Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107067042/su3009sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270107067042/su3009Isup2.hkl |
CCDC reference: 681528
For related literature, see: Addison et al. (1984); Bahekar et al. (2007); Berlinck & Kossuga (2005); Chen et al. (2006); Cunha et al. (2001); Janiak (2003); Lin et al. (2000); Place et al. (1998); Wang et al. (2005); Zharkouskaya et al. (2005).
The ligand BHPG was synthesized as described by Cunha et al. (2001). A solution containing BHPG (56.8 mg, 0.2 mmol) dissolved in chloroform (5 ml) was added dropwise to a solution containing copper(II) chloride dihydrate (34.1 mg, 0.2 mmol) dissolved in methanol (5 ml). The green mixture was stirred for 2 h at room temperature and evaporated under vacuum (yield 80.8 mg, 96%; m.p. 443–446 K). Analysis calculated for C15H18Cl2CuN4O2: C 42.82, H 4.31, N 13.3%; found: C 43.13, H 4.21, N 12.81%. IR (KBr): ν(C═ N) 1556 (vs) and 1622 (s); ν(C═O) 1681 (s); ν(CH3) 2936 (m) and 3046 (m) cm-1. Blue single crystals suitable for X-ray crystallographic analysis were grown in a methanol/ethylacetate ether interface by diffusion.
H-atoms H2, H3 and H2C could be located in difference Fourier maps. All the H atoms were included in calculated positions and treated as riding atoms: O—H = 0.82 Å, N—H = 0.86 Å, C—H = 0.93–0.97%A with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(C or N atom). The solvent O atoms were refined with an isotropically restrained displacement tensor (ISOR) and their occupancies were adjusted for an Ueq of ca 0.11 Å2; the solvent site occupation decreased from 1.0 to 0.61. It is worth citing that the solvent site refinement with occupation 1.0 lead to fitting residuals better by 1%, suggesting that one or alternatively two water molecules are fitting the cavity.
Data collection: CAD-4-PC (Enraf–Nonius, 1993); cell refinement: CAD-4-PC (Enraf–Nonius, 1993); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).
[CuCl(C15H16N4O2)]Cl·0.61H2O | F(000) = 1753 |
Mr = 429.75 | Dx = 1.546 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.5418 Å |
Hall symbol: -C 2yc | Cell parameters from 25 reflections |
a = 27.022 (3) Å | θ = 11–35° |
b = 9.114 (1) Å | µ = 4.50 mm−1 |
c = 17.005 (3) Å | T = 297 K |
β = 118.116 (10)° | Prism, blue |
V = 3693.8 (9) Å3 | 0.15 × 0.12 × 0.10 mm |
Z = 8 |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.037 |
non–profiled ω/2θ scans | θmax = 67.9°, θmin = 3.7° |
Absorption correction: gaussian Spek, 2003 | h = −28→32 |
Tmin = 0.594, Tmax = 0.72 | k = −10→10 |
7066 measured reflections | l = −16→20 |
3318 independent reflections | 2 standard reflections every 120 min |
2952 reflections with I > 2σ(I) | intensity decay: 6% |
Refinement on F2 | H-atom parameters constrained |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0946P)2 + 2.8853P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.048 | (Δ/σ)max = 0.015 |
wR(F2) = 0.138 | Δρmax = 0.48 e Å−3 |
S = 1.08 | Δρmin = −0.69 e Å−3 |
3318 reflections | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
246 parameters | Extinction coefficient: 0.00266 (16) |
18 restraints |
[CuCl(C15H16N4O2)]Cl·0.61H2O | V = 3693.8 (9) Å3 |
Mr = 429.75 | Z = 8 |
Monoclinic, C2/c | Cu Kα radiation |
a = 27.022 (3) Å | µ = 4.50 mm−1 |
b = 9.114 (1) Å | T = 297 K |
c = 17.005 (3) Å | 0.15 × 0.12 × 0.10 mm |
β = 118.116 (10)° |
Enraf–Nonius CAD-4 diffractometer | 2952 reflections with I > 2σ(I) |
Absorption correction: gaussian Spek, 2003 | Rint = 0.037 |
Tmin = 0.594, Tmax = 0.72 | 2 standard reflections every 120 min |
7066 measured reflections | intensity decay: 6% |
3318 independent reflections |
R[F2 > 2σ(F2)] = 0.048 | 18 restraints |
wR(F2) = 0.138 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.48 e Å−3 |
3318 reflections | Δρmin = −0.69 e Å−3 |
246 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.330209 (16) | 0.59634 (4) | 0.27069 (3) | 0.0415 (2) | |
Cl1 | 0.39689 (4) | 0.75791 (9) | 0.34806 (6) | 0.0662 (3) | |
Cl2 | 0.18137 (3) | 0.52524 (7) | −0.09190 (5) | 0.0488 (2) | |
O1 | 0.21733 (8) | 0.0859 (2) | 0.13948 (13) | 0.0440 (5) | |
O2 | 0.27914 (9) | 0.7655 (2) | 0.20078 (14) | 0.0506 (5) | |
H2C | 0.2913 | 0.8386 | 0.1875 | 0.076* | |
N1 | 0.26795 (9) | 0.4830 (2) | 0.18277 (15) | 0.0376 (5) | |
N2 | 0.31713 (9) | 0.2699 (2) | 0.19314 (15) | 0.0391 (5) | |
H2 | 0.3181 | 0.1966 | 0.1621 | 0.047* | |
N3 | 0.22681 (9) | 0.2957 (2) | 0.07591 (14) | 0.0389 (5) | |
H3 | 0.2145 | 0.3454 | 0.0273 | 0.047* | |
N4 | 0.37349 (9) | 0.4121 (2) | 0.32230 (16) | 0.0416 (5) | |
C1 | 0.27086 (10) | 0.3553 (3) | 0.15410 (16) | 0.0350 (5) | |
C2 | 0.21557 (11) | 0.5666 (3) | 0.1469 (2) | 0.0438 (6) | |
H2A | 0.2023 | 0.5735 | 0.1907 | 0.053* | |
H2B | 0.1869 | 0.5193 | 0.0939 | 0.053* | |
C3 | 0.22848 (12) | 0.7173 (3) | 0.1245 (2) | 0.0476 (7) | |
H3A | 0.2339 | 0.713 | 0.072 | 0.057* | |
H3B | 0.1979 | 0.7843 | 0.1127 | 0.057* | |
C6 | 0.20262 (10) | 0.1628 (3) | 0.07350 (17) | 0.0370 (5) | |
C11 | 0.36338 (10) | 0.2851 (3) | 0.27723 (18) | 0.0394 (6) | |
C12 | 0.39783 (13) | 0.1627 (3) | 0.3116 (2) | 0.0550 (8) | |
H12 | 0.3904 | 0.077 | 0.2782 | 0.066* | |
C13 | 0.44289 (15) | 0.1706 (4) | 0.3954 (3) | 0.0765 (12) | |
H13 | 0.4668 | 0.0908 | 0.4196 | 0.092* | |
C14 | 0.45213 (15) | 0.3004 (4) | 0.4436 (3) | 0.0776 (12) | |
H14 | 0.482 | 0.3076 | 0.5009 | 0.093* | |
C15 | 0.41731 (14) | 0.4165 (4) | 0.4062 (2) | 0.0580 (8) | |
H15 | 0.4237 | 0.5022 | 0.4393 | 0.07* | |
C21 | 0.15740 (11) | 0.1169 (3) | −0.01567 (18) | 0.0390 (6) | |
C22 | 0.16135 (13) | −0.0202 (3) | −0.0464 (2) | 0.0483 (7) | |
H22 | 0.192 | −0.0799 | −0.0124 | 0.058* | |
C23 | 0.11976 (14) | −0.0692 (4) | −0.1280 (2) | 0.0567 (8) | |
H23 | 0.1225 | −0.1613 | −0.149 | 0.058 (10)* | |
C24 | 0.07412 (13) | 0.0193 (5) | −0.1780 (2) | 0.0652 (9) | |
H24 | 0.0463 | −0.0129 | −0.233 | 0.078* | |
C25 | 0.06964 (13) | 0.1548 (5) | −0.1466 (2) | 0.0666 (9) | |
H25 | 0.0384 | 0.2129 | −0.1801 | 0.08* | |
C26 | 0.11144 (12) | 0.2061 (4) | −0.0652 (2) | 0.0530 (7) | |
H26 | 0.1086 | 0.2985 | −0.0444 | 0.064* | |
O11 | 0.0407 (10) | 0.508 (2) | −0.181 (3) | 0.124 (10) | 0.18 |
O12 | 0.0136 (10) | 0.604 (2) | −0.221 (3) | 0.124 (14) | 0.18 |
O13 | 0.0455 (9) | 0.564 (3) | −0.1229 (18) | 0.129 (7) | 0.25 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0450 (3) | 0.0288 (3) | 0.0464 (3) | −0.00345 (14) | 0.0179 (2) | −0.00371 (14) |
Cl1 | 0.0678 (5) | 0.0441 (4) | 0.0685 (5) | −0.0204 (3) | 0.0170 (4) | −0.0064 (3) |
Cl2 | 0.0574 (4) | 0.0352 (4) | 0.0533 (4) | 0.0035 (3) | 0.0257 (3) | 0.0010 (3) |
O1 | 0.0487 (10) | 0.0378 (10) | 0.0427 (10) | −0.0018 (7) | 0.0194 (9) | 0.0057 (8) |
O2 | 0.0636 (12) | 0.0287 (9) | 0.0544 (11) | 0.0000 (8) | 0.0237 (10) | 0.0029 (8) |
N1 | 0.0383 (10) | 0.0287 (10) | 0.0430 (11) | 0.0033 (8) | 0.0168 (9) | −0.0012 (9) |
N2 | 0.0388 (10) | 0.0287 (10) | 0.0453 (12) | 0.0022 (8) | 0.0162 (9) | −0.0046 (9) |
N3 | 0.0432 (11) | 0.0298 (10) | 0.0360 (10) | −0.0021 (8) | 0.0123 (9) | 0.0018 (8) |
N4 | 0.0372 (11) | 0.0361 (11) | 0.0453 (12) | −0.0022 (8) | 0.0143 (10) | −0.0024 (9) |
C1 | 0.0359 (12) | 0.0298 (12) | 0.0392 (12) | −0.0012 (9) | 0.0176 (10) | 0.0013 (10) |
C2 | 0.0425 (13) | 0.0337 (12) | 0.0534 (15) | 0.0061 (11) | 0.0211 (12) | −0.0015 (12) |
C3 | 0.0570 (16) | 0.0345 (13) | 0.0508 (15) | 0.0087 (12) | 0.0249 (13) | 0.0064 (12) |
C6 | 0.0367 (12) | 0.0325 (12) | 0.0427 (13) | 0.0008 (9) | 0.0194 (11) | −0.0007 (10) |
C11 | 0.0353 (12) | 0.0345 (12) | 0.0453 (13) | −0.0002 (10) | 0.0165 (11) | 0.0023 (11) |
C12 | 0.0466 (15) | 0.0395 (15) | 0.0640 (19) | 0.0078 (12) | 0.0137 (14) | 0.0008 (13) |
C13 | 0.0564 (19) | 0.055 (2) | 0.081 (2) | 0.0146 (16) | 0.0021 (18) | 0.0079 (18) |
C14 | 0.059 (2) | 0.065 (2) | 0.066 (2) | 0.0034 (16) | −0.0063 (17) | 0.0012 (18) |
C15 | 0.0498 (16) | 0.0506 (18) | 0.0541 (18) | −0.0049 (13) | 0.0084 (14) | −0.0057 (14) |
C21 | 0.0363 (12) | 0.0378 (13) | 0.0407 (13) | −0.0051 (10) | 0.0165 (11) | 0.0010 (10) |
C22 | 0.0512 (15) | 0.0395 (14) | 0.0496 (15) | −0.0043 (12) | 0.0200 (13) | −0.0005 (12) |
C23 | 0.0599 (19) | 0.0533 (17) | 0.0582 (18) | −0.0181 (14) | 0.0290 (16) | −0.0166 (15) |
C24 | 0.0442 (15) | 0.086 (3) | 0.0565 (19) | −0.0182 (16) | 0.0159 (14) | −0.0198 (18) |
C25 | 0.0371 (14) | 0.082 (2) | 0.0615 (19) | 0.0044 (15) | 0.0079 (14) | −0.0025 (18) |
C26 | 0.0403 (14) | 0.0530 (17) | 0.0554 (17) | 0.0017 (12) | 0.0139 (13) | −0.0020 (14) |
O11 | 0.085 (13) | 0.068 (12) | 0.24 (3) | 0.027 (10) | 0.092 (18) | 0.010 (16) |
O12 | 0.09 (2) | 0.084 (12) | 0.21 (5) | 0.004 (11) | 0.08 (2) | 0.006 (15) |
O13 | 0.107 (13) | 0.114 (14) | 0.21 (2) | −0.015 (11) | 0.110 (17) | −0.006 (15) |
Cu1—N1 | 1.940 (2) | C3—H3B | 0.97 |
Cu1—N4 | 1.997 (2) | C6—C21 | 1.490 (3) |
Cu1—O2 | 2.037 (2) | C11—C12 | 1.393 (4) |
Cu1—Cl1 | 2.2162 (8) | C12—C13 | 1.373 (5) |
Cu1—O1i | 2.417 (2) | C12—H12 | 0.93 |
O1—C6 | 1.220 (3) | C13—C14 | 1.393 (6) |
O1—Cu1ii | 2.417 (2) | C13—H13 | 0.93 |
O2—C3 | 1.441 (4) | C14—C15 | 1.358 (5) |
O2—H2C | 0.82 | C14—H14 | 0.93 |
N1—C1 | 1.278 (3) | C15—H15 | 0.93 |
N1—C2 | 1.464 (3) | C21—C22 | 1.378 (4) |
N2—C1 | 1.352 (3) | C21—C26 | 1.388 (4) |
N2—C11 | 1.394 (3) | C22—C23 | 1.384 (4) |
N2—H2 | 0.86 | C22—H22 | 0.93 |
N3—C6 | 1.367 (3) | C23—C24 | 1.381 (5) |
N3—C1 | 1.410 (3) | C23—H23 | 0.93 |
N3—H3 | 0.86 | C24—C25 | 1.372 (6) |
N4—C11 | 1.343 (3) | C24—H24 | 0.93 |
N4—C15 | 1.359 (4) | C25—C26 | 1.391 (4) |
C2—C3 | 1.509 (4) | C25—H25 | 0.93 |
C2—H2A | 0.97 | C26—H26 | 0.93 |
C2—H2B | 0.97 | O12—O12iii | 0.90 (6) |
C3—H3A | 0.97 | ||
N1—Cu1—N4 | 90.38 (9) | C2—C3—H3B | 110.4 |
N1—Cu1—O2 | 81.39 (8) | H3A—C3—H3B | 108.6 |
N4—Cu1—O2 | 171.16 (9) | O1—C6—N3 | 122.5 (2) |
N1—Cu1—Cl1 | 168.15 (7) | O1—C6—C21 | 122.0 (2) |
N4—Cu1—Cl1 | 98.85 (7) | N3—C6—C21 | 115.5 (2) |
O2—Cu1—Cl1 | 88.92 (7) | N4—C11—C12 | 122.3 (2) |
N1—Cu1—O1i | 86.55 (8) | N4—C11—N2 | 121.0 (2) |
N4—Cu1—O1i | 93.70 (9) | C12—C11—N2 | 116.7 (2) |
O2—Cu1—O1i | 89.03 (8) | C13—C12—C11 | 118.9 (3) |
Cl1—Cu1—O1i | 100.17 (5) | C13—C12—H12 | 120.5 |
C6—O1—Cu1ii | 121.24 (17) | C11—C12—H12 | 120.5 |
C3—O2—Cu1 | 112.91 (15) | C12—C13—C14 | 118.7 (3) |
C3—O2—H2C | 109.5 | C12—C13—H13 | 120.6 |
Cu1—O2—H2C | 121.8 | C14—C13—H13 | 120.6 |
C1—N1—C2 | 122.4 (2) | C15—C14—C13 | 119.6 (3) |
C1—N1—Cu1 | 126.29 (17) | C15—C14—H14 | 120.2 |
C2—N1—Cu1 | 111.16 (17) | C13—C14—H14 | 120.2 |
C1—N2—C11 | 128.4 (2) | C14—C15—N4 | 122.5 (3) |
C1—N2—H2 | 115.8 | C14—C15—H15 | 118.7 |
C11—N2—H2 | 115.8 | N4—C15—H15 | 118.7 |
C6—N3—C1 | 123.3 (2) | C22—C21—C26 | 120.5 (3) |
C6—N3—H3 | 118.4 | C22—C21—C6 | 117.9 (2) |
C1—N3—H3 | 118.4 | C26—C21—C6 | 121.5 (3) |
C11—N4—C15 | 117.8 (2) | C21—C22—C23 | 120.1 (3) |
C11—N4—Cu1 | 123.65 (18) | C21—C22—H22 | 120 |
C15—N4—Cu1 | 118.5 (2) | C23—C22—H22 | 120 |
N1—C1—N2 | 123.1 (2) | C24—C23—C22 | 119.8 (3) |
N1—C1—N3 | 122.3 (2) | C24—C23—H23 | 120.1 |
N2—C1—N3 | 114.5 (2) | C22—C23—H23 | 120.1 |
N1—C2—C3 | 106.6 (2) | C25—C24—C23 | 120.2 (3) |
N1—C2—H2A | 110.4 | C25—C24—H24 | 119.9 |
C3—C2—H2A | 110.4 | C23—C24—H24 | 119.9 |
N1—C2—H2B | 110.4 | C24—C25—C26 | 120.7 (3) |
C3—C2—H2B | 110.4 | C24—C25—H25 | 119.7 |
H2A—C2—H2B | 108.6 | C26—C25—H25 | 119.7 |
O2—C3—C2 | 106.5 (2) | C21—C26—C25 | 118.8 (3) |
O2—C3—H3A | 110.4 | C21—C26—H26 | 120.6 |
C2—C3—H3A | 110.4 | C25—C26—H26 | 120.6 |
O2—C3—H3B | 110.4 | ||
N1—Cu1—O2—C3 | −3.42 (19) | Cu1ii—O1—C6—N3 | 94.5 (3) |
Cl1—Cu1—O2—C3 | 169.73 (19) | Cu1ii—O1—C6—C21 | −86.4 (3) |
O1i—Cu1—O2—C3 | −90.08 (19) | C1—N3—C6—O1 | 0.4 (4) |
N4—Cu1—N1—C1 | −25.1 (2) | C1—N3—C6—C21 | −178.8 (2) |
O2—Cu1—N1—C1 | 151.7 (2) | C15—N4—C11—C12 | −3.6 (4) |
Cl1—Cu1—N1—C1 | 116.2 (3) | Cu1—N4—C11—C12 | 173.2 (2) |
O1i—Cu1—N1—C1 | −118.8 (2) | C15—N4—C11—N2 | 176.0 (3) |
N4—Cu1—N1—C2 | 158.8 (2) | Cu1—N4—C11—N2 | −7.2 (4) |
O2—Cu1—N1—C2 | −24.43 (18) | C1—N2—C11—N4 | −16.8 (4) |
Cl1—Cu1—N1—C2 | −59.9 (4) | C1—N2—C11—C12 | 162.8 (3) |
O1i—Cu1—N1—C2 | 65.12 (19) | N4—C11—C12—C13 | 1.8 (5) |
N1—Cu1—N4—C11 | 22.0 (2) | N2—C11—C12—C13 | −177.9 (3) |
Cl1—Cu1—N4—C11 | −150.5 (2) | C11—C12—C13—C14 | 0.8 (6) |
O1i—Cu1—N4—C11 | 108.6 (2) | C12—C13—C14—C15 | −1.3 (7) |
N1—Cu1—N4—C15 | −161.1 (3) | C13—C14—C15—N4 | −0.7 (7) |
Cl1—Cu1—N4—C15 | 26.3 (3) | C11—N4—C15—C14 | 3.1 (5) |
O1i—Cu1—N4—C15 | −74.6 (2) | Cu1—N4—C15—C14 | −173.9 (3) |
C2—N1—C1—N2 | −172.2 (3) | O1—C6—C21—C22 | −51.2 (4) |
Cu1—N1—C1—N2 | 12.1 (4) | N3—C6—C21—C22 | 128.0 (3) |
C2—N1—C1—N3 | 11.4 (4) | O1—C6—C21—C26 | 126.4 (3) |
Cu1—N1—C1—N3 | −164.32 (18) | N3—C6—C21—C26 | −54.4 (4) |
C11—N2—C1—N1 | 14.9 (4) | C26—C21—C22—C23 | 1.0 (5) |
C11—N2—C1—N3 | −168.4 (2) | C6—C21—C22—C23 | 178.6 (3) |
C6—N3—C1—N1 | −125.5 (3) | C21—C22—C23—C24 | −0.5 (5) |
C6—N3—C1—N2 | 57.8 (3) | C22—C23—C24—C25 | −0.7 (5) |
C1—N1—C2—C3 | −129.6 (3) | C23—C24—C25—C26 | 1.4 (6) |
Cu1—N1—C2—C3 | 46.7 (3) | C22—C21—C26—C25 | −0.3 (5) |
Cu1—O2—C3—C2 | 28.9 (3) | C6—C21—C26—C25 | −177.8 (3) |
N1—C2—C3—O2 | −47.6 (3) | C24—C25—C26—C21 | −0.9 (6) |
Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x, y, −z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2C···Cl2iv | 0.82 | 2.42 | 3.173 (2) | 153 |
N2—H2···Cl2v | 0.86 | 2.35 | 3.204 (2) | 172 |
N3—H3···Cl2 | 0.86 | 2.43 | 3.275 (2) | 169 |
Symmetry codes: (iv) −x+1/2, −y+3/2, −z; (v) −x+1/2, −y+1/2, −z. |
Experimental details
Crystal data | |
Chemical formula | [CuCl(C15H16N4O2)]Cl·0.61H2O |
Mr | 429.75 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 297 |
a, b, c (Å) | 27.022 (3), 9.114 (1), 17.005 (3) |
β (°) | 118.116 (10) |
V (Å3) | 3693.8 (9) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 4.50 |
Crystal size (mm) | 0.15 × 0.12 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | Gaussian Spek, 2003 |
Tmin, Tmax | 0.594, 0.72 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7066, 3318, 2952 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.138, 1.08 |
No. of reflections | 3318 |
No. of parameters | 246 |
No. of restraints | 18 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.48, −0.69 |
Computer programs: CAD-4-PC (Enraf–Nonius, 1993), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999).
Cu1—N1 | 1.940 (2) | O1—C6 | 1.220 (3) |
Cu1—N4 | 1.997 (2) | N1—C1 | 1.278 (3) |
Cu1—O2 | 2.037 (2) | N2—C1 | 1.352 (3) |
Cu1—Cl1 | 2.2162 (8) | N3—C1 | 1.410 (3) |
Cu1—O1i | 2.417 (2) | C14—C15 | 1.358 (5) |
N1—Cu1—N4 | 90.38 (9) | O2—Cu1—Cl1 | 88.92 (7) |
N1—Cu1—O2 | 81.39 (8) | N1—Cu1—O1i | 86.55 (8) |
N4—Cu1—O2 | 171.16 (9) | N4—Cu1—O1i | 93.70 (9) |
N1—Cu1—Cl1 | 168.15 (7) | O2—Cu1—O1i | 89.03 (8) |
N4—Cu1—Cl1 | 98.85 (7) | Cl1—Cu1—O1i | 100.17 (5) |
Symmetry code: (i) −x+1/2, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2C···Cl2ii | 0.82 | 2.42 | 3.173 (2) | 152.9 |
N2—H2···Cl2iii | 0.86 | 2.35 | 3.204 (2) | 171.5 |
N3—H3···Cl2 | 0.86 | 2.43 | 3.275 (2) | 169.1 |
Symmetry codes: (ii) −x+1/2, −y+3/2, −z; (iii) −x+1/2, −y+1/2, −z. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
Guanidine chemistry has been extensively studied, as much for its biological activity as for its occurrence in natural products (Bahekar et al., 2007; Berlinck et al., 2005). Guanidines are well established as versatile and flexible ligand systems for a variety of transition metals. Among the important features of these molecules are the donor ability of the nitrogen centers and the potential to explore both the steric and the electronic effects induced by varying organic substituents on the ligand framework (Place et al., 1998). In addition, the N,N',N''-substituted groups allow the design of metal–guanidine fragments with the potential to form coordination polymers. These are of great interest as functional materials with physical properties, such as photoluminescence (Janiak, 2003), nonlinear optical (Lin et al., 2000) and magnetomolecular (Wang et al., 2005). One-dimensional chains are basic building blocks in coordination polymers, and intermolecular interactions play an important role in the structural organization of these complexes (Chen et al., 2006). Recently, a ligand system based on triaminoguanidine with copper(II) has been employed to build a three-dimensional coordination polymer containing two interpenetrating networks of (10,3)-a topology (Zharkouskaya et al., 2005). We report here a new zigzag one-dimensional coordination polymer, (I), obtained by the self-assembly of the cationic fragment [Cu(BHPG)Cl]+ on reaction of the guanidine derivative N-benzoyl-N'-(2-hydroxyethyl)-N''-(2-pyridyl)guanidine (BHPG) with copper(II) chloride.
The molecular structure of (I) is illustrated in Fig. 1, and selected geometric parameters are given in Table 1. Complex (I) is a one-dimensional zigzag coordination polymer, with parallel chains extending along the b axis. Each repeating unit is built up of roto-translated complex [Cu(BHPG)Cl]+ cations. The square-pyramidal coordinated copper(II) ion lies on a general position, connecting neighboring complex units via the apical carbonyl O1i atom [symmetry code: (i) -x + 1/2, y + 1/2, -z + 1/2], which is weakly bonded with a distance of 2.417 (2) Å. The coordination polyhedron around copper(II) is square-pyramidal, as indicated by the angular structural parameter τ = (β-α)/60 = 0.051 [Addison et al., 1984; α and β are the angles N1—Cu1—Cl1 = 168.15 (7)° and N4—Cu1—O2 = 171.16 (9)°, respectively]. Looking down the polymer chain, it can be seen that the arrangement of the copper(II) polyhedra is antiparallel, with copper(II) ions separated by a minimun distance of 6.092 Å. The basal plane of the coordination environment is formed by two cis N atoms from the imine and the pyridine groups [with bond distances Cu1—N1 of 1.940 (2) Å and Cu1—N4 of 1.997 (2) Å], a Cl atom and an O atom from the hydroxyl group [with bond distances Cu1—Cl1 of 2.2162 (8) Å and Cu1—O2 of 2.037 (2) Å]. It is interesting to note that the symmetrically substituted guanidine (Zharkouskaya et al., 2005) led to the formation of a three-dimensional polymer with (Cu3L)+ stoichiometry and two distinct metal environments. One of them has a square-pyramidal coordination environment, with a bridging O atom at the apical position with a distance of 2.270 (6) Å, and the other contains a basal plane similar to that of (I), except that the Cu—Cl distance is slightly longer [2.291 (7) Å].
The BHPG ligand acts as a bidentate chelate, leading to the formation of a five-membered ring (Cu1/N1/C2/C3/O3, showing an E form with C2 [or C3?] as the flap atom) and a six-membered ring (Cu1/N1/C1/N2/C11/N4, showing a boat conformation with atoms Cu and N2 as the flap atoms [or `lying out of the plane of the other atoms'? `flap' should probably only apply to `envelopes']). The formation of the six-membered ring and the planarity of the basal plane is an indication of the stability of the complex. The least-squares plane through atoms N4, N1, O2 and Cl1 in the basal plane has an r.m.s. deviation of 0.03 Å, and the CuII ion is displaced 0.097 (1) Å above this plane, towards the apical O1i atom. The bond angles centered at the CuII ion sum to 360°.
The cationic complex is counter balanced by a chloride anion, which is at the interstitial position between the parallel polymer chains, allowing the formation of a two-dimensional arrangement extending in the c direction. Thus, the crystal packing (Fig. 2) stabilization is mediated by strong N—H···Cl and O—H···Cl hydrogen bonds (see Table 2 and Fig. 2 for details). The phenyl ring of the toluyl group is rotated to allow compact packing, so the N3—C6—C21—C26 torsion angle becomes -54.4 (4)° and the C6—C21 bond distance, of 1.490 (3) Å, is elongated by 0.03 Å from the expected formal single-bond value as a result of the lack of π–π overlap. In the unit cell, a hydrophobic cavity of volume 476.5 Å3, in the vicinity of the inversion center at (0, 1/2, 0) was found to contain a number of very disordered and uncoordinated water molecules. These water molecules are seen in Fig. 2 as three disordered O atoms.