
No. of reflections6946
No. of parameters491
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.40

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—N12.007 (3)Zn2—O12.423 (3)
Zn1—O11.949 (2)Zn2—O32.014 (2)
Zn1—O22.690 (2)Zn2—O62.001 (2)
Zn1—O41.948 (2)Zn2—O72.081 (2)
Zn1—O51.967 (2)Zn2—O82.229 (2)
Zn2—N2i2.128 (3)
O4—Zn1—O1122.25 (11)O7—Zn2—N2i89.59 (11)
O1—Zn1—O5100.88 (10)O3—Zn2—O8161.78 (10)
O6—Zn2—O399.05 (10)N2i—Zn2—O887.49 (10)
O6—Zn2—O7159.70 (10)O6—Zn2—O189.40 (9)
O6—Zn2—N2i93.87 (11)N2i—Zn2—O1173.62 (9)
Symmetry code: (i) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O8ii0.932.403.328 (5)172.1
C4—H4···O8ii0.932.563.462 (4)164.6
C1—H1···O20.932.413.111 (5)132.6
C18—H18A···O4iii0.962.693.458 (5)137.2
Symmetry codes: (ii) x+1, y, z+2; (iii) x+1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds