Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Nucleophilic attack of (triphenyl­phospho­nio)cyclo­penta­di­en­ide on the dichloro­diazo­methane-tungsten complex trans-[BrW(dppe)2(N2CCl2)]PF6 [dppe is 1,2-bis(diphenyl­phos­phino)ethane] results in C-C bond formation and affords the title compound, trans-[W(C24H18ClN2P)Br(C26H24P2)2]PF6·0.6CH2Cl2. This complex, bis[1,2-bis(diphenyl­phosphino)­ethane]­bromido{chloro­[3-(triphenylphosphonio)­cyclo­penta­di­enyl­idene]­diazo­methane­diido}­tungsten hexa­fluoro­phos­phate dichloromethane 0.6-solvate, contains the previously unknown ligand chloro­[3-(triphenyl­phospho­nio)cyclo­penta­dienyl­idene]diazo­methane. Evidence from bond lengths and torsion angles indicates significant through-ligand delocalization of electron density from tungsten to the nominally cationic phosphorus(V) centre. This structural analysis clearly demonstrates that the tungsten-dinitro­gen unit is a powerful [pi]-electron donor with the ability to transfer electron density from the metal to a distant acceptor centre through an extended conjugated ligand system. As a consequence, complexes of this type could have potential applications as nonlinear optical materials and mol­ecular semiconductors.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108037232/sq3171sup1.cif
Contains datablocks II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108037232/sq3171IIsup2.hkl
Contains datablock II

CCDC reference: 718130

Comment top

Transition metal complexes containing extended conjugated organic ligands have the potential to display a wide range of novel electronic, magnetic and optical properties (Chisholm & Macintosh, 2005; Ceccon et al., 2004; Schwab et al., 1999) and thus to provide a basis for the development of molecular materials and devices (Low, 2005; Chisholm, 2000). One of the challenges in synthesizing such complexes is to design ligands that provide an extended conjugation pathway between multiple metal or metal/metalloid centres. Examples of ligands so far investigated for this purpose include polyethynylenes (Zheng et al., 2004; Antonova et al., 2004), 1,4-phenylenediethynylene (Nguyen et al., 1999; Chawdhury et al., 1998) and 4-ethynylpyridine (Ronson et al., 2006; Zuo et al., 2002). The use of dinitrogen-derived ligands, containing, for example, diazenido(1-), MNN—R, or diazoalkane, MN—NCR2, moieties has been much less explored in this context, although we have recently shown that such complexes can have significant utility in the assembly of extended-chain polynuclear transition metal complexes (Colquhoun et al., 2007).

The cationic dichlorodiazomethane complex trans-[BrW(dppe)2(N2CCl2]+, (I), is readily obtained from trans-W(dppe)2(N2)2 via the hydrazido(2-) complex trans-[BrW(dppe)2(NNH2)]+, and undergoes facile replacement of one or both chloro-substituents by a wide range of nitrogen- and oxygen-based nucleophiles (Colquhoun, 1984). Here, we report the first example of such a reaction involving a carbon-centred nucleophile, (triphenylphosphonio)cyclopentadienide, which (probably for steric reasons) replaces just one of the two chloro-substituents at C to give trans-[BrW(dppe)2{N2C(Cl)(C5H3PPh3)}]+, isolated as the title hexafluorophosphate salt, (II).

Two valence-bond structures, (a) and (b) (Fig. 1), may be drawn for the cation of (II), suggesting the possibility of extended delocalization of electron density between W and P via the π-system of the fully conjugated cyclopentadienylidene(chloro)diazomethane ligand. The structural features associated with such delocalization would be expected to include near-coplanarity of the entire metal–ligand framework from W to P, some degree of equalization of bond distances between the exocyclic and endocyclic C atoms involved in delocalization, and some degree of shortening of the P—Ccyclopentadienylidene bond relative to the adjacent P—Cphenyl bonds. To determine whether such geometric effects can in fact be observed, a single-crystal X-ray study of complex (II) was undertaken.

Compound (II) crystallizes with discrete cations and anions, in the form of a dichloromethane solvate. One of the phenyl rings of the triphenylphosphonium residue is rotationally disordered about the P5—C71 bond, but for clarity only one of the two orientations found is shown in Fig. 2. The metal–ligand system between atoms W1 and P5 exhibits a very high degree of coplanarity, with atoms W1 and N2 lying only 0.019 and 0.026 Å, respectively, out of the mean metal–ligand plane, and no other ligand atom being displaced from this plane by more than 0.01 Å (Fig. 3). Such coplanarity is certainly consistent with a degree of delocalization throughout the metal–ligand π-system, and an analysis of bond lengths tends to confirm this.

Thus, although the pattern of C—C bond lengths (Table 1) is, at first sight, compatible simply with canonical form (a), there are a number of features of the structure which also seem to require a significant contribution from form (b). For example, the endocyclic C2—C6 and exocyclic C1—C2 bond lengths differ by only 0.014 Å rather than showing the ca 0.18 Å difference expected between a single and a double C—C bond (Pauling, 1960). Moreover, the endocyclic double bond C5C6, which could be involved in long-range delocalization, is indeed lengthened slightly relative to the `uninvolved' double bond C3—C4. Finally, the bond from P to the C5 ring (P5—C5) is significantly shorter than the three adjacent P5—C bonds to phenyl (average 1.800 Å), once again consistent with a contribution from canonical form (b). The W—N bond length, at 1.775 (4) Å, is longer than that normally associated with a WN triple bond (Pyykko et al., 2005), whilst the N—N bond distance, at 1.312 (5) Å, represents a bond order of ca 1.5 (Allen et al., 1987). The W—N and N—N bond lengths thus also imply contributions to the structure from both canonical forms (a) and (b). The geometry at N1 is noticeably distorted from linear [W1—N1—N2 = 164.5 (3)°] as a result of steric repulsions between the chloro-substituent Cl1 and its adjacent diphosphine ligand.

The variations in bond lengths from those expected solely on the basis of canonical form (a), together with the coplanarity of the W1—N1—N2—C1(Cl1)—C5H3—P5 fragment and the torsion angles within the fragment, are thus fully compatible with delocalization of electron density throughout the metal–ligand π-system. Although the observed bond lengths do show some discrepancies from the bond orders suggested by Fig. 1 (notably the inequality of bonds C2—C3 and C3—C4), the overall pattern of bond lengths is clearly very much more consistent with the bond orders for this `averaged' model than for either canonical form alone.

This structural analysis clearly demonstrates that the tungsten(II)–dinitrogen unit is a powerful π-electron donor, with the ability to transfer electron density from the metal to a distant acceptor centre through an extended conjugated ligand system. As a consequence, complexes of this type could have potential application as non-linear optical materials and molecular semiconductors.

Related literature top

For related literature, see: Allen et al. (1987); Antonova et al. (2004); Ceccon et al. (2004); Chawdhury et al. (1998); Chisholm (2000); Chisholm & Macintosh (2005); Colquhoun (1984); Colquhoun et al. (2007); Low (2005); Nguyen et al. (1999); Pauling (1960); Pyykko et al. (2005); Ronson et al. (2006); Schwab et al. (1999); Spek (2003); Zheng et al. (2004); Zuo et al. (2002).

Experimental top

(Triphenylphosphonio)cyclopentadienide (0.107 g, 0.329 mmol) and dry triethylamine (0.5 ml) were added, under nitrogen, to a stirred suspension of the dichlorodiazomethane complex, (I) (0.253 g. 0.192 mmol), in dichloromethane (20 ml). After 15 h, the deep yellow–brown solution was extracted with water (3 × 30 ml), dried over magnesium sulfate and evaporated to half-volume. Slow addition of diethyl ether (10 ml) resulted in formation of dark olive-green crystals of (II), which were filtered off, washed with diethyl ether and dried under vacuum (0.256 g, 83% yield). Analysis, found: C 54.62, H 4.35, N 1.73%; calculated for C76H66BrClF6N2P6W.CH2Cl2: C 54.68, H 4.15, N 1.66%; 1H NMR (CDCl3, δ, p.p.m.): 7.06–7.38 (m, 40 H, PPh), 7.61–7.68 (m, 15 H), 6.49–6.54 (m, 2 H, Cp), 6.19–6.22 (m, 1 H, Cp), 2.88 (br d, 8 H, CH2); 13C NMR (CDCl3, δ, p.p.m.): 128.30, 129.01, 129.97, 130.17, 130.27, 130.91, 133.61, 133.95, 134.71, 134.46, 134.51, 134.88, 135.02, 135.37, 120.48, 120.95, 122.74, 124.79, 31.62 p.p.m.. Single crystals suitable for X-ray analysis were grown by vapour diffusion of diethyl ether into a solution of (II) in dichloromethane.

Refinement top

One of the phenyl rings attached to P5 was modelled as disordered over two positions. The C—C distances within each ring were restrained to 1.39 (1) Å. The occupancies of the two rings refined to 0.58 (3) (atoms C71–C76) and 0.42 (3) (atoms C720–C760). Not all the H atoms in the structure could be located in difference Fourier maps. H atoms were therefore positioned geometrically after each cycle of refinement, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). The crystal structure contains a solvent molecule of dichloromethane which was not sufficiently resolved in the electron density map to enable it to be modelled with disordered atoms. The residual electron density was therefore modelled using the SQUEEZE routine available in PLATON (Spek, 2003).

Structure description top

Transition metal complexes containing extended conjugated organic ligands have the potential to display a wide range of novel electronic, magnetic and optical properties (Chisholm & Macintosh, 2005; Ceccon et al., 2004; Schwab et al., 1999) and thus to provide a basis for the development of molecular materials and devices (Low, 2005; Chisholm, 2000). One of the challenges in synthesizing such complexes is to design ligands that provide an extended conjugation pathway between multiple metal or metal/metalloid centres. Examples of ligands so far investigated for this purpose include polyethynylenes (Zheng et al., 2004; Antonova et al., 2004), 1,4-phenylenediethynylene (Nguyen et al., 1999; Chawdhury et al., 1998) and 4-ethynylpyridine (Ronson et al., 2006; Zuo et al., 2002). The use of dinitrogen-derived ligands, containing, for example, diazenido(1-), MNN—R, or diazoalkane, MN—NCR2, moieties has been much less explored in this context, although we have recently shown that such complexes can have significant utility in the assembly of extended-chain polynuclear transition metal complexes (Colquhoun et al., 2007).

The cationic dichlorodiazomethane complex trans-[BrW(dppe)2(N2CCl2]+, (I), is readily obtained from trans-W(dppe)2(N2)2 via the hydrazido(2-) complex trans-[BrW(dppe)2(NNH2)]+, and undergoes facile replacement of one or both chloro-substituents by a wide range of nitrogen- and oxygen-based nucleophiles (Colquhoun, 1984). Here, we report the first example of such a reaction involving a carbon-centred nucleophile, (triphenylphosphonio)cyclopentadienide, which (probably for steric reasons) replaces just one of the two chloro-substituents at C to give trans-[BrW(dppe)2{N2C(Cl)(C5H3PPh3)}]+, isolated as the title hexafluorophosphate salt, (II).

Two valence-bond structures, (a) and (b) (Fig. 1), may be drawn for the cation of (II), suggesting the possibility of extended delocalization of electron density between W and P via the π-system of the fully conjugated cyclopentadienylidene(chloro)diazomethane ligand. The structural features associated with such delocalization would be expected to include near-coplanarity of the entire metal–ligand framework from W to P, some degree of equalization of bond distances between the exocyclic and endocyclic C atoms involved in delocalization, and some degree of shortening of the P—Ccyclopentadienylidene bond relative to the adjacent P—Cphenyl bonds. To determine whether such geometric effects can in fact be observed, a single-crystal X-ray study of complex (II) was undertaken.

Compound (II) crystallizes with discrete cations and anions, in the form of a dichloromethane solvate. One of the phenyl rings of the triphenylphosphonium residue is rotationally disordered about the P5—C71 bond, but for clarity only one of the two orientations found is shown in Fig. 2. The metal–ligand system between atoms W1 and P5 exhibits a very high degree of coplanarity, with atoms W1 and N2 lying only 0.019 and 0.026 Å, respectively, out of the mean metal–ligand plane, and no other ligand atom being displaced from this plane by more than 0.01 Å (Fig. 3). Such coplanarity is certainly consistent with a degree of delocalization throughout the metal–ligand π-system, and an analysis of bond lengths tends to confirm this.

Thus, although the pattern of C—C bond lengths (Table 1) is, at first sight, compatible simply with canonical form (a), there are a number of features of the structure which also seem to require a significant contribution from form (b). For example, the endocyclic C2—C6 and exocyclic C1—C2 bond lengths differ by only 0.014 Å rather than showing the ca 0.18 Å difference expected between a single and a double C—C bond (Pauling, 1960). Moreover, the endocyclic double bond C5C6, which could be involved in long-range delocalization, is indeed lengthened slightly relative to the `uninvolved' double bond C3—C4. Finally, the bond from P to the C5 ring (P5—C5) is significantly shorter than the three adjacent P5—C bonds to phenyl (average 1.800 Å), once again consistent with a contribution from canonical form (b). The W—N bond length, at 1.775 (4) Å, is longer than that normally associated with a WN triple bond (Pyykko et al., 2005), whilst the N—N bond distance, at 1.312 (5) Å, represents a bond order of ca 1.5 (Allen et al., 1987). The W—N and N—N bond lengths thus also imply contributions to the structure from both canonical forms (a) and (b). The geometry at N1 is noticeably distorted from linear [W1—N1—N2 = 164.5 (3)°] as a result of steric repulsions between the chloro-substituent Cl1 and its adjacent diphosphine ligand.

The variations in bond lengths from those expected solely on the basis of canonical form (a), together with the coplanarity of the W1—N1—N2—C1(Cl1)—C5H3—P5 fragment and the torsion angles within the fragment, are thus fully compatible with delocalization of electron density throughout the metal–ligand π-system. Although the observed bond lengths do show some discrepancies from the bond orders suggested by Fig. 1 (notably the inequality of bonds C2—C3 and C3—C4), the overall pattern of bond lengths is clearly very much more consistent with the bond orders for this `averaged' model than for either canonical form alone.

This structural analysis clearly demonstrates that the tungsten(II)–dinitrogen unit is a powerful π-electron donor, with the ability to transfer electron density from the metal to a distant acceptor centre through an extended conjugated ligand system. As a consequence, complexes of this type could have potential application as non-linear optical materials and molecular semiconductors.

For related literature, see: Allen et al. (1987); Antonova et al. (2004); Ceccon et al. (2004); Chawdhury et al. (1998); Chisholm (2000); Chisholm & Macintosh (2005); Colquhoun (1984); Colquhoun et al. (2007); Low (2005); Nguyen et al. (1999); Pauling (1960); Pyykko et al. (2005); Ronson et al. (2006); Schwab et al. (1999); Spek (2003); Zheng et al. (2004); Zuo et al. (2002).

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The potential delocalization of electron density in complex (II), as indicated by resonance between canonical forms (a) and (b). Form (a) represents a diazenido(1-) complex of WII and form (b) a diazoalkane complex of WIV.
[Figure 2] Fig. 2. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The structure of complex (II), showing the essential coplanarity of the extended diazoalkane ligand system. H atoms have been omitted for clarity.
Bis[1,2-(diphenylphosphino)ethane]bromido{chloro[3- (triphenylphosphonio)cyclopentadienylidene]diazomethanediido}tungsten(IV) hexafluorophosphate dichloromethane 0.6-solvate top
Crystal data top
C76H66BrClN2P5W·F6P·0.6(CH2Cl2)F(000) = 3248
Mr = 1657.27Dx = 1.431 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 16178 reflections
a = 18.2621 (10) Åθ = 5–27°
b = 14.706 (1) ŵ = 2.28 mm1
c = 28.934 (2) ÅT = 150 K
β = 98.236 (3)°Plate, green
V = 7690.3 (9) Å30.12 × 0.09 × 0.08 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
17372 independent reflections
Radiation source: fine-focus sealed tube9841 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 27.5°, θmin = 5.1°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 2323
Tmin = 0.79, Tmax = 0.84k = 019
17372 measured reflectionsl = 037
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.037H-atom parameters not refined
S = 1.09 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.292 0.504E-01 0.896E-01
Watkin, D. (1994). Acta Cryst. A50, 411–437.
9841 reflections(Δ/σ)max = 0.003
875 parametersΔρmax = 1.01 e Å3
24 restraintsΔρmin = 0.70 e Å3
0 constraints
Crystal data top
C76H66BrClN2P5W·F6P·0.6(CH2Cl2)V = 7690.3 (9) Å3
Mr = 1657.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.2621 (10) ŵ = 2.28 mm1
b = 14.706 (1) ÅT = 150 K
c = 28.934 (2) Å0.12 × 0.09 × 0.08 mm
β = 98.236 (3)°
Data collection top
Nonius KappaCCD
diffractometer
17372 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
9841 reflections with I > 3σ(I)
Tmin = 0.79, Tmax = 0.84Rint = 0.027
17372 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03624 restraints
wR(F2) = 0.037H-atom parameters not refined
S = 1.09Δρmax = 1.01 e Å3
9841 reflectionsΔρmin = 0.70 e Å3
875 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
W10.266376 (10)0.448099 (12)0.684906 (7)0.0227
Br10.40946 (2)0.43691 (3)0.700747 (18)0.0316
P10.27282 (7)0.30408 (8)0.63730 (5)0.0285
P20.28076 (7)0.32885 (8)0.74751 (5)0.0282
P30.27647 (7)0.57382 (8)0.62523 (5)0.0269
P40.26774 (7)0.58788 (8)0.73508 (5)0.0258
P50.24945 (6)0.43046 (9)0.64000 (4)0.0293
P60.33001 (11)0.92489 (11)0.58265 (6)0.0529
F10.2764 (3)0.9955 (3)0.6030 (2)0.0950
F20.2606 (3)0.8642 (3)0.5628 (2)0.0975
F30.3213 (2)0.9790 (3)0.53475 (14)0.0694
F40.3824 (3)0.8549 (3)0.56258 (16)0.0869
F50.3976 (2)0.9874 (3)0.60252 (14)0.0704
F60.3429 (3)0.8695 (3)0.63077 (16)0.0951
N10.1683 (2)0.4438 (3)0.67720 (13)0.0252
N20.0992 (2)0.4197 (3)0.67749 (16)0.0326
Cl10.04964 (7)0.57251 (8)0.63429 (5)0.0373
C10.0418 (3)0.4654 (3)0.66002 (17)0.0283
C20.0310 (2)0.4312 (3)0.66138 (18)0.0305
C30.0462 (3)0.3451 (4)0.6807 (2)0.0422
C40.1206 (3)0.3341 (4)0.6764 (2)0.0409
C50.1547 (3)0.4135 (4)0.65313 (18)0.0308
C60.0993 (3)0.4726 (3)0.64425 (17)0.0287
C70.2877 (3)0.2040 (3)0.6771 (2)0.0390
C80.3253 (3)0.2295 (3)0.7252 (2)0.0354
C90.2707 (3)0.6858 (3)0.6534 (2)0.0370
C100.2296 (3)0.6805 (3)0.69584 (18)0.0305
C110.3419 (3)0.2854 (3)0.59836 (19)0.0321
C120.3882 (3)0.3547 (4)0.5884 (2)0.0393
C130.4411 (4)0.3397 (4)0.5587 (2)0.0496
C140.4459 (4)0.2557 (4)0.5388 (2)0.0480
C150.4005 (3)0.1858 (4)0.5482 (2)0.0466
C160.3483 (3)0.2004 (4)0.5776 (2)0.0375
C170.1856 (3)0.2715 (4)0.6013 (2)0.0447
C180.1775 (4)0.2697 (5)0.5526 (3)0.0669
C190.1106 (6)0.2494 (7)0.5262 (4)0.1021
C200.0519 (6)0.2319 (7)0.5470 (5)0.1186
C210.0556 (4)0.2320 (6)0.5960 (5)0.1007
C220.1237 (3)0.2526 (4)0.6235 (3)0.0611
C230.1943 (3)0.2842 (4)0.7625 (2)0.0373
C240.1781 (3)0.1911 (4)0.7626 (2)0.0445
C250.1107 (4)0.1605 (5)0.7752 (2)0.0602
C260.0612 (4)0.2215 (6)0.7882 (3)0.0717
C270.0766 (4)0.3132 (6)0.7887 (3)0.0669
C280.1417 (3)0.3450 (4)0.7750 (2)0.0492
C290.3367 (3)0.3487 (3)0.80452 (19)0.0342
C300.3059 (3)0.3910 (4)0.8408 (2)0.0441
C310.3496 (4)0.4133 (5)0.8820 (2)0.0571
C320.4237 (4)0.3930 (5)0.8888 (3)0.0603
C330.4550 (4)0.3513 (4)0.8543 (3)0.0564
C340.4120 (3)0.3281 (4)0.8124 (2)0.0435
C350.3611 (3)0.5916 (3)0.59904 (19)0.0292
C360.3622 (3)0.5796 (4)0.5515 (2)0.0382
C370.4274 (3)0.5922 (5)0.5326 (2)0.0503
C380.4924 (3)0.6135 (4)0.5610 (3)0.0516
C390.4917 (3)0.6258 (4)0.6081 (2)0.0442
C400.4273 (3)0.6142 (3)0.6275 (2)0.0368
C410.2035 (3)0.5776 (3)0.57491 (19)0.0332
C420.1867 (3)0.6586 (4)0.5504 (2)0.0494
C430.1322 (4)0.6588 (5)0.5112 (3)0.0592
C440.0947 (3)0.5826 (5)0.4961 (2)0.0542
C450.1120 (4)0.5030 (5)0.5199 (2)0.0580
C460.1652 (3)0.5007 (4)0.5594 (2)0.0461
C470.2064 (3)0.5923 (3)0.77964 (19)0.0297
C480.2324 (3)0.5974 (4)0.82697 (19)0.0350
C490.1827 (3)0.5933 (4)0.8594 (2)0.0442
C500.1078 (3)0.5852 (4)0.8453 (2)0.0466
C510.0817 (3)0.5824 (4)0.7985 (2)0.0456
C520.1302 (3)0.5851 (4)0.7656 (2)0.0372
C530.3561 (3)0.6321 (3)0.76398 (18)0.0285
C540.3799 (3)0.7212 (3)0.75847 (19)0.0334
C550.4463 (3)0.7514 (4)0.7815 (2)0.0370
C560.4905 (3)0.6951 (4)0.8116 (2)0.0375
C570.4686 (3)0.6056 (4)0.81764 (19)0.0354
C580.4025 (3)0.5749 (3)0.79360 (18)0.0297
C590.2932 (2)0.4477 (4)0.69129 (17)0.0326
C600.2527 (3)0.4344 (4)0.73570 (18)0.0345
C610.2852 (3)0.4507 (4)0.77491 (19)0.0454
C620.3574 (3)0.4814 (4)0.7713 (2)0.0438
C630.3970 (3)0.4964 (4)0.7279 (2)0.0480
C640.3656 (3)0.4792 (4)0.6879 (2)0.0443
C650.2900 (3)0.3330 (4)0.60789 (18)0.0351
C660.2548 (3)0.3010 (5)0.5717 (2)0.0472
C670.2847 (4)0.2276 (5)0.5448 (2)0.0536
C680.3477 (4)0.1863 (4)0.5546 (2)0.0519
C690.3820 (3)0.2168 (5)0.5913 (2)0.0479
C700.3537 (3)0.2910 (4)0.61785 (18)0.0385
C710.2669 (3)0.5309 (3)0.60524 (16)0.0324
C720.2488 (14)0.6162 (6)0.6244 (5)0.06120.58 (3)
C730.2564 (16)0.6959 (9)0.5984 (3)0.07260.58 (3)
C740.2879 (4)0.6886 (4)0.5518 (2)0.0552
C750.3027 (13)0.6068 (8)0.5298 (5)0.06430.58 (3)
C760.2924 (13)0.5303 (12)0.5576 (3)0.05200.58 (3)
C7200.2882 (12)0.6100 (7)0.6254 (6)0.03870.42 (3)
C7300.3014 (12)0.6867 (10)0.5976 (4)0.04210.42 (3)
C7500.2685 (16)0.6061 (8)0.5343 (6)0.04750.42 (3)
C7600.2573 (16)0.5251 (12)0.5587 (4)0.04230.42 (3)
H310.01020.30270.69430.0511*
H410.14580.28320.68690.0492*
H610.10600.53030.62940.0345*
H710.24110.17750.67970.0480*
H720.31770.16100.66400.0480*
H810.32240.17970.74570.0431*
H820.37570.24330.72370.0431*
H910.31940.70760.66320.0456*
H920.24530.72690.63140.0456*
H1010.23500.73660.71230.0366*
H1020.17870.66930.68560.0366*
H1210.38410.41310.60180.0489*
H1310.47340.38730.55250.0627*
H1410.48110.24570.51810.0597*
H1510.40500.12760.53470.0575*
H1610.31640.15220.58370.0454*
H1810.21900.28270.53730.0776*
H1910.10650.24780.49310.1157*
H2010.00590.21890.52830.1342*
H2110.01310.21860.61020.1203*
H2210.12770.25370.65660.0736*
H2410.21290.14840.75410.0534*
H2510.09960.09740.77460.0718*
H2610.01590.20060.79700.0877*
H2710.04230.35500.79860.0826*
H2810.15060.40860.77400.0600*
H3010.25450.40420.83690.0536*
H3110.32830.44310.90590.0684*
H3210.45330.40810.91750.0691*
H3310.50640.33790.85900.0652*
H3410.43410.29790.78890.0514*
H3610.31820.56280.53180.0465*
H3710.42720.58600.49980.0617*
H3810.53730.61960.54820.0643*
H3910.53600.64250.62760.0532*
H4010.42790.62160.66010.0447*
H4210.21200.71320.56040.0586*
H4310.12130.71400.49470.0696*
H4410.05720.58420.46970.0639*
H4510.08720.44850.50920.0679*
H4610.17520.44510.57580.0545*
H4810.28390.60370.83730.0421*
H4910.20100.59610.89180.0536*
H5010.07460.58160.86770.0583*
H5110.02990.57850.78840.0559*
H5210.11130.58200.73320.0450*
H5410.34950.76150.73850.0411*
H5510.46200.81180.77660.0454*
H5610.53570.71710.82810.0460*
H5710.49890.56610.83820.0424*
H5810.38820.51350.79730.0363*
H6010.20290.41410.73870.0414*
H6110.25770.44070.80490.0554*
H6210.37940.49200.79860.0549*
H6310.44620.51870.72540.0594*
H6410.39370.48900.65800.0529*
H6610.21040.32890.56530.0576*
H6710.26120.20640.51960.0647*
H6810.36810.13650.53610.0608*
H6910.42510.18680.59840.0570*
H7010.37790.31270.64260.0463*
H7210.23050.62010.65680.0727*0.58
H7310.24060.75290.61170.0872*0.58
H7410.29980.74290.53450.0660*
H7510.31920.60300.49720.0734*0.58
H7610.30360.47300.54320.0606*0.58
H7250.29370.61180.65760.0477*0.42
H7350.32030.73980.61050.0521*0.42
H7550.26220.60480.50230.0541*0.42
H7650.24410.47020.54470.0512*0.42
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.01851 (8)0.01787 (8)0.03285 (10)0.00011 (8)0.00750 (6)0.00461 (10)
Br10.0206 (2)0.0284 (3)0.0462 (3)0.00102 (19)0.00662 (19)0.0059 (2)
P10.0244 (6)0.0210 (6)0.0411 (8)0.0007 (5)0.0079 (5)0.0007 (5)
P20.0267 (6)0.0217 (6)0.0373 (7)0.0007 (5)0.0086 (5)0.0101 (6)
P30.0262 (6)0.0206 (6)0.0355 (7)0.0004 (4)0.0092 (5)0.0057 (5)
P40.0217 (6)0.0207 (5)0.0358 (7)0.0001 (4)0.0069 (5)0.0016 (5)
P50.0199 (5)0.0394 (8)0.0282 (6)0.0009 (5)0.0023 (5)0.0033 (6)
P60.0785 (12)0.0372 (9)0.0471 (10)0.0184 (8)0.0231 (9)0.0080 (7)
F10.101 (4)0.069 (3)0.128 (4)0.022 (3)0.061 (3)0.040 (3)
F20.101 (4)0.072 (3)0.124 (4)0.045 (3)0.030 (3)0.035 (3)
F30.078 (3)0.073 (3)0.055 (2)0.008 (2)0.000 (2)0.007 (2)
F40.117 (4)0.069 (3)0.073 (3)0.020 (3)0.011 (3)0.014 (2)
F50.087 (3)0.051 (2)0.067 (3)0.022 (2)0.012 (2)0.009 (2)
F60.174 (5)0.050 (2)0.065 (3)0.037 (3)0.033 (3)0.003 (2)
N10.0250 (18)0.0191 (18)0.033 (2)0.0009 (17)0.0093 (15)0.0024 (18)
N20.0166 (19)0.030 (2)0.051 (3)0.0011 (16)0.0054 (18)0.0080 (19)
Cl10.0284 (6)0.0316 (7)0.0528 (8)0.0007 (5)0.0090 (5)0.0106 (6)
C10.027 (2)0.025 (3)0.034 (3)0.0003 (18)0.010 (2)0.005 (2)
C20.020 (2)0.033 (3)0.039 (3)0.0043 (19)0.006 (2)0.001 (2)
C30.028 (3)0.028 (3)0.072 (4)0.000 (2)0.011 (3)0.014 (3)
C40.030 (3)0.032 (3)0.061 (4)0.004 (2)0.007 (3)0.012 (3)
C50.020 (2)0.037 (3)0.037 (3)0.0015 (19)0.009 (2)0.002 (2)
C60.025 (2)0.030 (3)0.031 (3)0.0024 (19)0.005 (2)0.003 (2)
C70.047 (3)0.021 (2)0.052 (4)0.007 (2)0.017 (3)0.001 (2)
C80.038 (3)0.022 (2)0.047 (3)0.000 (2)0.011 (2)0.012 (2)
C90.049 (3)0.020 (2)0.045 (3)0.002 (2)0.017 (3)0.008 (2)
C100.028 (2)0.025 (2)0.039 (3)0.0004 (19)0.004 (2)0.002 (2)
C110.031 (3)0.028 (3)0.040 (3)0.007 (2)0.011 (2)0.005 (2)
C120.047 (3)0.034 (3)0.041 (3)0.004 (2)0.022 (3)0.005 (2)
C130.055 (4)0.040 (3)0.061 (4)0.002 (3)0.036 (3)0.012 (3)
C140.055 (4)0.045 (3)0.049 (4)0.017 (3)0.025 (3)0.006 (3)
C150.056 (4)0.037 (3)0.051 (4)0.013 (3)0.021 (3)0.002 (3)
C160.036 (3)0.031 (3)0.047 (3)0.002 (2)0.009 (2)0.001 (2)
C170.031 (3)0.028 (3)0.074 (5)0.006 (2)0.002 (3)0.016 (3)
C180.057 (4)0.069 (5)0.068 (5)0.024 (4)0.014 (4)0.029 (4)
C190.066 (6)0.106 (7)0.117 (8)0.035 (5)0.045 (6)0.059 (6)
C200.059 (6)0.097 (7)0.179 (12)0.026 (5)0.052 (7)0.085 (8)
C210.037 (4)0.057 (5)0.206 (12)0.011 (3)0.013 (6)0.048 (6)
C220.031 (3)0.042 (3)0.111 (6)0.004 (3)0.012 (3)0.021 (4)
C230.031 (3)0.035 (3)0.045 (3)0.002 (2)0.005 (2)0.018 (3)
C240.049 (3)0.043 (3)0.041 (3)0.013 (3)0.006 (3)0.016 (3)
C250.063 (4)0.059 (4)0.057 (4)0.035 (4)0.005 (3)0.023 (3)
C260.042 (4)0.094 (6)0.083 (5)0.017 (4)0.024 (4)0.035 (5)
C270.040 (4)0.085 (5)0.082 (5)0.004 (3)0.028 (3)0.034 (4)
C280.036 (3)0.049 (4)0.066 (4)0.001 (3)0.015 (3)0.021 (3)
C290.036 (3)0.026 (2)0.039 (3)0.001 (2)0.002 (2)0.018 (2)
C300.048 (3)0.037 (3)0.049 (4)0.011 (3)0.013 (3)0.004 (3)
C310.080 (5)0.055 (4)0.037 (4)0.014 (4)0.008 (3)0.000 (3)
C320.070 (5)0.047 (4)0.056 (4)0.017 (3)0.019 (4)0.007 (3)
C330.054 (4)0.041 (3)0.068 (5)0.003 (3)0.013 (3)0.010 (3)
C340.044 (3)0.033 (3)0.051 (4)0.008 (2)0.000 (3)0.017 (3)
C350.030 (3)0.019 (2)0.041 (3)0.0015 (19)0.012 (2)0.009 (2)
C360.032 (3)0.042 (3)0.042 (3)0.005 (2)0.011 (2)0.008 (2)
C370.043 (3)0.065 (4)0.047 (4)0.002 (3)0.018 (3)0.008 (3)
C380.037 (3)0.051 (4)0.072 (5)0.003 (3)0.028 (3)0.012 (3)
C390.029 (3)0.037 (3)0.067 (4)0.005 (2)0.008 (3)0.012 (3)
C400.040 (3)0.026 (2)0.046 (3)0.005 (2)0.010 (2)0.011 (2)
C410.028 (2)0.033 (3)0.041 (3)0.005 (2)0.013 (2)0.011 (2)
C420.038 (3)0.045 (3)0.064 (4)0.003 (3)0.001 (3)0.018 (3)
C430.041 (3)0.068 (5)0.065 (5)0.010 (3)0.004 (3)0.030 (4)
C440.029 (3)0.085 (5)0.045 (4)0.005 (3)0.004 (3)0.014 (3)
C450.055 (4)0.065 (5)0.050 (4)0.011 (3)0.006 (3)0.005 (4)
C460.048 (3)0.040 (3)0.048 (4)0.002 (3)0.000 (3)0.002 (3)
C470.026 (2)0.026 (2)0.039 (3)0.001 (2)0.011 (2)0.003 (2)
C480.028 (3)0.035 (3)0.043 (3)0.003 (2)0.006 (2)0.003 (2)
C490.052 (4)0.045 (3)0.037 (3)0.000 (3)0.011 (3)0.000 (3)
C500.042 (3)0.050 (3)0.054 (4)0.003 (3)0.027 (3)0.005 (3)
C510.029 (3)0.053 (4)0.058 (4)0.001 (2)0.016 (3)0.004 (3)
C520.029 (3)0.043 (3)0.040 (3)0.001 (2)0.008 (2)0.002 (2)
C530.025 (2)0.026 (2)0.036 (3)0.0007 (19)0.009 (2)0.002 (2)
C540.036 (3)0.023 (2)0.044 (3)0.002 (2)0.015 (2)0.001 (2)
C550.030 (3)0.030 (3)0.054 (4)0.008 (2)0.015 (2)0.001 (3)
C560.023 (2)0.040 (3)0.052 (3)0.008 (2)0.014 (2)0.013 (3)
C570.030 (3)0.037 (3)0.039 (3)0.002 (2)0.005 (2)0.007 (2)
C580.026 (2)0.029 (3)0.037 (3)0.0050 (18)0.010 (2)0.001 (2)
C590.026 (2)0.039 (3)0.035 (3)0.005 (2)0.0083 (19)0.006 (3)
C600.036 (3)0.037 (3)0.030 (3)0.006 (2)0.005 (2)0.000 (2)
C610.066 (4)0.041 (3)0.032 (3)0.009 (3)0.015 (3)0.007 (3)
C620.053 (3)0.038 (3)0.046 (4)0.015 (3)0.027 (3)0.017 (3)
C630.035 (3)0.047 (3)0.066 (4)0.012 (3)0.023 (3)0.020 (3)
C640.020 (2)0.060 (4)0.052 (4)0.004 (2)0.003 (2)0.013 (3)
C650.027 (3)0.045 (3)0.031 (3)0.002 (2)0.004 (2)0.008 (2)
C660.039 (3)0.062 (4)0.043 (3)0.012 (3)0.014 (3)0.019 (3)
C670.055 (4)0.063 (4)0.043 (4)0.009 (3)0.010 (3)0.017 (3)
C680.060 (4)0.051 (4)0.041 (4)0.013 (3)0.005 (3)0.011 (3)
C690.040 (3)0.061 (4)0.041 (3)0.018 (3)0.001 (3)0.003 (3)
C700.034 (3)0.055 (3)0.028 (3)0.009 (2)0.005 (2)0.006 (3)
C710.022 (2)0.044 (3)0.031 (3)0.003 (2)0.0021 (19)0.001 (2)
C720.104 (16)0.045 (6)0.033 (7)0.037 (7)0.003 (8)0.008 (5)
C730.14 (2)0.045 (7)0.038 (6)0.042 (10)0.013 (7)0.002 (5)
C740.061 (4)0.055 (4)0.050 (4)0.016 (3)0.007 (3)0.016 (3)
C750.064 (12)0.079 (7)0.041 (8)0.031 (8)0.024 (8)0.017 (5)
C760.063 (11)0.058 (8)0.030 (5)0.026 (9)0.008 (5)0.003 (5)
C7200.037 (10)0.037 (7)0.045 (9)0.004 (6)0.016 (8)0.002 (5)
C7300.047 (11)0.027 (7)0.056 (8)0.006 (7)0.020 (8)0.001 (6)
C7500.066 (15)0.048 (7)0.021 (8)0.018 (8)0.018 (9)0.004 (6)
C7600.048 (12)0.033 (7)0.047 (8)0.002 (9)0.011 (8)0.001 (6)
Geometric parameters (Å, º) top
W1—Br12.5927 (5)C33—C341.389 (9)
W1—P12.5383 (13)C33—H3310.950
W1—P22.5077 (12)C34—H3410.950
W1—P32.5543 (12)C35—C361.390 (8)
W1—P42.5146 (13)C35—C401.400 (7)
W1—N11.775 (4)C36—C371.392 (8)
P1—C71.863 (6)C36—H3610.950
P1—C111.829 (5)C37—C381.381 (9)
P1—C171.837 (6)C37—H3710.950
P2—C81.833 (5)C38—C391.378 (9)
P2—C231.820 (5)C38—H3810.950
P2—C291.835 (6)C39—C401.383 (7)
P3—C91.848 (5)C39—H3910.950
P3—C351.836 (5)C40—H4010.950
P3—C411.828 (6)C41—C421.398 (8)
P4—C101.845 (5)C41—C461.371 (8)
P4—C471.827 (5)C42—C431.397 (9)
P4—C531.828 (5)C42—H4210.950
P5—C51.736 (5)C43—C441.353 (10)
P5—C591.802 (5)C43—H4310.950
P5—C651.808 (5)C44—C451.370 (10)
P5—C711.790 (5)C44—H4410.950
P6—F11.597 (5)C45—C461.391 (9)
P6—F21.589 (5)C45—H4510.950
P6—F31.586 (4)C46—H4610.950
P6—F41.572 (5)C47—C481.386 (8)
P6—F51.580 (4)C47—C521.397 (7)
P6—F61.601 (5)C48—C491.398 (8)
N1—N21.312 (5)C48—H4810.950
N2—C11.285 (6)C49—C501.376 (9)
Cl1—C11.757 (5)C49—H4910.950
C1—C21.426 (6)C50—C511.370 (9)
C2—C31.427 (7)C50—H5010.950
C2—C61.412 (6)C51—C521.392 (8)
C3—C41.356 (7)C51—H5110.950
C3—H310.950C52—H5210.950
C4—C51.445 (7)C53—C541.396 (7)
C4—H410.950C53—C581.398 (7)
C5—C61.386 (7)C54—C551.373 (7)
C6—H610.950C54—H5410.950
C7—C81.509 (8)C55—C561.376 (8)
C7—H710.950C55—H5510.950
C7—H720.950C56—C571.393 (8)
C8—H810.950C56—H5610.950
C8—H820.950C57—C581.380 (7)
C9—C101.530 (7)C57—H5710.950
C9—H910.950C58—H5810.950
C9—H920.950C59—C601.401 (7)
C10—H1010.950C59—C641.392 (7)
C10—H1020.950C60—C611.374 (7)
C11—C121.381 (7)C60—H6010.950
C11—C161.400 (7)C61—C621.384 (9)
C12—C131.397 (7)C61—H6110.950
C12—H1210.950C62—C631.373 (9)
C13—C141.372 (9)C62—H6210.950
C13—H1310.950C63—C641.388 (8)
C14—C151.371 (9)C63—H6310.950
C14—H1410.950C64—H6410.950
C15—C161.381 (8)C65—C661.386 (8)
C15—H1510.950C65—C701.383 (7)
C16—H1610.950C66—C671.396 (8)
C17—C181.395 (10)C66—H6610.950
C17—C221.406 (9)C67—C681.367 (9)
C18—C191.378 (11)C67—H6710.950
C18—H1810.950C68—C691.382 (9)
C19—C201.329 (17)C68—H6810.950
C19—H1910.950C69—C701.392 (8)
C20—C211.409 (17)C69—H6910.950
C20—H2010.950C70—H7010.950
C21—C221.410 (11)C71—C721.392 (9)
C21—H2110.950C71—C761.390 (8)
C22—H2210.950C71—C7201.383 (9)
C23—C241.400 (8)C71—C7601.385 (9)
C23—C281.397 (8)C72—C731.390 (9)
C24—C251.408 (8)C72—H7210.950
C24—H2410.950C73—C741.391 (9)
C25—C261.364 (11)C73—H7310.950
C25—H2510.950C74—C751.370 (9)
C26—C271.377 (11)C74—H7410.950
C26—H2610.950C74—C7301.383 (9)
C27—C281.388 (8)C74—C7501.380 (9)
C27—H2710.950C74—H7410.950
C28—H2810.950C75—C761.382 (9)
C29—C301.404 (8)C75—H7510.950
C29—C341.395 (8)C76—H7610.950
C30—C311.375 (9)C720—C7301.386 (9)
C30—H3010.950C720—H7250.950
C31—C321.373 (10)C730—H7350.950
C31—H3110.950C750—C7601.384 (9)
C32—C331.363 (10)C750—H7550.950
C32—H3210.950C760—H7650.950
Br1—W1—P185.36 (3)C29—C30—C31120.6 (6)
Br1—W1—P280.17 (3)C29—C30—H301119.7
P1—W1—P278.48 (5)C31—C30—H301119.7
Br1—W1—P389.82 (3)C30—C31—C32120.7 (7)
P1—W1—P3102.93 (4)C30—C31—H311119.7
P2—W1—P3169.78 (4)C32—C31—H311119.7
Br1—W1—P491.34 (3)C31—C32—C33120.1 (6)
P1—W1—P4176.33 (4)C31—C32—H321120.0
P2—W1—P499.40 (4)C33—C32—H321120.0
P3—W1—P478.63 (4)C32—C33—C34120.3 (6)
Br1—W1—N1173.60 (12)C32—C33—H331119.9
P1—W1—N191.52 (13)C34—C33—H331119.9
P2—W1—N193.74 (13)C29—C34—C33120.8 (6)
P3—W1—N196.33 (13)C29—C34—H341119.6
P4—W1—N191.61 (13)C33—C34—H341119.6
W1—P1—C7109.75 (18)P3—C35—C36121.5 (4)
W1—P1—C11123.31 (17)P3—C35—C40119.9 (4)
C7—P1—C11102.1 (2)C36—C35—C40118.5 (5)
W1—P1—C17114.93 (17)C35—C36—C37120.5 (5)
C7—P1—C17100.5 (3)C35—C36—H361119.8
C11—P1—C17103.3 (3)C37—C36—H361119.8
W1—P2—C8107.98 (17)C36—C37—C38120.4 (6)
W1—P2—C23114.87 (17)C36—C37—H371119.8
C8—P2—C23103.9 (2)C38—C37—H371119.8
W1—P2—C29121.70 (16)C37—C38—C39119.4 (5)
C8—P2—C29103.0 (2)C37—C38—H381120.3
C23—P2—C29103.5 (3)C39—C38—H381120.3
W1—P3—C9109.43 (17)C38—C39—C40120.9 (5)
W1—P3—C35121.93 (16)C38—C39—H391119.5
C9—P3—C3599.2 (2)C40—C39—H391119.5
W1—P3—C41116.45 (16)C35—C40—C39120.3 (5)
C9—P3—C41104.1 (2)C35—C40—H401119.9
C35—P3—C41103.2 (2)C39—C40—H401119.9
W1—P4—C10106.07 (17)P3—C41—C42120.8 (4)
W1—P4—C47118.68 (16)P3—C41—C46121.0 (4)
C10—P4—C47101.1 (2)C42—C41—C46118.2 (5)
W1—P4—C53119.36 (16)C41—C42—C43119.5 (6)
C10—P4—C53104.4 (2)C41—C42—H421120.3
C47—P4—C53104.8 (2)C43—C42—H421120.3
C5—P5—C59112.7 (2)C42—C43—C44122.0 (6)
C5—P5—C65108.7 (2)C42—C43—H431119.0
C59—P5—C65109.7 (2)C44—C43—H431119.0
C5—P5—C71109.4 (2)C43—C44—C45118.4 (5)
C59—P5—C71106.4 (2)C43—C44—H441120.8
C65—P5—C71109.8 (2)C45—C44—H441120.8
F1—P6—F289.9 (3)C44—C45—C46121.1 (6)
F1—P6—F390.3 (3)C44—C45—H451119.4
F2—P6—F389.5 (3)C46—C45—H451119.4
F1—P6—F4179.6 (3)C45—C46—C41120.8 (6)
F2—P6—F489.7 (3)C45—C46—H461119.6
F3—P6—F489.8 (3)C41—C46—H461119.6
F1—P6—F588.6 (3)P4—C47—C48122.8 (4)
F2—P6—F5178.5 (3)P4—C47—C52118.5 (4)
F3—P6—F590.1 (2)C48—C47—C52118.6 (5)
F4—P6—F591.7 (3)C47—C48—C49119.9 (5)
F1—P6—F691.8 (3)C47—C48—H481120.1
F2—P6—F692.2 (3)C49—C48—H481120.1
F3—P6—F6177.3 (3)C48—C49—C50121.2 (5)
F4—P6—F688.1 (3)C48—C49—H491119.4
F5—P6—F688.3 (2)C50—C49—H491119.4
W1—N1—N2164.5 (3)C49—C50—C51119.1 (5)
N1—N2—C1126.0 (4)C49—C50—H501120.4
Cl1—C1—N2121.5 (4)C51—C50—H501120.4
Cl1—C1—C2117.4 (4)C50—C51—C52120.7 (5)
N2—C1—C2121.0 (4)C50—C51—H511119.6
C1—C2—C3123.9 (4)C52—C51—H511119.6
C1—C2—C6128.2 (5)C47—C52—C51120.5 (5)
C3—C2—C6108.0 (4)C47—C52—H521119.8
C2—C3—C4108.6 (5)C51—C52—H521119.8
C2—C3—H31125.7P4—C53—C54123.4 (4)
C4—C3—H31125.7P4—C53—C58118.9 (4)
C3—C4—C5107.7 (4)C54—C53—C58117.7 (4)
C3—C4—H41126.1C53—C54—C55121.1 (5)
C5—C4—H41126.1C53—C54—H541119.5
C4—C5—P5124.6 (4)C55—C54—H541119.5
C4—C5—C6108.4 (4)C54—C55—C56120.6 (5)
P5—C5—C6126.9 (4)C54—C55—H551119.7
C2—C6—C5107.2 (4)C56—C55—H551119.7
C2—C6—H61126.4C55—C56—C57119.7 (5)
C5—C6—H61126.4C55—C56—H561120.1
P1—C7—C8112.3 (3)C57—C56—H561120.1
P1—C7—H71108.7C56—C57—C58119.5 (5)
C8—C7—H71108.7C56—C57—H571120.3
P1—C7—H72108.7C58—C57—H571120.3
C8—C7—H72108.7C53—C58—C57121.4 (4)
H71—C7—H72109.5C53—C58—H581119.3
C7—C8—P2110.9 (4)C57—C58—H581119.3
C7—C8—H81109.1P5—C59—C60119.8 (4)
P2—C8—H81109.1P5—C59—C64121.2 (4)
C7—C8—H82109.1C60—C59—C64118.9 (5)
P2—C8—H82109.1C59—C60—C61120.0 (5)
H81—C8—H82109.5C59—C60—H601120.0
P3—C9—C10112.0 (3)C61—C60—H601120.0
P3—C9—H91108.8C60—C61—C62120.9 (5)
C10—C9—H91108.8C60—C61—H611119.6
P3—C9—H92108.8C62—C61—H611119.6
C10—C9—H92108.8C61—C62—C63119.6 (5)
H91—C9—H92109.5C61—C62—H621120.2
C9—C10—P4110.3 (3)C63—C62—H621120.2
C9—C10—H101109.3C62—C63—C64120.5 (5)
P4—C10—H101109.3C62—C63—H631119.8
C9—C10—H102109.3C64—C63—H631119.8
P4—C10—H102109.3C59—C64—C63120.2 (5)
H101—C10—H102109.5C59—C64—H641119.9
P1—C11—C12121.0 (4)C63—C64—H641119.9
P1—C11—C16120.4 (4)P5—C65—C66117.2 (4)
C12—C11—C16118.5 (5)P5—C65—C70122.8 (4)
C11—C12—C13120.6 (5)C66—C65—C70120.0 (5)
C11—C12—H121119.7C65—C66—C67119.8 (5)
C13—C12—H121119.7C65—C66—H661120.1
C12—C13—C14119.5 (5)C67—C66—H661120.1
C12—C13—H131120.3C66—C67—C68120.1 (6)
C14—C13—H131120.3C66—C67—H671119.9
C13—C14—C15120.9 (5)C68—C67—H671119.9
C13—C14—H141119.5C67—C68—C69120.1 (6)
C15—C14—H141119.5C67—C68—H681119.9
C14—C15—C16119.7 (5)C69—C68—H681119.9
C14—C15—H151120.1C68—C69—C70120.4 (5)
C16—C15—H151120.1C68—C69—H691119.8
C11—C16—C15120.7 (5)C70—C69—H691119.8
C11—C16—H161119.6C69—C70—C65119.5 (5)
C15—C16—H161119.6C69—C70—H701120.3
P1—C17—C18122.4 (5)C65—C70—H701120.3
P1—C17—C22118.7 (5)P5—C71—C72120.5 (6)
C18—C17—C22118.8 (6)P5—C71—C76124.0 (8)
C17—C18—H181119.2C72—C71—C76115.3 (9)
C19—C18—H181119.2P5—C71—C720119.7 (7)
C18—C19—C20119.9 (10)P5—C71—C760117.3 (8)
C18—C19—H191120.0C720—C71—C760123.0 (10)
C20—C19—H191120.0C71—C72—C73123.0 (11)
C19—C20—C21122.0 (8)C71—C72—H721118.5
C19—C20—H201119.0C73—C72—H721118.5
C21—C20—H201119.0C72—C73—C74117.1 (12)
C20—C21—C22118.7 (9)C72—C73—H731121.4
C20—C21—H211120.6C74—C73—H731121.4
C22—C21—H211120.6C73—C74—C75123.0 (10)
C21—C22—C17119.1 (8)C73—C74—H741118.5
C21—C22—H221120.5C75—C74—H741118.5
C17—C22—H221120.5C730—C74—C750115.1 (11)
P2—C23—C24122.9 (4)C730—C74—H741117.6
P2—C23—C28118.8 (4)C750—C74—H741126.6
C24—C23—C28118.3 (5)C74—C75—C76116.2 (14)
C23—C24—C25120.3 (6)C74—C75—H751121.9
C23—C24—H241119.8C76—C75—H751121.9
C25—C24—H241119.8C71—C76—C75124.8 (13)
C24—C25—C26120.0 (6)C71—C76—H761117.6
C24—C25—H251120.0C75—C76—H761117.6
C26—C25—H251120.0C71—C720—C730118.4 (13)
C25—C26—C27120.3 (6)C71—C720—H725120.8
C25—C26—H261119.8C730—C720—H725120.8
C27—C26—H261119.8C720—C730—C74122.2 (13)
C26—C27—C28120.6 (7)C720—C730—H735118.9
C26—C27—H271119.7C74—C730—H735118.9
C28—C27—H271119.7C74—C750—C760126.6 (16)
C23—C28—C27120.4 (6)C74—C750—H755116.7
C23—C28—H281119.8C760—C750—H755116.7
C27—C28—H281119.8C71—C760—C750114.3 (15)
P2—C29—C30120.8 (4)C71—C760—H765122.8
P2—C29—C34121.5 (4)C750—C760—H765122.8
C30—C29—C34117.6 (5)
Br1—W1—N1—N21 (6)C2—C6—C5—P5179.3 (6)
W1—N1—N2—C1180 (2)N2—C1—C2—C31.4 (11)
N1—N2—C1—Cl12.4 (12)C1—C2—C3—C4179.9 (6)
N2—C1—C2—C6179.5 (7)C2—C3—C4—C51.1 (8)
C1—C2—C6—C5179.5 (7)C3—C4—C5—C60.9 (6)

Experimental details

Crystal data
Chemical formulaC76H66BrClN2P5W·F6P·0.6(CH2Cl2)
Mr1657.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)18.2621 (10), 14.706 (1), 28.934 (2)
β (°) 98.236 (3)
V3)7690.3 (9)
Z4
Radiation typeMo Kα
µ (mm1)2.28
Crystal size (mm)0.12 × 0.09 × 0.08
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.79, 0.84
No. of measured, independent and
observed [I > 3σ(I)] reflections
17372, 17372, 9841
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.037, 1.09
No. of reflections9841
No. of parameters875
No. of restraints24
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)1.01, 0.70

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Selected geometric parameters (Å, º) top
W1—Br12.5927 (5)N2—C11.285 (6)
W1—P12.5383 (13)Cl1—C11.757 (5)
W1—P22.5077 (12)C1—C21.426 (6)
W1—P32.5543 (12)C2—C31.427 (7)
W1—P42.5146 (13)C2—C61.412 (6)
W1—N11.775 (4)C3—C41.356 (7)
P5—C51.736 (5)C4—C51.445 (7)
N1—N21.312 (5)C5—C61.386 (7)
W1—N1—N2164.5 (3)C3—C2—C6108.0 (4)
N1—N2—C1126.0 (4)C2—C3—C4108.6 (5)
Cl1—C1—N2121.5 (4)C3—C4—C5107.7 (4)
Cl1—C1—C2117.4 (4)C4—C5—P5124.6 (4)
N2—C1—C2121.0 (4)C4—C5—C6108.4 (4)
C1—C2—C3123.9 (4)P5—C5—C6126.9 (4)
C1—C2—C6128.2 (5)C2—C6—C5107.2 (4)
Br1—W1—N1—N21 (6)C2—C6—C5—P5179.3 (6)
W1—N1—N2—C1180 (2)N2—C1—C2—C31.4 (11)
N1—N2—C1—Cl12.4 (12)C1—C2—C3—C4179.9 (6)
N2—C1—C2—C6179.5 (7)C2—C3—C4—C51.1 (8)
C1—C2—C6—C5179.5 (7)C3—C4—C5—C60.9 (6)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds