Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Ni2(C5H5)(C10H15)(C12H8)] or [Ni(C10H15){Ni(C5H5)(C12H8)}], is a rare example (and the first obtained from nickela­fluorenyl­lithium) of an analogue of nickelocene in which the central Ni atom is coordinated to one penta­methyl­cyclo­penta­dienyl ring and one nickela­fluorenyl ring. Both rings lie almost parallel to one another: the dihedral angle between the planes which include these rings is 4.4 (1)°. Slip parameter analysis indicates that the bonding mode of the central Ni atom to the nickelacyclic ring is between [eta]3 and [eta]5. Two-dimensional layers of mol­ecules are formed by C-H...[pi] inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108019239/sq3150sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108019239/sq3150Isup2.hkl
Contains datablock I

CCDC reference: 700007

Comment top

Heterocyclic π-systems are useful in the synthesis of organometallic compounds because they can be used as multi-electron ligands. To examine the reactivity of the recently characterized nickelafluorenyllithium complex (Reference?), and to use it as a potential donor of the nickelafluorenyl group, we carried out the reaction of nickelafluorenyllithium with penthamethylcyclopentadienylnickelacetylacetonate in diethyl ether. This reaction resulted in the formation of the title dinickel complex, (I), in 58% yield. Complex (I) is an example of a heterometallocene in which the central Ni atom is bonded to two ligands, one cyclopentadienyl and one heterocyclopentadienyl. To our knowledge, this is the first example of the synthesis of a heterometallocene derivative possesing one metallacyclic ring in which a metallafluorenyllithium complex was used.

The molecular structure of complex (I) is shown in Fig. 1. Four C atoms of the fluorenyl moiety (C11, C12, C17 and C18) and atom Ni2 form a five-membered nickelacyclic ring that is not absolutely planar; the Ni atom deviates by 0.308 Å from the plane defined by the four C atoms. To define the bonding mode of the apical atom Ni1 to the nickelafluorenyl ring, we have determined the degree of slip-fold distortion, using previously reported parameters (Westcott et al., 1990). The slip parameter ΔM–C, i.e. the difference between the average Ni1—C distances to atoms C12 and C18 and those to atoms C11 and C17, is ca 0.22 Å, which indicates that the bonding mode of atom Ni1 to the nickelacyclic ring is between η3 and η5.

H atoms from the Cp* group (H8 and H9) of one molecule form C—H···π interactions with the arene rings (C11–C16 and C17–C22) on the fluorenyl moiety of an adjacent molecule, resulting in the formation of one-dimensional chains of molecules along the crystallographic a direction (Fig. 2). These chains are organized into two-dimensional layers perpendicular to the crystallographic c axis by another C—H···π interaction formed by atoms H16 from the fluorenyl moieties to the Cp rings of the parallel chains (Table 2).

The structure of (I) may be compared with other compounds which contain a nickelafluorenyl ring. So far, only a few examples of such complexes have been reported, containing either one (Vicic & Jones, 1999; Schaub et al., 2006; Keen et al., 2007; Bennett et al., 2003; Schaub & Radius, 2005), two (Buchalski et al., 2006; Losi et al., 2007) or three (Schaub et al., 2006; Keen et al., 2007; Bennet et al., 1990) Ni atoms in the molecule (Fig. 3). The bond lengths between atoms Ni2 and C1 (as numbered in Fig. 3) in all compounds are between 1.90 and 2.00 Å. The C1—C2—C2—C1 [Symmetry codes missing?] torsion angles in all complexes are less than 8°, with the exception of two dinickel compounds in which these values are 25° (Keen et al., 2007) and 30° (Keen & Johnson 2006). In complex (I), the value of the corresponding torsion angle (C12—C11—C17—C18) is 0.2 (4)°.

The hinge angle, defined as the dihedral angle between the planes C1/C2/C2/C1 [Symmetry codes missing?] and C1/Ni2/C1 in most complexes, is less than 4°. The exceptions are complex (I) (12.5°) and its analogue (η5-pentamethylcyclopentadienyl){η3-[9-(η5-pentamethylcyclopentadienyl)nickelafluorenyl]}nickel (20.0 and 15.4°; Buchalski et al., 2006). In these compounds, the nickelafluorenyl rings are not flat: the Ni atoms deviate from the plane formed by the four C atoms. The reason for this may be the inductive effect of the methyl groups in the pentamethylcyclopentadienyl ring, which increases the electron density of both Ni atoms. In complex (I), in which only the apical Ni atom is bonded to the pentamethylcyclopentadienyl group, the value of the hinge angle is 5–7° less than in the compound in which both Ni atoms are bonded to pentamethylcyclopentedienyl groups.

Experimental top

All reactions were carried out in an atmosphere of dry argon or nitrogen using Schlenk tube techniques. Solvents were dried by conventional methods. NMR spectra were measured on a Varian Mercury 400BB instrument. Mass spectra were recorded on an AMD-604 spectrometer. EPR spectra were measured on Bruker ESP 300 spectrometer in X-band.

Nickelafluorenyllithium (0.762 g, 2.05 mmol; Buchalski et al., 2008) and diethyl ether (40 ml) were placed in a Schlenk flask and cooled to 243 K. A solution of penthamethylcyclopentadienylnickelacetylacetonate (0.612 g, 2.1 mmol; Smith & Andersen, 1996) in diethyl ether (30 ml) was added slowly. The reaction was stirred for 1 h at 243 K and then at room temperature overnight. After the reaction was completed, the solvent was removed and the residue was extracted with toluene (100 ml). The extract was filtered through alumina and then the solvent was evaporated. The residue was chromatographed on alumina (deactivated with 5% of water). One brown band was collected (hexane–toluene 4:1 v/v). The solvent was removed and a brown solid, compound (I), was obtained (0.557 g, 1.19 mmol, yield 58%). Crystals appropriate for X-ray measurements were grown from a hexane–THF [Ratio?] solution. Spectroscopic analysis: EIMS (70 eV, m/e, relative intensities, 58Ni): 468 (96%, M+), 402 (100%, C22H22Ni2+), 334 (29%, C17H14Ni2+), 314 (21%, C15H18Ni2+), 275 (31%, C17H13Ni+), 215 (27%, C17H11+), 152 (19%, C12H8+), 119 (7%, C9H11+); EI HR MS: observed 468.09058, calculated for C27H2858Ni2 468.08980. Magnetic susceptibility was determined by NMR measurements at 293 K by the Evans method (Crawford & Swanson, 1971; Evans, 1959) from differences in the chemical shifts of methyl group H atoms of toluene used as solvent and as external standard. The magnetic moment of (I) in toluene solution at 293 K is 3.084 µB, which indicates that the compound is paramagnetic with two unpaired electrons per molecule. There were no signals in any EPR spectrum of (I) at room temperature or at 77 K, in the solid state or in benzene solution.

Refinement top

All H atoms were placed in geometric positions and treated as riding, with C—H = 0.95 Å, and with Uiso = 1.2Ueq of the attached aromatic C atom or 1.5Ueq of the attached methyl C atom.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at 40% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The C—H···π interactions (dashed lines) of H atoms with the fluorenyl arene rings.
[Figure 3] Fig. 3. Atom-numbering scheme of nickelafluorenyl complexes with one, two and three Ni atoms in the molecule.
[(8a,9,9a-η)-9-(η5-Cyclopentadienyl)-9-nickelafluorenyl](η5- pentamethylcyclopentadienyl)nickel(II) top
Crystal data top
[Ni2(C5H5)(C10H15)(C12H8)]Z = 2
Mr = 469.91F(000) = 492
Triclinic, P1Dx = 1.449 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8022 (2) ÅCell parameters from 3084 reflections
b = 9.3335 (3) Åθ = 2.9–24.7°
c = 15.2091 (6) ŵ = 1.76 mm1
α = 84.677 (2)°T = 100 K
β = 84.953 (2)°Prism, black
γ = 78.244 (2)°0.26 × 0.20 × 0.14 mm
V = 1076.93 (6) Å3
Data collection top
Nonius KappaCCD
diffractometer
3651 independent reflections
Radiation source: fine-focus sealed tube2786 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 9.1 pixels mm-1θmax = 24.7°, θmin = 3.1°
ϕ and ω scansh = 99
Absorption correction: empirical (using intensity measurements)
[using spherical harmonic expansion of the absorption surface (Katayama, 1986; Blessing, 1995)]
k = 1010
Tmin = 0.621, Tmax = 0.844l = 1717
10193 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0351P)2 + 0.2154P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
3651 reflectionsΔρmax = 0.37 e Å3
271 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0030 (12)
Crystal data top
[Ni2(C5H5)(C10H15)(C12H8)]γ = 78.244 (2)°
Mr = 469.91V = 1076.93 (6) Å3
Triclinic, P1Z = 2
a = 7.8022 (2) ÅMo Kα radiation
b = 9.3335 (3) ŵ = 1.76 mm1
c = 15.2091 (6) ÅT = 100 K
α = 84.677 (2)°0.26 × 0.20 × 0.14 mm
β = 84.953 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3651 independent reflections
Absorption correction: empirical (using intensity measurements)
[using spherical harmonic expansion of the absorption surface (Katayama, 1986; Blessing, 1995)]
2786 reflections with I > 2σ(I)
Tmin = 0.621, Tmax = 0.844Rint = 0.033
10193 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.04Δρmax = 0.37 e Å3
3651 reflectionsΔρmin = 0.30 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate otropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.03239 (5)0.20097 (4)0.73869 (3)0.03155 (16)
Ni20.24531 (5)0.01783 (4)0.77107 (3)0.03505 (16)
C10.1571 (4)0.3923 (3)0.7000 (2)0.0383 (8)
C20.2050 (4)0.3389 (4)0.7869 (2)0.0427 (9)
C30.2349 (4)0.1940 (4)0.7843 (2)0.0401 (8)
C40.2058 (4)0.1599 (4)0.6943 (2)0.0390 (8)
C50.1586 (4)0.2809 (4)0.6429 (2)0.0394 (8)
C60.1137 (6)0.5409 (4)0.6732 (3)0.0694 (12)
H6A0.20630.59990.64050.104*
H6B0.00560.52960.63680.104*
H6C0.10170.58810.72520.104*
C70.2239 (6)0.4224 (5)0.8689 (3)0.0691 (13)
H7A0.21290.35440.92040.104*
H7B0.33690.48660.87260.104*
H7C0.13370.47940.86580.104*
C80.2916 (6)0.0971 (5)0.8614 (3)0.0638 (12)
H8A0.24690.11890.91440.12 (2)*
H8C0.24680.00390.85070.15 (3)*
H8B0.41750.11440.86830.15 (2)*
C90.2307 (5)0.0200 (4)0.6591 (3)0.0676 (13)
H9A0.34250.03660.63410.101*
H9B0.22630.05580.70650.101*
H9C0.13910.00960.61420.101*
C100.1209 (5)0.2918 (5)0.5439 (2)0.0653 (12)
H10A0.02870.34580.52870.098*
H10B0.22490.34140.51620.098*
H10C0.08500.19500.52370.098*
C110.2814 (4)0.2718 (3)0.7893 (2)0.0324 (7)
C120.2255 (4)0.1498 (3)0.8376 (2)0.0333 (7)
C130.1871 (5)0.1585 (4)0.9291 (2)0.0455 (9)
H130.14690.08190.96270.055*
C140.2080 (5)0.2788 (4)0.9699 (2)0.0547 (10)
H140.18460.28151.03080.066*
C150.2632 (5)0.3956 (4)0.9214 (2)0.0556 (11)
H150.27580.47630.95010.067*
C160.2997 (5)0.3943 (4)0.8316 (2)0.0455 (9)
H160.33610.47360.79930.055*
C170.3141 (4)0.2529 (3)0.6941 (2)0.0326 (7)
C180.2816 (4)0.1162 (3)0.6715 (2)0.0324 (7)
C190.3046 (4)0.0890 (4)0.5811 (2)0.0397 (8)
H190.28260.00190.56370.048*
C200.3584 (5)0.1880 (4)0.5188 (2)0.0458 (9)
H200.37350.16680.45970.055*
C210.3911 (5)0.3196 (4)0.5416 (2)0.0479 (9)
H210.42770.38590.49810.057*
C220.3693 (5)0.3521 (4)0.6290 (2)0.0423 (9)
H220.39150.44030.64450.051*
C230.1249 (6)0.2075 (4)0.7963 (4)0.0712 (13)
H230.00530.20750.79870.085*
C240.2147 (8)0.1948 (4)0.8641 (3)0.0732 (14)
H240.16650.18060.92150.088*
C250.3876 (8)0.2056 (5)0.8376 (5)0.093 (2)
H250.47720.20160.87320.112*
C260.4052 (8)0.2236 (5)0.7481 (6)0.103 (2)
H260.50860.23540.71170.124*
C270.2368 (10)0.2203 (4)0.7230 (3)0.0832 (18)
H270.20660.22600.66580.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0297 (3)0.0302 (3)0.0342 (3)0.00323 (19)0.00392 (19)0.00382 (18)
Ni20.0381 (3)0.0240 (2)0.0426 (3)0.00562 (19)0.0039 (2)0.00027 (19)
C10.0303 (19)0.0334 (19)0.049 (2)0.0013 (15)0.0073 (16)0.0030 (16)
C20.034 (2)0.047 (2)0.043 (2)0.0055 (17)0.0075 (16)0.0118 (17)
C30.0310 (19)0.041 (2)0.047 (2)0.0049 (16)0.0055 (16)0.0003 (16)
C40.0287 (19)0.041 (2)0.049 (2)0.0064 (16)0.0102 (16)0.0053 (17)
C50.0293 (19)0.053 (2)0.0326 (18)0.0004 (17)0.0084 (15)0.0011 (16)
C60.064 (3)0.043 (2)0.097 (3)0.004 (2)0.015 (3)0.013 (2)
C70.064 (3)0.077 (3)0.063 (3)0.010 (2)0.008 (2)0.037 (2)
C80.050 (3)0.078 (3)0.058 (3)0.014 (2)0.001 (2)0.019 (2)
C90.058 (3)0.060 (3)0.093 (3)0.013 (2)0.022 (2)0.027 (2)
C100.051 (3)0.095 (3)0.044 (2)0.002 (2)0.009 (2)0.001 (2)
C110.0303 (18)0.0289 (17)0.0377 (18)0.0021 (15)0.0099 (15)0.0022 (14)
C120.0358 (19)0.0307 (17)0.0348 (18)0.0099 (15)0.0089 (15)0.0037 (14)
C130.053 (2)0.048 (2)0.0358 (19)0.0129 (19)0.0060 (17)0.0023 (16)
C140.071 (3)0.059 (2)0.035 (2)0.011 (2)0.0047 (19)0.0101 (18)
C150.079 (3)0.045 (2)0.048 (2)0.018 (2)0.008 (2)0.0151 (19)
C160.056 (2)0.0327 (19)0.051 (2)0.0126 (18)0.0077 (19)0.0079 (16)
C170.0304 (19)0.0296 (17)0.0370 (18)0.0035 (15)0.0042 (15)0.0026 (14)
C180.0279 (18)0.0275 (17)0.0411 (19)0.0043 (14)0.0008 (15)0.0036 (14)
C190.040 (2)0.0361 (19)0.044 (2)0.0055 (16)0.0032 (17)0.0132 (16)
C200.047 (2)0.052 (2)0.0362 (19)0.0062 (19)0.0017 (17)0.0048 (17)
C210.050 (2)0.048 (2)0.042 (2)0.0103 (19)0.0048 (18)0.0050 (17)
C220.046 (2)0.0326 (19)0.049 (2)0.0133 (17)0.0004 (18)0.0020 (16)
C230.066 (3)0.034 (2)0.117 (4)0.019 (2)0.017 (3)0.003 (3)
C240.122 (5)0.036 (2)0.062 (3)0.026 (3)0.005 (3)0.008 (2)
C250.092 (4)0.033 (3)0.163 (6)0.021 (3)0.080 (4)0.038 (3)
C260.075 (4)0.026 (2)0.188 (7)0.002 (2)0.071 (4)0.002 (3)
C270.169 (6)0.026 (2)0.057 (3)0.022 (3)0.011 (4)0.0055 (19)
Geometric parameters (Å, º) top
Ni1—C22.142 (3)C9—H9B0.9600
Ni1—C12.146 (3)C9—H9C0.9600
Ni1—C42.148 (3)C10—H10A0.9600
Ni1—C182.150 (3)C10—H10B0.9600
Ni1—C32.151 (3)C10—H10C0.9600
Ni1—C52.151 (3)C11—C161.401 (4)
Ni1—C122.176 (3)C11—C121.421 (4)
Ni1—C172.374 (3)C11—C171.468 (4)
Ni1—C112.384 (3)C12—C131.404 (4)
Ni1—Ni22.3974 (6)C13—C141.376 (5)
Ni2—C181.911 (3)C13—H130.9300
Ni2—C121.914 (3)C14—C151.379 (5)
Ni2—C252.098 (4)C14—H140.9300
Ni2—C272.104 (4)C15—C161.371 (5)
Ni2—C262.107 (4)C15—H150.9300
Ni2—C242.111 (4)C16—H160.9300
Ni2—C232.157 (4)C17—C221.393 (4)
C1—C21.414 (5)C17—C181.428 (4)
C1—C51.418 (4)C18—C191.412 (4)
C1—C61.505 (5)C19—C201.361 (5)
C2—C31.422 (5)C19—H190.9300
C2—C71.513 (4)C20—C211.385 (5)
C3—C41.423 (4)C20—H200.9300
C3—C81.505 (5)C21—C221.379 (4)
C4—C51.406 (5)C21—H210.9300
C4—C91.510 (4)C22—H220.9300
C5—C101.507 (5)C23—C241.323 (6)
C6—H6A0.9600C23—C271.354 (6)
C6—H6B0.9600C23—H230.9300
C6—H6C0.9600C24—C251.360 (7)
C7—H7A0.9600C24—H240.9300
C7—H7B0.9600C25—C261.378 (8)
C7—H7C0.9600C25—H250.9300
C8—H8A0.9600C26—C271.394 (8)
C8—H8C0.9600C26—H260.9300
C8—H8B0.9600C27—H270.9300
C9—H9A0.9600
C2—Ni1—C138.52 (13)C1—C6—H6C109.5
C2—Ni1—C464.31 (12)H6A—C6—H6C109.5
C1—Ni1—C464.40 (12)H6B—C6—H6C109.5
C2—Ni1—C18164.74 (13)C2—C7—H7A109.5
C1—Ni1—C18127.91 (13)C2—C7—H7B109.5
C4—Ni1—C18120.37 (12)H7A—C7—H7B109.5
C2—Ni1—C338.69 (12)C2—C7—H7C109.5
C1—Ni1—C364.93 (13)H7A—C7—H7C109.5
C4—Ni1—C338.65 (12)H7B—C7—H7C109.5
C18—Ni1—C3153.54 (11)C3—C8—H8A109.5
C2—Ni1—C564.29 (13)C3—C8—H8C109.5
C1—Ni1—C538.54 (12)H8A—C8—H8C109.5
C4—Ni1—C538.19 (13)C3—C8—H8B109.5
C18—Ni1—C5109.48 (12)H8A—C8—H8B109.5
C3—Ni1—C564.61 (13)H8C—C8—H8B109.5
C2—Ni1—C12111.77 (12)C4—C9—H9A109.5
C1—Ni1—C12134.49 (11)C4—C9—H9B109.5
C4—Ni1—C12147.18 (12)H9A—C9—H9B109.5
C18—Ni1—C1272.6 (1)C4—C9—H9C109.5
C3—Ni1—C12116.76 (12)H9A—C9—H9C109.5
C5—Ni1—C12172.58 (12)H9B—C9—H9C109.5
C2—Ni1—C17131.15 (12)C5—C10—H10A109.5
C1—Ni1—C17107.06 (12)C5—C10—H10B109.5
C4—Ni1—C17145.30 (12)H10A—C10—H10B109.5
C18—Ni1—C1736.37 (10)C5—C10—H10C109.5
C3—Ni1—C17169.83 (11)H10A—C10—H10C109.5
C5—Ni1—C17113.58 (12)H10B—C10—H10C109.5
C12—Ni1—C1763.66 (11)C16—C11—C12121.2 (3)
C2—Ni1—C11110.49 (11)C16—C11—C17126.1 (3)
C1—Ni1—C11109.94 (11)C12—C11—C17112.7 (2)
C4—Ni1—C11174.15 (11)C16—C11—Ni1132.2 (2)
C18—Ni1—C1163.90 (11)C12—C11—Ni164.02 (16)
C3—Ni1—C11138.69 (11)C17—C11—Ni171.66 (16)
C5—Ni1—C11138.04 (12)C13—C12—C11117.1 (3)
C12—Ni1—C1135.94 (11)C13—C12—Ni2127.8 (2)
C17—Ni1—C1135.95 (10)C11—C12—Ni2114.4 (2)
C2—Ni1—Ni2144.71 (10)C13—C12—Ni1125.0 (2)
C1—Ni1—Ni2175.83 (9)C11—C12—Ni180.03 (19)
C4—Ni1—Ni2113.60 (9)Ni2—C12—Ni171.44 (10)
C18—Ni1—Ni249.34 (9)C14—C13—C12120.9 (3)
C3—Ni1—Ni2116.10 (9)C14—C13—H13119.5
C5—Ni1—Ni2137.65 (9)C12—C13—H13119.5
C12—Ni1—Ni249.19 (8)C13—C14—C15120.8 (3)
C17—Ni1—Ni272.38 (8)C13—C14—H14119.6
C11—Ni1—Ni272.14 (7)C15—C14—H14119.6
C18—Ni2—C1284.1 (1)C16—C15—C14120.9 (3)
C18—Ni2—C25138.1 (2)C16—C15—H15119.6
C12—Ni2—C25110.6 (2)C14—C15—H15119.6
C18—Ni2—C27107.81 (16)C15—C16—C11119.1 (3)
C12—Ni2—C27167.24 (18)C15—C16—H16120.4
C25—Ni2—C2763.7 (2)C11—C16—H16120.4
C18—Ni2—C26108.2 (2)C22—C17—C18120.7 (3)
C12—Ni2—C26142.7 (3)C22—C17—C11126.9 (3)
C25—Ni2—C2638.3 (2)C18—C17—C11112.5 (3)
C27—Ni2—C2638.7 (2)C22—C17—Ni1131.8 (2)
C18—Ni2—C24169.60 (14)C18—C17—Ni163.24 (16)
C12—Ni2—C24106.24 (15)C11—C17—Ni172.39 (17)
C25—Ni2—C2437.7 (2)C19—C18—C17116.9 (3)
C27—Ni2—C2461.94 (17)C19—C18—Ni2128.1 (2)
C26—Ni2—C2463.0 (2)C17—C18—Ni2114.3 (2)
C18—Ni2—C23136.20 (18)C19—C18—Ni1124.0 (2)
C12—Ni2—C23130.44 (18)C17—C18—Ni180.39 (18)
C25—Ni2—C2362.24 (18)Ni2—C18—Ni172.08 (10)
C27—Ni2—C2337.02 (17)C20—C19—C18121.2 (3)
C26—Ni2—C2362.91 (19)C20—C19—H19119.4
C24—Ni2—C2336.09 (17)C18—C19—H19119.4
C18—Ni2—Ni158.58 (9)C19—C20—C21121.4 (3)
C12—Ni2—Ni159.37 (10)C19—C20—H20119.3
C25—Ni2—Ni1162.2 (2)C21—C20—H20119.3
C27—Ni2—Ni1122.62 (18)C22—C21—C20119.8 (3)
C26—Ni2—Ni1156.6 (3)C22—C21—H21120.1
C24—Ni2—Ni1127.30 (16)C20—C21—H21120.1
C23—Ni2—Ni1111.51 (13)C21—C22—C17120.1 (3)
C2—C1—C5107.5 (3)C21—C22—H22120.0
C2—C1—C6126.1 (3)C17—C22—H22120.0
C5—C1—C6126.3 (3)C24—C23—C27108.3 (5)
C2—C1—Ni170.6 (2)C24—C23—Ni270.1 (2)
C5—C1—Ni170.94 (19)C27—C23—Ni269.4 (2)
C6—C1—Ni1124.2 (3)C24—C23—H23125.9
C1—C2—C3108.8 (3)C27—C23—H23125.9
C1—C2—C7125.7 (3)Ni2—C23—H23126.3
C3—C2—C7125.5 (3)C23—C24—C25110.1 (5)
C1—C2—Ni170.88 (19)C23—C24—Ni273.9 (3)
C3—C2—Ni170.99 (19)C25—C24—Ni270.7 (3)
C7—C2—Ni1124.7 (3)C23—C24—H24124.9
C2—C3—C4106.8 (3)C25—C24—H24124.9
C2—C3—C8126.7 (3)Ni2—C24—H24122.2
C4—C3—C8126.5 (3)C24—C25—C26107.2 (5)
C2—C3—Ni170.31 (19)C24—C25—Ni271.6 (3)
C4—C3—Ni170.57 (18)C26—C25—Ni271.2 (3)
C8—C3—Ni1125.5 (3)C24—C25—H25126.4
C5—C4—C3108.7 (3)C26—C25—H25126.4
C5—C4—C9125.6 (3)Ni2—C25—H25122.5
C3—C4—C9125.6 (3)C25—C26—C27106.1 (5)
C5—C4—Ni171.03 (18)C25—C26—Ni270.5 (3)
C3—C4—Ni170.78 (18)C27—C26—Ni270.6 (3)
C9—C4—Ni1126.6 (3)C25—C26—H26126.9
C4—C5—C1108.2 (3)C27—C26—H26126.9
C4—C5—C10125.9 (3)Ni2—C26—H26123.6
C1—C5—C10125.9 (3)C23—C27—C26108.1 (5)
C4—C5—Ni170.78 (19)C23—C27—Ni273.6 (2)
C1—C5—Ni170.52 (18)C26—C27—Ni270.8 (2)
C10—C5—Ni1125.6 (2)C23—C27—H27125.9
C1—C6—H6A109.5C26—C27—H27125.9
C1—C6—H6B109.5Ni2—C27—H27121.4
H6A—C6—H6B109.5
C2—Ni1—Ni2—C18171.02 (18)Ni2—Ni1—C11—C1243.51 (17)
C1—Ni1—Ni2—C1850.1 (12)C2—Ni1—C11—C17132.94 (19)
C4—Ni1—Ni2—C18110.61 (14)C1—Ni1—C11—C1791.78 (19)
C3—Ni1—Ni2—C18153.30 (14)C4—Ni1—C11—C17106.3 (11)
C5—Ni1—Ni2—C1873.17 (17)C18—Ni1—C11—C1731.59 (17)
C12—Ni1—Ni2—C18102.84 (14)C3—Ni1—C11—C17166.12 (19)
C17—Ni1—Ni2—C1832.77 (12)C5—Ni1—C11—C1759.0 (2)
C11—Ni1—Ni2—C1870.57 (13)C12—Ni1—C11—C17127.9 (3)
C2—Ni1—Ni2—C1268.18 (18)Ni2—Ni1—C11—C1784.40 (16)
C1—Ni1—Ni2—C12152.9 (12)C16—C11—C12—C130.9 (5)
C4—Ni1—Ni2—C12146.55 (15)C17—C11—C12—C13178.7 (3)
C18—Ni1—Ni2—C12102.84 (15)Ni1—C11—C12—C13124.4 (3)
C3—Ni1—Ni2—C12103.86 (14)C16—C11—C12—Ni2170.4 (3)
C5—Ni1—Ni2—C12176.01 (17)C17—C11—C12—Ni210.0 (4)
C17—Ni1—Ni2—C1270.07 (13)Ni1—C11—C12—Ni264.26 (16)
C11—Ni1—Ni2—C1232.27 (13)C16—C11—C12—Ni1125.3 (3)
C2—Ni1—Ni2—C258.7 (4)C17—C11—C12—Ni154.3 (2)
C1—Ni1—Ni2—C25147.6 (12)C18—Ni2—C12—C13177.1 (3)
C4—Ni1—Ni2—C2587.1 (4)C25—Ni2—C12—C1343.3 (4)
C18—Ni1—Ni2—C25162.3 (4)C27—Ni2—C12—C1317.6 (11)
C3—Ni1—Ni2—C2544.4 (4)C26—Ni2—C12—C1370.4 (4)
C5—Ni1—Ni2—C25124.5 (4)C24—Ni2—C12—C133.8 (4)
C12—Ni1—Ni2—C2559.5 (4)C23—Ni2—C12—C1327.2 (4)
C17—Ni1—Ni2—C25129.6 (4)Ni1—Ni2—C12—C13120.4 (3)
C11—Ni1—Ni2—C2591.7 (4)C18—Ni2—C12—C1112.6 (2)
C2—Ni1—Ni2—C2797.0 (2)C25—Ni2—C12—C11126.9 (3)
C1—Ni1—Ni2—C2741.9 (12)C27—Ni2—C12—C11172.2 (9)
C4—Ni1—Ni2—C2718.6 (2)C26—Ni2—C12—C1199.9 (3)
C18—Ni1—Ni2—C2792.0 (2)C24—Ni2—C12—C11166.5 (3)
C3—Ni1—Ni2—C2761.3 (2)C23—Ni2—C12—C11162.5 (2)
C5—Ni1—Ni2—C2718.8 (2)Ni1—Ni2—C12—C1169.4 (2)
C12—Ni1—Ni2—C27165.2 (2)C18—Ni2—C12—Ni156.76 (11)
C17—Ni1—Ni2—C27124.7 (2)C25—Ni2—C12—Ni1163.7 (2)
C11—Ni1—Ni2—C27162.6 (2)C27—Ni2—C12—Ni1102.8 (9)
C2—Ni1—Ni2—C26128.3 (4)C26—Ni2—C12—Ni1169.3 (2)
C1—Ni1—Ni2—C2610.6 (12)C24—Ni2—C12—Ni1124.12 (18)
C4—Ni1—Ni2—C2649.9 (4)C23—Ni2—C12—Ni193.2 (2)
C18—Ni1—Ni2—C2660.7 (4)C2—Ni1—C12—C1321.0 (3)
C3—Ni1—Ni2—C2692.6 (4)C1—Ni1—C12—C1359.0 (3)
C5—Ni1—Ni2—C2612.5 (4)C4—Ni1—C12—C1355.0 (4)
C12—Ni1—Ni2—C26163.5 (4)C18—Ni1—C12—C13174.5 (3)
C17—Ni1—Ni2—C2693.5 (3)C3—Ni1—C12—C1321.3 (3)
C11—Ni1—Ni2—C26131.3 (3)C5—Ni1—C12—C1377.6 (10)
C2—Ni1—Ni2—C2419.4 (2)C17—Ni1—C12—C13147.4 (3)
C1—Ni1—Ni2—C24119.5 (12)C11—Ni1—C12—C13116.3 (3)
C4—Ni1—Ni2—C2459.0 (2)Ni2—Ni1—C12—C13123.7 (3)
C18—Ni1—Ni2—C24169.6 (2)C2—Ni1—C12—C1195.2 (2)
C3—Ni1—Ni2—C2416.3 (2)C1—Ni1—C12—C1157.3 (3)
C5—Ni1—Ni2—C2496.4 (2)C4—Ni1—C12—C11171.2 (2)
C12—Ni1—Ni2—C2487.6 (2)C18—Ni1—C12—C1169.24 (18)
C17—Ni1—Ni2—C24157.64 (19)C3—Ni1—C12—C11137.52 (18)
C11—Ni1—Ni2—C24119.83 (19)C5—Ni1—C12—C1138.7 (10)
C2—Ni1—Ni2—C2357.0 (2)C17—Ni1—C12—C1131.12 (16)
C1—Ni1—Ni2—C2381.9 (12)Ni2—Ni1—C12—C11120.0 (2)
C4—Ni1—Ni2—C2321.3 (2)C2—Ni1—C12—Ni2144.72 (12)
C18—Ni1—Ni2—C23131.93 (19)C1—Ni1—C12—Ni2177.34 (13)
C3—Ni1—Ni2—C2321.4 (2)C4—Ni1—C12—Ni268.7 (2)
C5—Ni1—Ni2—C2358.8 (2)C18—Ni1—C12—Ni250.80 (10)
C12—Ni1—Ni2—C23125.2 (2)C3—Ni1—C12—Ni2102.44 (12)
C17—Ni1—Ni2—C23164.70 (18)C5—Ni1—C12—Ni2158.7 (9)
C11—Ni1—Ni2—C23157.49 (18)C17—Ni1—C12—Ni288.92 (11)
C4—Ni1—C1—C280.2 (2)C11—Ni1—C12—Ni2120.0 (2)
C18—Ni1—C1—C2170.07 (17)C11—C12—C13—C141.8 (5)
C3—Ni1—C1—C237.26 (18)Ni2—C12—C13—C14168.2 (3)
C5—Ni1—C1—C2117.3 (3)Ni1—C12—C13—C1498.8 (4)
C12—Ni1—C1—C266.5 (2)C12—C13—C14—C151.6 (6)
C17—Ni1—C1—C2136.03 (18)C13—C14—C15—C160.4 (7)
C11—Ni1—C1—C298.17 (19)C14—C15—C16—C110.4 (6)
Ni2—Ni1—C1—C2142.4 (11)C12—C11—C16—C150.2 (5)
C2—Ni1—C1—C5117.3 (3)C17—C11—C16—C15179.7 (3)
C4—Ni1—C1—C537.12 (19)Ni1—C11—C16—C1582.0 (4)
C18—Ni1—C1—C572.6 (2)C16—C11—C17—C220.2 (6)
C3—Ni1—C1—C580.1 (2)C12—C11—C17—C22179.8 (3)
C12—Ni1—C1—C5176.20 (18)Ni1—C11—C17—C22129.5 (3)
C17—Ni1—C1—C5106.64 (19)C16—C11—C17—C18179.3 (3)
C11—Ni1—C1—C5144.50 (18)C12—C11—C17—C180.2 (4)
Ni2—Ni1—C1—C525.1 (13)Ni1—C11—C17—C1850.0 (2)
C2—Ni1—C1—C6121.1 (4)C16—C11—C17—Ni1129.3 (3)
C4—Ni1—C1—C6158.7 (4)C12—C11—C17—Ni150.3 (2)
C18—Ni1—C1—C649.0 (4)C2—Ni1—C17—C2258.5 (3)
C3—Ni1—C1—C6158.4 (3)C1—Ni1—C17—C2223.5 (3)
C5—Ni1—C1—C6121.6 (4)C4—Ni1—C17—C2246.0 (4)
C12—Ni1—C1—C654.6 (4)C18—Ni1—C17—C22108.4 (3)
C17—Ni1—C1—C614.9 (3)C3—Ni1—C17—C2260.3 (8)
C11—Ni1—C1—C623.0 (3)C5—Ni1—C17—C2217.2 (3)
Ni2—Ni1—C1—C696.4 (12)C12—Ni1—C17—C22155.2 (3)
C5—C1—C2—C30.5 (4)C11—Ni1—C17—C22124.1 (4)
C6—C1—C2—C3179.9 (3)Ni2—Ni1—C17—C22152.2 (3)
Ni1—C1—C2—C361.2 (2)C2—Ni1—C17—C18166.90 (19)
C5—C1—C2—C7178.7 (3)C1—Ni1—C17—C18131.8 (2)
C6—C1—C2—C70.9 (6)C4—Ni1—C17—C1862.4 (3)
Ni1—C1—C2—C7119.6 (4)C3—Ni1—C17—C18168.7 (6)
C5—C1—C2—Ni161.7 (2)C5—Ni1—C17—C1891.2 (2)
C6—C1—C2—Ni1118.7 (4)C12—Ni1—C17—C1896.4 (2)
C4—Ni1—C2—C180.5 (2)C11—Ni1—C17—C18127.5 (3)
C18—Ni1—C2—C131.1 (5)Ni2—Ni1—C17—C1843.82 (17)
C3—Ni1—C2—C1118.7 (3)C2—Ni1—C17—C1165.6 (2)
C5—Ni1—C2—C137.90 (18)C1—Ni1—C17—C11100.64 (18)
C12—Ni1—C2—C1135.23 (18)C4—Ni1—C17—C11170.1 (2)
C17—Ni1—C2—C161.8 (2)C18—Ni1—C17—C11127.5 (3)
C11—Ni1—C2—C196.62 (19)C3—Ni1—C17—C1163.8 (7)
Ni2—Ni1—C2—C1175.60 (13)C5—Ni1—C17—C11141.29 (18)
C1—Ni1—C2—C3118.7 (3)C12—Ni1—C17—C1131.12 (17)
C4—Ni1—C2—C338.2 (2)Ni2—Ni1—C17—C1183.69 (16)
C18—Ni1—C2—C3149.8 (4)C22—C17—C18—C191.3 (5)
C5—Ni1—C2—C380.8 (2)C11—C17—C18—C19178.3 (3)
C12—Ni1—C2—C3106.1 (2)Ni1—C17—C18—C19123.4 (3)
C17—Ni1—C2—C3179.49 (18)C22—C17—C18—Ni2170.1 (3)
C11—Ni1—C2—C3144.69 (19)C11—C17—C18—Ni210.3 (3)
Ni2—Ni1—C2—C356.9 (3)Ni1—C17—C18—Ni265.24 (16)
C1—Ni1—C2—C7120.8 (4)C22—C17—C18—Ni1124.7 (3)
C4—Ni1—C2—C7158.8 (4)C11—C17—C18—Ni154.9 (2)
C18—Ni1—C2—C789.7 (5)C12—Ni2—C18—C19177.1 (3)
C3—Ni1—C2—C7120.5 (4)C25—Ni2—C18—C1968.4 (4)
C5—Ni1—C2—C7158.7 (4)C27—Ni2—C18—C191.8 (4)
C12—Ni1—C2—C714.5 (4)C26—Ni2—C18—C1939.0 (4)
C17—Ni1—C2—C758.9 (4)C24—Ni2—C18—C197.6 (12)
C11—Ni1—C2—C724.2 (4)C23—Ni2—C18—C1930.5 (4)
Ni2—Ni1—C2—C763.6 (4)Ni1—Ni2—C18—C19119.6 (3)
C1—C2—C3—C40.4 (4)C12—Ni2—C18—C1712.7 (2)
C7—C2—C3—C4178.8 (3)C25—Ni2—C18—C17101.8 (3)
Ni1—C2—C3—C461.5 (2)C27—Ni2—C18—C17171.9 (3)
C1—C2—C3—C8178.8 (3)C26—Ni2—C18—C17131.2 (3)
C7—C2—C3—C80.5 (6)C24—Ni2—C18—C17162.5 (10)
Ni1—C2—C3—C8120.1 (4)C23—Ni2—C18—C17159.3 (3)
C1—C2—C3—Ni161.1 (2)Ni1—Ni2—C18—C1770.2 (2)
C7—C2—C3—Ni1119.6 (4)C12—Ni2—C18—Ni157.50 (11)
C1—Ni1—C3—C237.1 (2)C25—Ni2—C18—Ni1172.0 (2)
C4—Ni1—C3—C2116.8 (3)C27—Ni2—C18—Ni1117.9 (2)
C18—Ni1—C3—C2162.7 (3)C26—Ni2—C18—Ni1158.6 (3)
C5—Ni1—C3—C279.9 (2)C24—Ni2—C18—Ni1127.2 (11)
C12—Ni1—C3—C292.0 (2)C23—Ni2—C18—Ni189.1 (2)
C17—Ni1—C3—C22.2 (8)C2—Ni1—C18—C1975.7 (5)
C11—Ni1—C3—C255.1 (3)C1—Ni1—C18—C1951.6 (3)
Ni2—Ni1—C3—C2147.38 (18)C4—Ni1—C18—C1928.1 (3)
C2—Ni1—C3—C4116.8 (3)C3—Ni1—C18—C1959.5 (4)
C1—Ni1—C3—C479.7 (2)C5—Ni1—C18—C1912.5 (3)
C18—Ni1—C3—C445.9 (4)C12—Ni1—C18—C19175.0 (3)
C5—Ni1—C3—C436.91 (19)C17—Ni1—C18—C19116.1 (3)
C12—Ni1—C3—C4151.20 (19)C11—Ni1—C18—C19147.3 (3)
C17—Ni1—C3—C4119.0 (6)Ni2—Ni1—C18—C19124.4 (3)
C11—Ni1—C3—C4171.90 (18)C2—Ni1—C18—C1740.4 (5)
Ni2—Ni1—C3—C495.81 (19)C1—Ni1—C18—C1764.5 (2)
C2—Ni1—C3—C8121.7 (4)C4—Ni1—C18—C17144.23 (19)
C1—Ni1—C3—C8158.8 (3)C3—Ni1—C18—C17175.5 (3)
C4—Ni1—C3—C8121.5 (4)C5—Ni1—C18—C17103.6 (2)
C18—Ni1—C3—C875.6 (4)C12—Ni1—C18—C1768.91 (19)
C5—Ni1—C3—C8158.4 (4)C11—Ni1—C18—C1731.23 (17)
C12—Ni1—C3—C829.7 (3)Ni2—Ni1—C18—C17119.6 (2)
C17—Ni1—C3—C8119.5 (7)C2—Ni1—C18—Ni2160.0 (4)
C11—Ni1—C3—C866.6 (4)C1—Ni1—C18—Ni2175.95 (11)
Ni2—Ni1—C3—C825.7 (3)C4—Ni1—C18—Ni296.22 (14)
C2—C3—C4—C50.2 (4)C3—Ni1—C18—Ni264.9 (3)
C8—C3—C4—C5178.5 (3)C5—Ni1—C18—Ni2136.85 (11)
Ni1—C3—C4—C561.2 (2)C12—Ni1—C18—Ni250.64 (10)
C2—C3—C4—C9176.9 (3)C17—Ni1—C18—Ni2119.6 (2)
C8—C3—C4—C91.5 (6)C11—Ni1—C18—Ni288.32 (12)
Ni1—C3—C4—C9121.8 (4)C17—C18—C19—C201.2 (5)
C2—C3—C4—Ni161.4 (2)Ni2—C18—C19—C20168.8 (3)
C8—C3—C4—Ni1120.3 (4)Ni1—C18—C19—C2097.9 (4)
C2—Ni1—C4—C580.4 (2)C18—C19—C20—C210.6 (6)
C1—Ni1—C4—C537.46 (19)C19—C20—C21—C220.1 (6)
C18—Ni1—C4—C583.1 (2)C20—C21—C22—C170.2 (6)
C3—Ni1—C4—C5118.6 (3)C18—C17—C22—C210.8 (5)
C12—Ni1—C4—C5171.2 (2)C11—C17—C22—C21178.7 (3)
C17—Ni1—C4—C545.6 (3)Ni1—C17—C22—C2179.3 (4)
C11—Ni1—C4—C552.6 (12)C18—Ni2—C23—C24169.1 (3)
Ni2—Ni1—C4—C5138.52 (17)C12—Ni2—C23—C2457.0 (4)
C2—Ni1—C4—C338.3 (2)C25—Ni2—C23—C2437.3 (3)
C1—Ni1—C4—C381.2 (2)C27—Ni2—C23—C24119.5 (5)
C18—Ni1—C4—C3158.23 (19)C26—Ni2—C23—C2480.6 (4)
C5—Ni1—C4—C3118.6 (3)Ni1—Ni2—C23—C24124.4 (3)
C12—Ni1—C4—C352.5 (3)C18—Ni2—C23—C2749.6 (4)
C17—Ni1—C4—C3164.3 (2)C12—Ni2—C23—C27176.5 (3)
C11—Ni1—C4—C366.0 (12)C25—Ni2—C23—C2782.2 (4)
Ni2—Ni1—C4—C3102.84 (18)C26—Ni2—C23—C2738.9 (4)
C2—Ni1—C4—C9158.9 (4)C24—Ni2—C23—C27119.5 (5)
C1—Ni1—C4—C9158.2 (4)Ni1—Ni2—C23—C27116.1 (3)
C18—Ni1—C4—C937.6 (4)C27—C23—C24—C252.7 (5)
C3—Ni1—C4—C9120.7 (4)Ni2—C23—C24—C2561.7 (3)
C5—Ni1—C4—C9120.7 (4)C27—C23—C24—Ni259.1 (3)
C12—Ni1—C4—C968.1 (4)C18—Ni2—C24—C2346.6 (13)
C17—Ni1—C4—C975.1 (4)C12—Ni2—C24—C23138.4 (3)
C11—Ni1—C4—C9173.3 (10)C25—Ni2—C24—C23118.8 (4)
Ni2—Ni1—C4—C917.8 (4)C27—Ni2—C24—C2336.4 (3)
C3—C4—C5—C10.2 (4)C26—Ni2—C24—C2380.2 (4)
C9—C4—C5—C1177.2 (3)Ni1—Ni2—C24—C2374.8 (3)
Ni1—C4—C5—C160.9 (2)C18—Ni2—C24—C2572.2 (12)
C3—C4—C5—C10178.4 (3)C12—Ni2—C24—C25102.9 (4)
C9—C4—C5—C101.4 (6)C27—Ni2—C24—C2582.4 (4)
Ni1—C4—C5—C10120.6 (4)C26—Ni2—C24—C2538.5 (3)
C3—C4—C5—Ni161.1 (2)C23—Ni2—C24—C25118.8 (4)
C9—C4—C5—Ni1121.9 (4)Ni1—Ni2—C24—C25166.4 (3)
C2—C1—C5—C40.4 (4)C23—C24—C25—C261.0 (5)
C6—C1—C5—C4180.0 (3)Ni2—C24—C25—C2662.7 (3)
Ni1—C1—C5—C461.1 (2)C23—C24—C25—Ni263.7 (3)
C2—C1—C5—C10178.1 (3)C18—Ni2—C25—C24165.1 (3)
C6—C1—C5—C101.5 (6)C12—Ni2—C25—C2490.1 (3)
Ni1—C1—C5—C10120.4 (4)C27—Ni2—C25—C2477.4 (3)
C2—C1—C5—Ni161.5 (2)C26—Ni2—C25—C24116.3 (4)
C6—C1—C5—Ni1118.9 (4)C23—Ni2—C25—C2435.7 (3)
C2—Ni1—C5—C480.4 (2)Ni1—Ni2—C25—C2437.8 (6)
C1—Ni1—C5—C4118.3 (3)C18—Ni2—C25—C2648.8 (4)
C18—Ni1—C5—C4114.68 (19)C12—Ni2—C25—C26153.6 (3)
C3—Ni1—C5—C437.35 (18)C27—Ni2—C25—C2638.8 (3)
C12—Ni1—C5—C4139.8 (9)C24—Ni2—C25—C26116.3 (4)
C17—Ni1—C5—C4153.64 (18)C23—Ni2—C25—C2680.6 (3)
C11—Ni1—C5—C4173.05 (18)Ni1—Ni2—C25—C26154.0 (4)
Ni2—Ni1—C5—C464.3 (2)C24—C25—C26—C271.0 (5)
C2—Ni1—C5—C137.89 (19)Ni2—C25—C26—C2762.0 (3)
C4—Ni1—C5—C1118.3 (3)C24—C25—C26—Ni263.0 (3)
C18—Ni1—C5—C1127.00 (19)C18—Ni2—C26—C25148.1 (3)
C3—Ni1—C5—C181.0 (2)C12—Ni2—C26—C2543.4 (5)
C12—Ni1—C5—C121.5 (10)C27—Ni2—C26—C25115.9 (4)
C17—Ni1—C5—C188.0 (2)C24—Ni2—C26—C2538.0 (3)
C11—Ni1—C5—C154.7 (3)C23—Ni2—C26—C2578.7 (3)
Ni2—Ni1—C5—C1177.37 (15)Ni1—Ni2—C26—C25160.4 (3)
C2—Ni1—C5—C10158.7 (4)C18—Ni2—C26—C2796.0 (3)
C1—Ni1—C5—C10120.8 (4)C12—Ni2—C26—C27159.3 (3)
C4—Ni1—C5—C10120.9 (4)C25—Ni2—C26—C27115.9 (4)
C18—Ni1—C5—C106.2 (3)C24—Ni2—C26—C2778.0 (3)
C3—Ni1—C5—C10158.3 (4)C23—Ni2—C26—C2737.3 (3)
C12—Ni1—C5—C1099.3 (9)Ni1—Ni2—C26—C2744.4 (5)
C17—Ni1—C5—C1032.7 (3)C24—C23—C27—C263.3 (5)
C11—Ni1—C5—C1066.0 (4)Ni2—C23—C27—C2662.7 (3)
Ni2—Ni1—C5—C1056.6 (4)C24—C23—C27—Ni259.5 (3)
C2—Ni1—C11—C1610.5 (4)C25—C26—C27—C232.6 (5)
C1—Ni1—C11—C1630.7 (3)Ni2—C26—C27—C2364.6 (3)
C4—Ni1—C11—C1616.2 (13)C25—C26—C27—Ni262.0 (3)
C18—Ni1—C11—C16154.1 (4)C18—Ni2—C27—C23146.4 (3)
C3—Ni1—C11—C1643.6 (4)C12—Ni2—C27—C2312.2 (12)
C5—Ni1—C11—C1663.5 (4)C25—Ni2—C27—C2378.1 (3)
C12—Ni1—C11—C16109.6 (4)C26—Ni2—C27—C23116.5 (5)
C17—Ni1—C11—C16122.5 (4)C24—Ni2—C27—C2335.5 (3)
Ni2—Ni1—C11—C16153.1 (3)Ni1—Ni2—C27—C2382.8 (3)
C2—Ni1—C11—C1299.2 (2)C18—Ni2—C27—C2697.1 (4)
C1—Ni1—C11—C12140.31 (19)C12—Ni2—C27—C26104.3 (11)
C4—Ni1—C11—C12125.8 (11)C25—Ni2—C27—C2638.4 (3)
C18—Ni1—C11—C1296.3 (2)C24—Ni2—C27—C2681.0 (4)
C3—Ni1—C11—C1266.0 (3)C23—Ni2—C27—C26116.5 (5)
C5—Ni1—C11—C12173.07 (19)Ni1—Ni2—C27—C26160.7 (3)
C17—Ni1—C11—C12127.9 (3)

Experimental details

Crystal data
Chemical formula[Ni2(C5H5)(C10H15)(C12H8)]
Mr469.91
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.8022 (2), 9.3335 (3), 15.2091 (6)
α, β, γ (°)84.677 (2), 84.953 (2), 78.244 (2)
V3)1076.93 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.76
Crystal size (mm)0.26 × 0.20 × 0.14
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
[using spherical harmonic expansion of the absorption surface (Katayama, 1986; Blessing, 1995)]
Tmin, Tmax0.621, 0.844
No. of measured, independent and
observed [I > 2σ(I)] reflections
10193, 3651, 2786
Rint0.033
(sin θ/λ)max1)0.589
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.088, 1.04
No. of reflections3651
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.30

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Burnett & Johnson, 1996).

Selected geometric parameters (Å, º) top
Ni1—C182.150 (3)Ni2—C181.911 (3)
Ni1—C122.176 (3)Ni2—C121.914 (3)
Ni1—C172.374 (3)C11—C121.421 (4)
Ni1—C112.384 (3)C11—C171.468 (4)
Ni1—Ni22.3974 (6)C17—C181.428 (4)
C18—Ni1—C1272.6 (1)C18—Ni2—C1284.1 (1)
X—H···Cg(π ring) interactions (H···Cg < 3.0 Å, γ < 30.0°) top
X—H(I)···Cg(J)H···CgH···ringγX—H···CgX···CgX—H···π
C8—H8B···Cg3i2.762.67114.331573.661 (5)69
C9—H9A···Cg4i2.772.71611.541493.628 (4)67
C16—H16···Cg2ii2.882.8489.141403.648 (4)57
Cg2 is the centroid of the ring C23–C27, Cg3 is the centroid of the ring C11–C16 and Cg4 is the centroid of the ring C17–C22. Symmetry codes: (i) -1+x, y, z; (ii) x, 1+y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds