Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The characteristic feature of the structure of the title compound, dipotassium bis­(sulfito-[kappa]S)mercurate(II) 2.25-hy­drate, is a layered arrangement parallel to (001) where each of the two independent [Hg(SO3)2]2- anions are grouped into centrosymmetric pairs and are surrounded by two K+ cations to give the overall layer composition {K2[Hg(SO3)2]2}2-. The remaining cations and the uncoordinated water mol­ecules are situated between these layers. Within the [Hg(SO3)2]2- anions, the central Hg atoms are twofold coordinated by S atoms, with a mean Hg-S bond length of 2.384 (2) Å. The anions are slightly bent [174.26 (3) and 176.99 (3)°] due to inter­molecular O...Hg inter­actions greater than 2.8 Å. All coordination polyhedra around the K+ cations are considerably distorted, with coordination numbers ranging from six to nine. Although the H atoms of the five water mol­ecules (one with symmetry 2) could not be located, O...O separations between 2.80 and 2.95 Å suggest a system of medium to weak O-H...O hydrogen bonds which help to consolidate the structural set-up. Differences and similarities between the bis­(sulfito-[kappa]S)mercurate(II) anions in the title compound and those in the related salts (NH4)2[Hg(SO3)2] and Na2[Hg(SO3)2]·H2O are discussed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110032373/sq3257sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110032373/sq3257Isup2.hkl
Contains datablock I

Comment top

From a structural point of view, sulfito complexes of mercury(II) are interesting because the primary coordination of the metal is not accomplished through the oxygen atoms of the SO32- anion, but through the lone-pair electrons of the SIV atom. The κ-S coordination mode to the metal leads to an enhanced S—O π-bonding (Cruickshank, 1961) and consequently in considerably shorter S—O bond lengths ( 1.47 Å) in comparison with a κ-O coordination mode [d(S—O) 1.54 Å]. Structurally well characterized examples of such κ-S-bonded mercury(II) complexes include Na2[Hg(SO3)2].H2O (Nyberg & Cynkier, 1972), (NH4)[HgCl(SO3)], (NH4)2[Hg(SO3)2] (Weil et al., 2007), K2[O(HgSO3)3] (Weil et al., 2008a) and several compounds of general composition xM[HgX(SO3)].yHgX2.zMX. nH2O (M = NH4, K; X = Cl, Br; x, y, z, n = 0–2) (Weil et al., 2008b). Continuing our studies of sulfito complexes of mercury, we have obtained single crystals of the title compound, K2[Hg(SO3)2].2.25H2O, (I), and report its crystal structure here.

The asymmetric unit of (I) (Fig. 1) contains four K, two Hg, four S and 17 O atoms, five of which are associated with water molecules. Except for one H2O molecule (OW1) on a special position (4e, symmetry 2), all other atoms occupy general sites (8f). The two independent but very similar [Hg(SO3)2]2- sulfitomercurate anions are arranged in two centrosymmetric pairs [Hg(SO3)2]24-, which, in turn, are linked into layers parallel to (001) through weak S—O···Hg interactions. In addition, two of the four independent K+ cations (K1, K2) are embedded within these layers, leading to an overall layer composition of {K2[Hg(SO3)2]2}2- (Fig. 2). The layers are stacked along [001] with an interlayer distance of sin β.c/2 = 9.0719 Å. This distance corresponds to the most intense reflection (002) in the X-ray powder pattern. These mixed anionic sheets adopt layer symmetry (a/b).1 - p 1 (Shubnikov & Koptsik, 1974). The remaining K+ ions (K3, K4) are spread between the anionic layers; their layer symmetry is (a:b).2 - p 2.

In the two slightly bent [Hg(SO3)2]2- anions, which both approach an eclipsed conformation, the four Hg—S bonds have virtually the same lengths, with an average of 2.384 (2) Å (Table 1). The coordination spheres of the two HgII atoms are augmented by remote oxygen atoms at distances > 2.8 Å. When a bonding interaction between mercury and oxygen is considered to be relevant for Hg—O distances < 3.1 Å, the resulting coordination polyhedra are a distorted HgS2O4 octahedron for Hg1 and a distorted HgS2O3 trigonal bipyramid for Hg2, each with the S atoms in the respective axial positions. The four S atoms adopt a tetrahedral SHgO3 coordination with a slight angular distortion in which the O—S—O angles [mean 110.4 (6)°] are somewhat greater than the O—S—Hg angles [mean 108.5 (18)°]. The 12 S—O bond lengths scatter marginally [¯d(S—O) = 1.472 (6) Å], as the individual O atoms are involved to a different extent in the effective coordination spheres of Hg, in the coordination to the K+ cations, and as acceptors in hydrogen bonds from the H2O molecules.

The four independent K+ ions show different coordination behaviour. K1 is a component of the mixed anionic layer and is coordinated by six O atoms of the sulfite ligands at short distances [2.662 (3)–2.788 (3) Å] in the form of a distorted octahedron. K2 is already situated at the outer margin of the anionic layer and thus also bonds to three interlayer water molecules. This leads to an increase of the coordination number to eight with K—O distances ranging from 2.708 (3) to 3.080 (4) Å. K3 and K4 are part of the cationic layer and are coordinated both to sulfite O atoms and to water molecules. Their coordination numbers are eight and nine, with K—O distances ranging from 2.666 (3) to 3.097 (3) Å. The resulting coordination spheres are considerably distorted and difficult to derive from simple polyhedra.

Although the hydrogen atoms of the water molecules could not be located, the O···O separations (Table 2) between the water molecules and between water molecules and neighbouring O atoms of the sulfite groups are indicative of typical donor···acceptor distances for medium to weak O—H···O hydrogen bonds which leads to an additional stabilization of the structure.

In relation to the two other [Hg(SO3)2]2- anions structurally characterized so far, the atomic distances and angles for the two anions in (I) are very similar (Table 1). The Hg—S bond lengths are slightly shorter than in (NH4)2[Hg(SO3)2], (II), and Na2[Hg(SO3)2].H2O, (III), due to differences in the effective coordination of HgII in the three structures. However, compared to the average Hg—S distance of 2.371 (19) Å in structures comprising the (halidosulfito-κ-S)-mercurate anion [HgX(SO3)]- (X = Br, Cl) (Weil et al., 2007, 2008b) an increase of the Hg—S bond length is observed which we ascribe to the mutual trans-influence of the two sulfito ligands in the [Hg(SO3)2]2- anion. As for Hg1 in (I), the coordination polyhedra of the HgII atoms in (II) and (III) show a distinct [2 + 4] coordination; however, with differences with respect to the Hg—O bond lengths [2.733 (3)-[2.844 (3) Å for (II) and 2.803 (21)-[3.070 (19) Å for (III)]. In all three structures, similar angular distortions are found for the tetrahedrally coordinated S atom, whereas in (II) and (III) the mean S—O bond lengths of the sulfite moiety differ slightly from that of (I), with 1.481 (8) Å for (II) and 1.467 (16) Å for (III). The [Hg(SO3)2]2- anions in all three structures are nearly linear and approach an eclipsed conformation. Comparison of the four [(bis-sulfito-κ-S)mercurate(II)] anions reveals a rather rigid structure for this unit with only slight deviations that mainly originate from the outer coordination spheres of the HgII atoms to remote O atoms, from the role of the sulfite O atoms as acceptors in hydrogen bonding and from bonding of the individual SO3 units to the different counter cations (K+, NH4+ and Na+) via ionic or hydrogen bonding interactions. The number of lattice water molecules and their bonding to the respective cations and further involvement in hydrogen bonding also contribute to these differences. Whereas in (I) 2.25 water molecules per anion are present, (II) contains no additional water molecules and (III) contains one water molecule per anion. The different numbers of lattice water molecules also influence the packing of the three structures. In contrast to the layered arrangement in (I) that contains a comparatively high number of water molecules, (III) includes less water and is characterized by a rod-like arrangement of the [(bis-sulfito-κ-S)mercurate(II)] anions which are separated by the Na+ cations and water molecules. Finally, (II), containing no water molecules, is made up of a three-dimensional anionic framework where the NH4+ cations are situated in the voids.

Related literature top

For related literature, see: Cruickshank (1961); Nyberg & Cynkier (1972); Shubnikov & Koptsik (1974); Weil et al. (2007, 2008a, 2008b).

Experimental top

All employed chemicals were of 'p.A.' quality and were purchased from Merck. Freshly prepared HgO, obtained by precipitation of a saturated aqueous HgCl2 solution with KOH, was dissolved in a concentrated K2SO3 solution (molar ratio HgO:K2SO3 = 1:3). After filtration of unreacted HgO, the colourless solution was left to stand in a refrigerator (280 K) for several days. Colourless crystals with a typical sword-like habit and maximum edge lengths of about 0.6 mm were obtained.

Refinement top

Protons of the water molecules O1W—O5W were not discernible from difference Fourier maps and hence were not included in the final refinement. The highest peak in the final Fourier map is 0.65 Å from Hg2 and the deepest hole is 1.35 Å from the same atom.

Computing details top

Data collection: SMART (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of K2[Hg(SO3)2].2.25H2O showing the atom labelling and with displacement ellipsoids drawn at the 74% probability level. The additional O atoms augmenting the coordination sphere of the HgII atoms are also shown. K—O bonds and O···O interactions have been omitted for clarity. [Symmetry codes: (i) -x+1/2, -y+1/2, -z+1; (ii) -x, -y + 1, -z+1; (iii) -x, -y, -z+1; (iv) -x + 1/2, -y-1/2, -z+1.]
[Figure 2] Fig. 2. The crystal structure of K2[Hg(SO3)2].2.25H2O in a projection along [010] showing the alternating anionic and cationic layers in the ab plane.
dipotassium bis(sulfito-κS)mercurate(II) 2.25-hydrate top
Crystal data top
K2[Hg(SO3)2]·2.25H2OF(000) = 3528
Mr = 479.45Dx = 3.417 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5331 reflections
a = 24.0774 (19) Åθ = 2.6–31.0°
b = 8.5348 (7) ŵ = 17.87 mm1
c = 19.2633 (15) ÅT = 100 K
β = 109.634 (1)°Lath, colourless
V = 3728.4 (5) Å30.30 × 0.12 × 0.02 mm
Z = 16
Data collection top
Bruker SMART CCD
diffractometer
5912 independent reflections
Radiation source: fine-focus sealed tube5360 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 31.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 3433
Tmin = 0.075, Tmax = 0.674k = 1212
21048 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023H-atom parameters not refined
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0275P)2 + 2.5166P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.003
5912 reflectionsΔρmax = 1.67 e Å3
240 parametersΔρmin = 0.98 e Å3
0 restraints
Crystal data top
K2[Hg(SO3)2]·2.25H2OV = 3728.4 (5) Å3
Mr = 479.45Z = 16
Monoclinic, C2/cMo Kα radiation
a = 24.0774 (19) ŵ = 17.87 mm1
b = 8.5348 (7) ÅT = 100 K
c = 19.2633 (15) Å0.30 × 0.12 × 0.02 mm
β = 109.634 (1)°
Data collection top
Bruker SMART CCD
diffractometer
5912 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
5360 reflections with I > 2σ(I)
Tmin = 0.075, Tmax = 0.674Rint = 0.039
21048 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.058H-atom parameters not refined
S = 1.02Δρmax = 1.67 e Å3
5912 reflectionsΔρmin = 0.98 e Å3
240 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.036501 (6)0.265777 (14)0.486165 (7)0.01285 (4)
Hg20.276571 (6)0.003213 (14)0.475636 (7)0.01360 (4)
K10.36120 (3)0.39947 (9)0.46280 (4)0.01482 (14)
K20.04902 (4)0.35571 (9)0.36188 (4)0.01791 (15)
K30.23879 (4)0.42435 (10)0.24969 (5)0.02119 (16)
K40.09952 (3)0.05704 (10)0.31029 (4)0.01916 (15)
S10.08142 (4)0.47758 (10)0.56635 (5)0.01256 (15)
S20.00265 (4)0.06224 (9)0.39867 (5)0.01168 (14)
S30.21580 (4)0.19185 (10)0.39359 (4)0.01129 (14)
S40.33279 (4)0.19295 (10)0.55729 (5)0.01320 (15)
O10.14181 (11)0.4327 (3)0.61081 (16)0.0228 (6)
O20.04585 (13)0.5124 (3)0.61340 (16)0.0201 (6)
O30.08158 (13)0.6118 (3)0.51848 (15)0.0230 (6)
O40.04151 (12)0.0620 (3)0.41178 (16)0.0213 (6)
O50.05837 (13)0.0006 (3)0.40311 (17)0.0208 (6)
O60.01321 (12)0.1340 (3)0.32539 (15)0.0211 (5)
O70.24594 (12)0.3443 (3)0.40480 (15)0.0186 (5)
O80.16101 (11)0.2003 (3)0.41122 (15)0.0196 (5)
O90.20398 (12)0.1359 (3)0.31777 (14)0.0205 (5)
O100.34695 (13)0.3178 (3)0.51409 (17)0.0267 (6)
O110.38767 (12)0.1246 (3)0.60863 (16)0.0243 (6)
O120.29695 (13)0.2557 (3)0.60017 (18)0.0244 (6)
O1W0.00000.4132 (5)0.25000.0245 (8)
O2W0.20764 (14)0.1503 (4)0.65068 (16)0.0284 (7)
O3W0.07218 (16)0.2182 (4)0.2276 (2)0.0353 (8)
O4W0.15074 (15)0.1821 (4)0.2988 (2)0.0390 (8)
O5W0.36808 (16)0.0241 (4)0.7400 (2)0.0392 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.01303 (7)0.01182 (6)0.01269 (6)0.00016 (4)0.00300 (5)0.00236 (4)
Hg20.01370 (7)0.01269 (7)0.01354 (7)0.00257 (4)0.00343 (5)0.00150 (4)
K10.0122 (3)0.0164 (3)0.0161 (3)0.0009 (2)0.0051 (3)0.0006 (3)
K20.0196 (4)0.0159 (3)0.0179 (4)0.0015 (3)0.0058 (3)0.0019 (3)
K30.0192 (4)0.0247 (4)0.0184 (4)0.0036 (3)0.0047 (3)0.0001 (3)
K40.0167 (4)0.0231 (4)0.0172 (3)0.0010 (3)0.0050 (3)0.0011 (3)
S10.0127 (4)0.0130 (4)0.0113 (3)0.0007 (3)0.0032 (3)0.0017 (3)
S20.0112 (4)0.0118 (4)0.0119 (3)0.0003 (3)0.0038 (3)0.0016 (3)
S30.0105 (4)0.0130 (4)0.0102 (3)0.0001 (3)0.0033 (3)0.0005 (3)
S40.0122 (4)0.0116 (3)0.0143 (4)0.0006 (3)0.0025 (3)0.0007 (3)
O10.0137 (13)0.0291 (15)0.0216 (14)0.0043 (10)0.0007 (11)0.0058 (11)
O20.0205 (14)0.0231 (14)0.0192 (13)0.0030 (10)0.0099 (12)0.0061 (10)
O30.0347 (16)0.0171 (13)0.0162 (13)0.0070 (11)0.0074 (12)0.0000 (10)
O40.0181 (13)0.0171 (13)0.0242 (14)0.0061 (10)0.0011 (11)0.0073 (10)
O50.0166 (13)0.0262 (15)0.0226 (14)0.0079 (10)0.0106 (12)0.0066 (10)
O60.0279 (15)0.0211 (13)0.0128 (12)0.0035 (11)0.0046 (11)0.0021 (10)
O70.0185 (13)0.0152 (12)0.0204 (13)0.0039 (10)0.0042 (11)0.0015 (10)
O80.0139 (12)0.0255 (14)0.0221 (14)0.0051 (10)0.0099 (11)0.0070 (11)
O90.0250 (14)0.0249 (13)0.0111 (12)0.0016 (11)0.0056 (11)0.0022 (10)
O100.0344 (17)0.0181 (13)0.0255 (15)0.0093 (11)0.0072 (13)0.0038 (11)
O110.0160 (13)0.0241 (14)0.0260 (15)0.0038 (11)0.0022 (11)0.0033 (11)
O120.0198 (14)0.0282 (15)0.0274 (15)0.0019 (11)0.0111 (12)0.0096 (12)
O1W0.032 (2)0.0194 (18)0.0175 (18)0.0000.0022 (17)0.000
O2W0.0362 (17)0.0303 (16)0.0227 (15)0.0135 (13)0.0152 (13)0.0096 (12)
O3W0.043 (2)0.0302 (17)0.0318 (18)0.0029 (14)0.0111 (16)0.0043 (14)
O4W0.0276 (18)0.044 (2)0.043 (2)0.0000 (15)0.0088 (15)0.0038 (16)
O5W0.036 (2)0.050 (2)0.0326 (19)0.0040 (15)0.0127 (16)0.0052 (15)
Geometric parameters (Å, º) top
Hg1—S22.3831 (8)K4—O4Wvii2.969 (4)
Hg1—S12.3876 (9)K4—O92.969 (3)
Hg1—O10i2.897 (3)K4—O12i2.975 (3)
Hg1—O2ii2.939 (3)K4—O82.977 (3)
Hg1—O3ii3.002 (3)K4—O11i3.097 (3)
Hg1—O5iii3.032 (3)S1—O11.469 (3)
Hg1—O11i3.128 (3)S1—O21.471 (3)
Hg2—S32.3826 (8)S1—O31.472 (3)
Hg2—S42.3829 (9)S2—O41.462 (3)
Hg2—O12i2.827 (3)S2—O51.474 (3)
Hg2—O7iv2.852 (3)S2—O61.480 (3)
Hg2—O1i3.033 (3)S3—O71.470 (3)
Hg2—O83.129 (3)S3—O81.470 (3)
Hg2—O93.164 (3)S3—O91.471 (3)
K1—O72.662 (3)S4—O101.461 (3)
K1—O10v2.673 (3)S4—O111.479 (3)
K1—O5vi2.704 (3)S4—O121.481 (3)
K1—O4iv2.762 (3)O1—O2W2.845 (4)
K1—O3i2.779 (3)O1—O5Wx3.064 (5)
K1—O8iv2.788 (3)O2—O5Wx2.889 (5)
K1—O2Wiv3.110 (3)O4—O3Wvii3.397 (5)
K1—O4Wvi3.153 (4)O5—O4W2.901 (5)
K2—O11iv2.708 (3)O5—O3Wvii3.056 (4)
K2—O42.713 (3)O6—O1W2.863 (4)
K2—O2iii2.822 (3)O10—O2Wi3.012 (4)
K2—O3v2.864 (3)O11—O5W2.857 (5)
K2—O82.865 (3)O12—O2W2.790 (4)
K2—O1Wv2.867 (3)O1W—O6vii2.863 (4)
K2—O3W3.057 (4)O1W—O11i3.144 (3)
K2—O3Wvii3.080 (4)O1W—O11xi3.144 (3)
K3—O4Wvi2.666 (3)O1W—O5Wi3.162 (4)
K3—O2Wiv2.721 (3)O2W—O10i3.012 (4)
K3—O5Wiv2.780 (4)O2W—O7iv3.165 (4)
K3—O9viii2.837 (3)O3W—O5Wiv2.945 (5)
K3—O1ix2.901 (3)O3W—O5vii3.056 (4)
K3—O2Wix2.951 (3)O4W—O5Wxi2.849 (5)
K3—O73.013 (3)O5W—O4Wxii2.849 (5)
K3—O93.037 (3)O5W—O2xiii2.889 (5)
K4—O3W2.790 (3)O5W—O3Wiv2.945 (5)
K4—O6vii2.816 (3)O5W—O1xiii3.064 (5)
K4—O62.901 (3)O5W—O1Wi3.162 (4)
K4—O42.939 (3)
O1···O2W2.845 (4)O11···O5W2.857 (5)
O2···O5Wx2.889 (5)O12···O2W2.790 (4)
O5···O4W2.901 (5)O3W···O5Wiv2.945 (5)
O6···O1W2.863 (4)O4W···O5Wxi2.849 (5)
S2—Hg1—S1174.26 (3)O3W—K4—O11i172.27 (10)
S2—Hg1—O10i88.42 (6)O6vii—K4—O11i100.41 (8)
S1—Hg1—O10i87.66 (6)O6—K4—O11i71.86 (8)
S2—Hg1—O2ii89.32 (6)O4—K4—O11i87.52 (8)
S1—Hg1—O2ii89.67 (6)O4Wvii—K4—O11i92.68 (9)
O10i—Hg1—O2ii126.80 (8)O9—K4—O11i121.53 (8)
S2—Hg1—O3ii94.99 (5)O12i—K4—O11i46.72 (7)
S1—Hg1—O3ii88.53 (5)O8—K4—O11i111.99 (8)
O10i—Hg1—O3ii173.66 (7)O3W—K4—O10i141.13 (9)
O2ii—Hg1—O3ii48.08 (7)O6vii—K4—O10i140.64 (8)
S2—Hg1—O5iii83.53 (6)O6—K4—O10i83.25 (8)
S1—Hg1—O5iii100.15 (6)O4—K4—O10i63.13 (7)
O10i—Hg1—O5iii82.99 (8)O4Wvii—K4—O10i119.18 (9)
O2ii—Hg1—O5iii149.25 (7)O9—K4—O10i95.46 (8)
O3ii—Hg1—O5iii102.69 (7)O12i—K4—O10i44.21 (8)
S2—Hg1—O11i88.56 (5)O8—K4—O10i68.84 (7)
S1—Hg1—O11i85.70 (6)O11i—K4—O10i43.51 (7)
O10i—Hg1—O11i46.92 (7)S4i—K4—O10i25.29 (5)
O2ii—Hg1—O11i79.89 (7)O3W—K4—S2102.89 (8)
O3ii—Hg1—O11i127.69 (7)O1—S1—O2111.14 (17)
O5iii—Hg1—O11i129.52 (7)O1—S1—O3110.97 (17)
S3—Hg2—S4176.99 (3)O2—S1—O3110.69 (16)
S3—Hg2—O12i91.37 (6)O1—S1—Hg1108.91 (12)
S4—Hg2—O12i86.23 (6)O2—S1—Hg1108.71 (11)
S3—Hg2—O7iv89.22 (6)O3—S1—Hg1106.26 (11)
S4—Hg2—O7iv90.43 (6)O4—S2—O5110.47 (16)
O12i—Hg2—O7iv120.15 (8)O4—S2—O6110.29 (17)
S3—Hg2—O1i97.86 (6)O5—S2—O6109.74 (17)
S4—Hg2—O1i83.90 (6)O4—S2—Hg1108.34 (11)
O12i—Hg2—O1i88.67 (8)O5—S2—Hg1112.06 (11)
O7iv—Hg2—O1i150.26 (7)O6—S2—Hg1105.85 (11)
S3—Hg2—O826.83 (5)O7—S3—O8111.07 (17)
S4—Hg2—O8150.65 (5)O7—S3—O9110.77 (16)
O12i—Hg2—O882.98 (8)O8—S3—O9110.86 (16)
O7iv—Hg2—O871.93 (7)O7—S3—Hg2109.74 (11)
O1i—Hg2—O8122.88 (7)O8—S3—Hg2106.18 (11)
S3—Hg2—O926.22 (5)O9—S3—Hg2108.07 (11)
S4—Hg2—O9153.33 (5)O10—S4—O11109.97 (18)
O12i—Hg2—O973.93 (8)O10—S4—O12110.18 (18)
O7iv—Hg2—O9114.79 (7)O11—S4—O12109.08 (18)
O1i—Hg2—O978.11 (7)O10—S4—Hg2109.03 (13)
O8—Hg2—O945.26 (7)O11—S4—Hg2110.26 (12)
O7—K1—O10v93.99 (9)O12—S4—Hg2108.31 (12)
O7—K1—O5vi132.25 (9)S1—O1—K3xv151.20 (16)
O10v—K1—O5vi93.92 (9)O2W—O1—K3xv61.80 (9)
O7—K1—O4iv147.80 (9)S1—O1—Hg2i108.98 (15)
O10v—K1—O4iv75.27 (9)O2W—O1—Hg2i84.91 (9)
O5vi—K1—O4iv79.39 (9)K3xv—O1—Hg2i92.40 (8)
O7—K1—O3i107.44 (9)O2W—O1—Hg193.15 (10)
O10v—K1—O3i150.38 (9)K3xv—O1—Hg1151.04 (11)
O5vi—K1—O3i86.70 (8)Hg2i—O1—Hg1100.00 (8)
O4iv—K1—O3i75.75 (8)O5Wx—O1—Hg1121.90 (11)
O7—K1—O8iv80.41 (8)S1—O2—K2iii132.82 (15)
O10v—K1—O8iv82.42 (9)S1—O2—Hg1ii97.64 (14)
O5vi—K1—O8iv147.33 (9)K2iii—O2—Hg1ii90.49 (8)
O4iv—K1—O8iv68.25 (8)O5Wx—O2—Hg1ii136.11 (11)
O3i—K1—O8iv81.31 (8)K2iii—O2—Hg187.97 (7)
O7—K1—O2Wiv65.96 (8)O5Wx—O2—Hg1128.16 (12)
O10v—K1—O2Wiv62.23 (9)Hg1ii—O2—Hg193.78 (8)
O5vi—K1—O2Wiv76.71 (8)S1—O3—K1i135.41 (16)
O4iv—K1—O2Wiv128.89 (8)S1—O3—K2xvi132.68 (15)
O3i—K1—O2Wiv145.41 (8)K1i—O3—K2xvi89.97 (8)
O8iv—K1—O2Wiv127.53 (8)S1—O3—Hg1ii95.03 (13)
O7—K1—O4Wvi79.00 (9)K1i—O3—Hg1ii96.88 (8)
O10v—K1—O4Wvi126.16 (10)K2xvi—O3—Hg1ii90.78 (8)
O5vi—K1—O4Wvi58.77 (9)K1i—O3—Hg1168.90 (11)
O4iv—K1—O4Wvi131.90 (9)K2xvi—O3—Hg185.87 (7)
O3i—K1—O4Wvi79.00 (9)Hg1ii—O3—Hg193.48 (8)
O8iv—K1—O4Wvi145.61 (9)S1—O3—Hg2i88.94 (13)
O2Wiv—K1—O4Wvi66.43 (9)K1i—O3—Hg2i78.12 (7)
O11iv—K2—O4143.99 (9)K2xvi—O3—Hg2i88.77 (7)
O11iv—K2—O2iii89.62 (9)Hg1ii—O3—Hg2i174.98 (9)
O4—K2—O2iii102.95 (8)Hg1—O3—Hg2i91.48 (7)
O11iv—K2—O3v76.20 (9)S2—O4—K2137.75 (16)
O4—K2—O3v75.13 (8)S2—O4—K1iv126.24 (15)
O2iii—K2—O3v74.16 (8)K2—O4—K1iv93.55 (8)
O11iv—K2—O885.53 (9)S2—O4—K496.61 (14)
O4—K2—O867.80 (8)K2—O4—K488.89 (8)
O2iii—K2—O8152.65 (9)K1iv—O4—K499.79 (9)
O3v—K2—O878.54 (8)K2—O4—Hg1174.20 (11)
O11iv—K2—O1Wv68.60 (8)K1iv—O4—Hg181.91 (7)
O4—K2—O1Wv147.41 (8)K4—O4—Hg195.43 (8)
O2iii—K2—O1Wv69.43 (6)S2—O4—Hg1iii87.82 (12)
O3v—K2—O1Wv128.55 (8)K2—O4—Hg1iii81.71 (7)
O8—K2—O1Wv132.19 (6)K1iv—O4—Hg1iii84.80 (8)
O11iv—K2—O3W104.66 (9)K4—O4—Hg1iii169.80 (9)
O4—K2—O3W89.88 (9)Hg1—O4—Hg1iii94.23 (7)
O2iii—K2—O3W135.45 (9)O3Wvii—O4—Hg1iii79.16 (8)
O3v—K2—O3W149.89 (9)S2—O5—K1xvii134.80 (15)
O8—K2—O3W71.59 (9)S2—O5—Hg1iii111.46 (15)
O1Wv—K2—O3W76.95 (8)K1xvii—O5—Hg1iii85.35 (8)
O11iv—K2—O3Wvii143.24 (9)O4W—O5—Hg1iii143.15 (12)
O4—K2—O3Wvii71.50 (9)K1xvii—O5—Hg193.04 (8)
O2iii—K2—O3Wvii66.83 (9)O4W—O5—Hg1102.38 (11)
O3v—K2—O3Wvii119.94 (9)Hg1iii—O5—Hg1104.45 (9)
O8—K2—O3Wvii128.20 (9)O3Wvii—O5—Hg1134.19 (11)
O1Wv—K2—O3Wvii76.58 (8)S2—O6—K4vii128.70 (15)
O3W—K2—O3Wvii77.76 (11)S2—O6—K497.76 (13)
O11iv—K2—O5Wiv52.39 (9)K4vii—O6—K4106.12 (9)
O4—K2—O5Wiv133.54 (9)O1W—O6—K482.56 (8)
O2iii—K2—O5Wiv122.69 (8)K4vii—O6—Hg1156.88 (11)
O3v—K2—O5Wiv122.60 (9)O1W—O6—Hg197.60 (9)
O8—K2—O5Wiv74.27 (8)K4—O6—Hg196.95 (8)
O1Wv—K2—O5Wiv58.02 (6)S3—O7—K1127.72 (15)
O3W—K2—O5Wiv52.40 (9)S3—O7—Hg2iv107.71 (13)
O3Wvii—K2—O5Wiv116.68 (9)K1—O7—Hg2iv91.98 (8)
O4Wvi—K3—O2Wiv79.14 (10)S3—O7—K3101.19 (13)
O4Wvi—K3—O5Wiv156.40 (12)K1—O7—K394.60 (8)
O2Wiv—K3—O5Wiv87.89 (10)Hg2iv—O7—K3137.25 (9)
O4Wvi—K3—O9viii78.41 (10)K1—O7—Hg285.61 (7)
O2Wiv—K3—O9viii71.58 (8)Hg2iv—O7—Hg298.64 (8)
O5Wiv—K3—O9viii116.19 (10)K3—O7—Hg2123.94 (9)
O4Wvi—K3—O1ix137.17 (10)O2Wiv—O7—Hg2147.07 (11)
O2Wiv—K3—O1ix132.61 (9)S3—O8—K1iv129.45 (15)
O5Wiv—K3—O1ix65.22 (9)S3—O8—K2139.77 (15)
O9viii—K3—O1ix85.78 (8)K1iv—O8—K289.76 (7)
O4Wvi—K3—O2Wix88.02 (10)S3—O8—K495.78 (13)
O2Wiv—K3—O2Wix167.14 (6)K1iv—O8—K498.30 (8)
O5Wiv—K3—O2Wix104.40 (10)K2—O8—K485.34 (8)
O9viii—K3—O2Wix105.39 (8)K1iv—O8—Hg284.01 (7)
O1ix—K3—O2Wix58.16 (8)K2—O8—Hg2173.04 (10)
O4Wvi—K3—O781.56 (10)K4—O8—Hg292.47 (7)
O2Wiv—K3—O766.77 (8)S3—O8—Hg2iv86.92 (12)
O5Wiv—K3—O775.20 (9)K1iv—O8—Hg2iv80.78 (7)
O9viii—K3—O7136.37 (8)K2—O8—Hg2iv91.87 (7)
O1ix—K3—O7132.85 (8)K4—O8—Hg2iv177.08 (9)
O2Wix—K3—O7112.25 (8)Hg2—O8—Hg2iv90.19 (7)
O4Wvi—K3—O987.58 (10)S3—O9—K3xviii134.40 (15)
O2Wiv—K3—O9113.84 (8)S3—O9—K496.11 (12)
O5Wiv—K3—O979.69 (9)K3xviii—O9—K499.13 (8)
O9viii—K3—O9163.87 (7)S3—O9—K3100.16 (13)
O1ix—K3—O999.48 (8)K3xviii—O9—K394.08 (7)
O2Wix—K3—O965.77 (7)K4—O9—K3141.35 (10)
O7—K3—O947.15 (7)K3xviii—O9—Hg290.91 (8)
O4Wvi—K3—O4Wxiv140.65 (11)K4—O9—Hg291.92 (7)
O2Wiv—K3—O4Wxiv69.54 (9)K3—O9—Hg2124.18 (9)
O5Wiv—K3—O4Wxiv46.68 (9)O3W—O9—Hg2137.75 (11)
O9viii—K3—O4Wxiv69.65 (8)S4—O10—K1xvi162.26 (19)
O1ix—K3—O4Wxiv63.60 (8)S4—O10—Hg1i103.46 (15)
O2Wix—K3—O4Wxiv121.76 (8)K1xvi—O10—Hg1i88.68 (8)
O7—K3—O4Wxiv106.08 (8)K1xvi—O10—Hg2144.83 (11)
O9—K3—O4Wxiv126.35 (8)Hg1i—O10—Hg2103.20 (9)
S3—K3—O4Wxiv116.46 (6)O2Wi—O10—Hg279.77 (9)
O4Wvi—K3—O3W133.41 (9)S4—O10—K4i75.09 (12)
O2Wiv—K3—O3W124.70 (8)K1xvi—O10—K4i91.82 (8)
O5Wiv—K3—O3W43.28 (9)Hg1i—O10—K4i92.05 (8)
O9viii—K3—O3W143.26 (8)O2Wi—O10—K4i156.23 (12)
O1ix—K3—O3W58.67 (8)Hg2—O10—K4i120.17 (9)
O2Wix—K3—O3W65.34 (8)S4—O10—Hg2i86.04 (13)
O7—K3—O3W75.17 (7)K1xvi—O10—Hg2i80.01 (8)
O9—K3—O3W47.34 (7)Hg1i—O10—Hg2i166.43 (10)
S3—K3—O3W57.79 (5)O2Wi—O10—Hg2i86.53 (9)
O4Wxiv—K3—O3W85.08 (7)Hg2—O10—Hg2i90.37 (7)
K1—K3—O3W113.95 (5)K4i—O10—Hg2i80.92 (7)
O3W—K4—O6vii73.00 (10)S4—O11—K2iv142.02 (16)
O3W—K4—O6101.46 (10)S4—O11—K4i84.64 (12)
O6vii—K4—O667.46 (9)K2iv—O11—K4i133.17 (10)
O3W—K4—O490.85 (9)O5W—O11—K4i80.49 (11)
O6vii—K4—O4109.30 (8)S4—O11—Hg1i93.29 (14)
O6—K4—O448.84 (7)K2iv—O11—Hg1i88.75 (8)
O3W—K4—O4Wvii88.48 (11)O5W—O11—Hg1i155.41 (13)
O6vii—K4—O4Wvii67.16 (9)K4i—O11—Hg1i93.06 (8)
O6—K4—O4Wvii127.92 (9)K2iv—O11—Hg297.97 (8)
O4—K4—O4Wvii176.43 (9)O5W—O11—Hg2105.27 (11)
O3W—K4—O966.06 (9)K4i—O11—Hg2128.00 (9)
O6vii—K4—O9121.56 (8)Hg1i—O11—Hg297.42 (8)
O6—K4—O9157.93 (8)S4—O12—Hg2i111.30 (17)
O4—K4—O9111.11 (7)S4—O12—K4i89.20 (13)
O4Wvii—K4—O971.78 (9)Hg2i—O12—K4i98.93 (8)
O3W—K4—O12i140.73 (10)Hg2i—O12—Hg2102.63 (10)
O6vii—K4—O12i128.75 (9)K4i—O12—Hg2134.29 (10)
O6—K4—O12i116.75 (8)K2xvi—O1W—K2xix93.06 (12)
O4—K4—O12i107.03 (8)K3iv—O2W—K3xv98.54 (9)
O4Wvii—K4—O12i75.57 (9)K3iv—O2W—K1iv91.28 (9)
O9—K4—O12i74.86 (8)K3xv—O2W—K1iv163.62 (11)
O3W—K4—O873.84 (9)K4—O3W—K285.15 (10)
O6vii—K4—O8145.91 (8)K4—O3W—K2vii129.63 (13)
O6—K4—O8112.24 (7)K2—O3W—K2vii85.38 (9)
O4—K4—O863.50 (7)K3xvii—O4W—K4vii103.22 (13)
O4Wvii—K4—O8119.59 (9)K3xvii—O4W—K1xvii91.38 (10)
O9—K4—O848.07 (7)K4vii—O4W—K1xvii135.23 (13)
O12i—K4—O883.21 (8)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+1, z+1; (iii) x, y, z+1; (iv) x+1/2, y1/2, z+1; (v) x, y1, z; (vi) x+1/2, y1/2, z; (vii) x, y, z+1/2; (viii) x+1/2, y1/2, z+1/2; (ix) x, y, z1/2; (x) x+1/2, y+1/2, z+3/2; (xi) x1/2, y+1/2, z1/2; (xii) x+1/2, y+1/2, z+1/2; (xiii) x+1/2, y1/2, z+3/2; (xiv) x, y1, z+1/2; (xv) x, y, z+1/2; (xvi) x, y+1, z; (xvii) x1/2, y+1/2, z; (xviii) x+1/2, y+1/2, z+1/2; (xix) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaK2[Hg(SO3)2]·2.25H2O
Mr479.45
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)24.0774 (19), 8.5348 (7), 19.2633 (15)
β (°) 109.634 (1)
V3)3728.4 (5)
Z16
Radiation typeMo Kα
µ (mm1)17.87
Crystal size (mm)0.30 × 0.12 × 0.02
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.075, 0.674
No. of measured, independent and
observed [I > 2σ(I)] reflections
21048, 5912, 5360
Rint0.039
(sin θ/λ)max1)0.725
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.058, 1.02
No. of reflections5912
No. of parameters240
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)1.67, 0.98

Computer programs: SMART (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ATOMS (Dowty, 2006).

Selected interatomic distances (Å) top
O1···O2W2.845 (4)O11···O5W2.857 (5)
O2···O5Wi2.889 (5)O12···O2W2.790 (4)
O5···O4W2.901 (5)O3W···O5Wii2.945 (5)
O6···O1W2.863 (4)O4W···O5Wiii2.849 (5)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1/2, y1/2, z+1; (iii) x1/2, y+1/2, z1/2.
Comparative geometric parameters (Å, °) for structures containing the [Hg(SO3)2]2- anion. top
StructureHg—SS—OS—Hg—S
aHg1—S2 2.3831 (8)S1—O1 1.469 (3)S2—Hg1—S1 174.26 (3)
Hg1—S1 2.3876 (9)S1—O2 1.471 (3)S3—Hg2—S4 176.99 (3)
Hg2—S3 2.3826 (8)S1—O3 1.472 (3)
Hg2—S3 2.3829 (9)S2—O4 1.462 (3)
S2—O5 1.474 (3)
S2—O6 1.480 (3)
S3—O7 1.470 (3)
S3—O8 1.470 (3)
S3—O9 1.471 (3)
S4—O10 1.461 (3)
S4—O11 1.479 (3)
S4—O12 1.481 (3)
bHg—S1 2.3935 (7)S1—O6 1.470 (3)S1—Hg—S2 174.41 (3)
Hg—S2 2.3935 (8)S1—O5 1.480 (3)
S1—O2 1.491 (3)
S2—O3 1.475 (3)
S2—O4 1.483 (3)
S2—O1 1.487 (3)
cHg—S1 2.402 (6)S1—O5 1.466 (20)S1—Hg—S2 172.8 (2)
Hg—S2 2.411 (6)S1—O1 1.480 (21)
S1—O2 1.486 (20)
S2—O4 1.441 (22)
S2—O6 1.458 (22)
S2—O3 1.469 (22)
Notes: (a) K2[Hg(SO3)2].2.25H2O: this work; (b) (NH4)2[Hg(SO3)2]: Weil et al. (2007); (c) Na2[Hg(SO3)2].H2O: Nyberg & Cynkier (1972).
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds