Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The frozen phonon technique is introduced as a means of including the effects of thermal vibrations in multislice calculations of CBED patterns. This technique produces a thermal diffuse background, Kikuchi bands and a Debye-Waller factor, all of which are neglected in the standard multislice calculation. The frozen phonon calculations match experimental silicon (100) CBED patterns for specimen thicknesses of up to at least 550 Å. The best-fit silicon r.m.s. vibration amplitude at near room temperature was determined to be 0.085 (5) Å. As an independent check of validity, a comparison of calculated CBED, experimental CBED and electron energy loss spectroscopy (EELS) data was also performed. The frozen phonon technique provides an improved theoretical basis for the simulation of CBED and therefore annular dark field scanning transmission electron microscope imaging.

Subscribe to Acta Crystallographica Section A: Foundations and Advances

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email [email protected] for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds